

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note

LIGO-T080083-00

01/04/09

Testing procedure for the Timing Master/FanOut board Advanced LIGO

Imre Bartos, Rolf Bork, Maxim Factourovich, Jay Heefner, Szabolcs Márka, Zoltán Raics, Paul Schwinberg and Daniel Sigg

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 51-33 Pasadena CA 91125

> Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project, MIT NW22-295, 185 Albany St., Cambridge, MA 02139 USA

> Phone (617) 253 4824 Fax (617) 253 7014 E-mail: <u>info@ligo.mit.edu</u>

Columbia University
Columbia Astrophysics Laboratory
Pupin Hall - MS 5247
New York NY 10027
Phone (212) 854 8209

Phone (212) 854-8209 Fax (212) 854-8121

E-mail: geco.cu@gmail.com

WWW: http://www.ligo.caltech.edu

Board document LIGO DCC #	070011	
Board Revision	A	
Board Serial #		
Board Type	Master [] () on-board () OCXO in	GPS receiver
	FanOut []	
Test Engineer		
Test Date:		
Overall MFO board testing:	PASSED	FAILED
Signature:		
Testing schedule:		
 Power Supply Unit (PSU) & Flash PROM & JTAG Inter Fiber I/O channels The VCXO circuitry Front-panel LEDs Serial interface (RS422) GPS receiver, antenna & in Fiber-delay claculator OCXO interface & PLL circuit. BNC ports 	faces terface*	

Physical requirements:

Hardware:

- 1 GPS-antenna*
- 2 JTAG interface board, rev A. (D060291) with 10-pin flat-ribbon cable and 26-pin flat-ribbon cable
- 3 12V, 2A PSU and 24V, 0.25A PSU and 2 cords with 3-pin D-sub connectors
- 4 Voltmeter
- 5 17 fiber-optic multi-mode (e.g. Agilent® HFBR 57E0) and at least 1 single-mode (e.g. Avago® AFCT-5760) transceiver modules
- **6** Windows®-operated PC with serial and parallel ports
- 7 RS232 to RS422 converter
- **8** Reference clocking (i.e. 1PPS) source w. optical output
- 9 An LC-LC fiber pair and a long (≥ 20 m) optical fiber loop
- 10 BNC patch cable

Software:

- 1 MS Windows® 2000, XP
- 2 Altium® Designer v6.9
- 3 Motorola® WinOncore v1.2*
- 4 HHD Software Free Serial Port Monitor v3.31 http://www.serial-port-monitor.com/index.html
- 5 GPS clock from LIGOTools*

A brief introduction to the Master/FanOut board functionality is given in the Appendix. More detailed description of the proposed timing system can be found online at http://www.ligo.caltech.edu/docs/T/T070218-00/

^{*}Master-board with GPS-module only

^{**}Master-board with OCXO module only

1. Testing the on-board PSU voltages at various testpoints.

	ver Supply Unit: facturer:			
mode	1:			
Digital Multi				
	model:			
(1) Measure	the applied exter	nal voltages and wr	ite them below:	
	.0V ± 1.0V l connections to	Measured*:the MFO	At the board (TP9):	
(2) Measure below:	the voltages at th	e testpoints and the	current through the board and w	rite them
TP5	nominal	$3.0V \pm 0.15V$	measured:	
TP6	nominal:	$1.2V\pm0.06V$	measured:	
TP7	nominal:	$5.0V \pm 0.25V$	measured:	
TP8	nominal:	$5.0V \pm 0.25V$	measured:	
TP9	nominal:	$12.0V \pm 1.2V$	measured:	
TP10	nominal:	$2.5V \pm 0.12V$	measured:	
TP11	nominal:	$10.0V \pm 0.5V$	measured:	
TP12	nominal:	$1.8V \pm 0.09V$	measured:	
TP18	nominal:	$-10.0V \pm 0.5V$	measured:	
TP19	nominal:	$3.3V \pm 0.16V$		
The current:	nominal:	$0.5A \pm 10\%$	measured:	
		nsceivers into all av and write them do	ailable slots simultaneously, mea wn below:	sure the
TP5	nominal	$3.0V \pm 0.15V$	measured:	
TP6	nominal:	$1.2V\pm0.06V$	measured:	
TP7	nominal:	$5.0V \pm 0.25V$	measured:	
TP8	nominal:	5.0V + 0.25V	measured:	

TP9	nominal:	$12.0V \pm 1.2V$	measured:
TP10	nominal:	$2.5V \pm 0.12V$	measured:
TP11	nominal:	$10.0V \pm 0.5V$	measured:
TP12	nominal:	$1.8V \pm 0.09V$	measured:
TP18	nominal:	$-10.0V \pm 0.5V$	measured:
TP19	nominal:	$3.3V \pm 0.16V$	measured:
The current:	nominal:	$1.5A \pm 10\%$	measured:

All the measurements are within the nominal ranges: () YES () NO

2. Testing Flash PROM & JTAG interfaces

Use Altium® Designer;

bit-files: **fpgamasterfanout_cclk.bit** (for "Spartan3E XC3S1600E-4FG320C"),

fpgamasterfanout.mcs (for "XCF XCF08PFSG48C")

The procedure:

- (a) Turn OFF the power to the MFO, wait a few seconds;
- (b) Turn the power ON;
- (c) Open Altium® Designer, go to Devices View, download the indicated bit-file and record the programming status of the FPGA;
- (d) Open the "Spartan3E XC3S1600E-4FG320C" instrument (the FPGA core), click on JTAG viewer panel, check the "Live Update" box and watch the FPGA pin indicators; record the observations
- (e) Right-click on the "XCF XCF08PFSG48C" instrument (the Flash PROM), select "Choose File and Download" and choose the indicated bit-file
- (f) Upon completion of the download, turn off the power to the board, wait for a few seconds, then restore the power
- (g) The FPGA should be automatically reprogrammed from the Flash PROM
- (h) Indicate the success/failure of the reprogramming

FPGA programming status (circle one): successful* failed

FPGA pin indicators (circle one): all steady changing*

Flash PROM reprogramming (circle one): successful* failed

*indicates normal JTAG and/or PROM operation

3. Test fiber I/O channels

Use Altium® Designer;

download bit-file: fpgamasterfanout_cclk.bit

Altium® virtual instrument I/O reference:

FO IO ROUTER - routes the signal through chosen optical I/O FanOut (FO);

BIN[15..0] - monitors the active/inactive status of the FanOuts;

MONITOR - toggles when 1PPS signal is received;

INT FGEN - when enabled, switches to internal frequency generator;

THRU FIBER - when enabled, routes the 8MHz signal through the chosen FO;

CHOOSE_OUT[3..0] - allows to choose FO output; allows to choose FO input;

The instrument setup:

Enable THRU_FIBER (the indicator turns green)

<u>DELAY MEASURE</u> - shows the time required for the signal to go through the loop of fiber connected to an optical I/O port;

CLK_CNT[31..0] counts the number of clock-cycles in one second Shows the propagation delay in units of clock-cycles

ALT CNT[31..0] same function as DEL CNT[31..0] but alternative implementation; may

be used for verification

NO SIGNAL displays the presence of the attached fiber-loop

LED ON when enabled, sends the toggling 1PPS signal to the LED of the FanOut-1,

overriding other signals for this LED.

The instrument setup:

Disable LED-ON, if enabled (the indicator turns red)

BNC FIBER FREQUENCIES - measures the frequency of the incoming signal

through a given port;

COUNTER_CHANNEL_A the signal frequency of the BNC "1PPS output" port; the signal frequency of the chosen FanOut port.

The instrument setup:

In the "Counter Options" set the Counter Time Base to 67.108 MHz.

The procedure:

- (a) Open Altium® Designer; open FO_IO_ROUTER instrument; set the TEST_INPUT to '1' and the INT_GEN and the THRU_FIBER to '0';
- (b) Open the BNC_FIBER_FREQUENCIES instrument in the Counter Options, set the Counter Time Base to 67.108 MHz; set the COUNTER CHANNEL B to the FREQUENCY mode;

- (c) Observe and record the frequency displayed in the COUNTER CHANNEL B with and without reference clock source connected to the front-panel INPUT port; write the results in the table below;
- (d) Connect the reference clock source to the INPUT port and a fiber-optic loop to the FO port #1;
- (e) Confirm that the front-panel FanOut LEDs follow the values of CHOOSE OUT[3..0] and CHOOSE IN[3..0];
- (f) Set both, CHOOSE OUT[3..0] and CHOOSE IN[3..0] to 0;
- (g) In the space below, record the frequency observed in the COUNTER_CHANNEL_B of the BNC_FIBER_FREQUENCIES instrument;
- (h) Circle PASS if the nominal and observed frequencies match or FAIL if they don't;
- (i) Move the fiber-loop to the next port (FO #2);
- (j) Increase the values of CHOOSE_OUT and CHOOSE_IN by 1;
- (k) Repeat the recording;
- (l) In the same fashion, proceed with the rest of the ports;
- (m) Write the results in the provided table

Port #	Frequency	while disconnected	Frequency v	Frequency while connected		FAIL
POIL#	nominal	observed	nominal	observed	(match)	(mismatch)
INPUT	0 MHz		8.389 MHz			
FO #1	0 MHz		8.389 MHz			
FO #2	0 MHz		8.389 MHz			
FO #3	0 MHz		8.389 MHz			
FO #4	0 MHz		8.389 MHz			
FO #5	0 MHz		8.389 MHz			
FO #6	0 MHz		8.389 MHz			
FO #7	0 MHz		8.389 MHz			
FO #8	0 MHz		8.389 MHz			
FO #9	0 MHz		8.389 MHz			
FO #10	0 MHz		8.389 MHz			
FO #11	0 MHz		8.389 MHz			
FO #12	0 MHz		8.389 MHz			
FO #13	0 MHz		8.389 MHz			
FO #14	0 MHz		8.389 MHz			
FO #15	0 MHz		8.389 MHz			
FO #16	0 MHz		8.389 MHz			

A <i>ll nominals were met</i> :	() YES	() NO
---------------------------------	---------	--------

4. Testing the VCXO circuitry:

Additional equipment necessary: voltmeter, reference clocking source

The following testing is done by measuring voltages at the VCXO-related testing points on the MFO board. The hardware-implemented VCXO phase-locking loop automatically synchronizes the on-board VCXO to the 8MHz signal from the front-panel INPUT port. The voltages at the testpoints indicate whether or not the proper synchronization takes place. **Prior to taking the measurements, a master timing source MUST be connected to the front-panel INPUT channel.**

VCXO voltages:

	Without synchronization		With synchronization	
	nominal	measured	nominal	measured
TP1 (ERR)	~10V		$5.0 \pm 0.5 \mathrm{V}$	
TP2 (CTRL)	~0V		2V8V	

The voltages are within the nominal ranges: () YES () NO

5. Test front-panel LEDs.

This test checks the operational status of the front-panel LEDs.

Use Altium® Designer;

download bit-file: fpgamasterfanout_cclk.bit

Altium® virtual instrument I/O reference:

SERIAL LED ROUTER routes the signals between serial interfaces (on-board GPS

receiver & RS422 port) as well as front-panel LEDs.

A[7..0] not used

GPS_THRU connects GPS and RS422 interfaces directly, bypassing all the

FPGA logic

OCXO GPS TO RS422 chooses between the OCXO and the GPS data to be sent through

the RS422 port

TEST LEDS for LED testing purposes, overrides all other FPGA LED-driving

circuitry and sets all the front-panel LEDs in test mode

LED RATE[7..0] sets the blinking rate for the front-panel LEDs

The procedure:

- (a) Open Altium® Designer, download the bit-file to the FPGA
- (b) Open the SERIAL_LED_ROUTER instrument
- (c) Set TEST_LEDS flag to high (green)
- (d) Increase the LED_RATE value from 0x00 to 0x3#, considering *only* the highest digit (# can be any number)
- (e) Record the blinking rates in the provided table

Parameter	LED rate at 0x0#		LED rate at 0x3#	
r arameter	nominal	observed	nominal	observed
ON	steady		2/sec.	
1PPS	steady		2/sec.	
GPS	steady		2/sec.	
OCXO	steady		2/sec.	
INPUT	steady		2/sec.	
#1	steady		2/sec.	
#2	steady		2/sec.	
#3	steady		2/sec.	
#4	steady		2/sec.	
#5	steady		2/sec.	
#6	steady		2/sec.	
#7	steady		2/sec.	
#8	steady		2/sec.	
#9	steady		2/sec.	
#10	steady		2/sec.	
#11	steady		2/sec.	
#12	steady		2/sec.	
#13	steady		2/sec.	
#14	steady		2/sec.	
#15	steady		2/sec.	
#16	Steady		2/sec.	

All LEDs blink simultaneously:

()YES

() NO

6. Testing the serial interface - RS422 output

This test verifies the operational status of the on-board serial interfaces.

Use Altium® Designer, Motorola® WinOncore;

download bit-file: fpgamasterfanout_cclk.bit

Altium® virtual instrument I/O reference:

SERIAL LED ROUTER routes the signals between serial interfaces (on-board GPS

receiver & RS422 port) as well as front-panel LEDs.

A[7..0] not used

GPS THRU connects GPS and RS422 interfaces directly, bypassing all the

FPGA logic

OCXO GPS TO RS422 chooses between the OCXO and the GPS data to be sent through

the RS422 port

TEST LEDS for LED testing purposes, overrides all other FPGA LED-driving

circuitry and sets all the front-panel LEDs in test mode

LED RATE[7..0] sets the blinking rate for the front-panel LEDs

The procedure:

- (f) Open Altium® Designer, download the bit-file to the FPGA
- (g) Open the SERIAL LED ROUTER instrument
- (h) Set GPS THRU flag to high (green)
- (i) Open WinOncore, open Command Monitor Window
- (j) Open GPS-receiver setup wizard (refer to the WinOncore manual), set up the GPS-receiver with default parameters
- (k) During the setup procedure, observe both, [TX] and [RX] data packets in the Command Monitor Window
- (l) Upon completion of the setup, look for the long strings of data in the Command Monitor Window, with the "[RX]@@Ha" header
- (m) Record the observations below

[TX] commands (circle one): present* absent

[RX] commands (circle one): present* absent

[RX]@@Ha headers (circle one): present* absent

GPS setup (circle one): successful* unsuccessful

^{*}indicates normal JTAG operation

7. GPS antenna & receiver module test

Use Altium® Designer, Motorola® WinOncore, GPSclock from LIGOtools; download bit-file: fpgamasterfanout_cclk.bit

Altium® virtual instrument I/O reference:

OSCILLATOR FREQUENCIES

- shows the frequencies of the onboard/external oscillators;

COUNTER CHANNEL A - GPS 1PPS signal frequency, nominally 1Hz COUNTER CHANNEL B - The frequency of the external OCXO, in MHz.

The instrument setup:

- (a) make sure each channel window is in the "Frequency" mode; to change the mode, press the Mode button below each screen as many times as necessary, until the windows gets into the desired mode.
- (b) press the "Counter Options" button under the left screen; set up the Counter Time Base to 67.108 MHz.
- (c) make sure the Run button is pressed, in which case it should have yellow color.

GPS 10 - reads and displays various GPS-receiver data parameters;

Inputs:

GPS SECOND[31..0] - The 32-bit value of the current GPS-second

VISIBLE[7..0] - The number of visible satellites TRACKED[7..0] - The number of tracked satellites

GPS STATUS[15..0] - GPS receiver status

ID1_TAG[31..0] - GPS-receiver ID-tag, highest 16 bits ID2_TAG[31..0] - GPS-receiver ID-tag, lowest 16 bits LOCKED - Confirms locking to GPS satellites

GPS_1PPS - Changes state each time the 1PPS is received PPS INDICATOR[15..0] - Scopes the GPS 1PPS line with 1/8 sec. resolution

ERROR - The software error status.

Outputs:

INITIALIZE - sends initialization signal

RS232 SEL - selects the source for the serial output

LOOPBACK - loops the output signal back to the software receiver CLKD[31..0] - sets the clock division factor for the PPS_INDICATOR

The procedure:

- (a) open Altium® Designer, download the bit-file, open the GPS IO instrument
- (b) set the INITIALIZE output to '0'
- (c) set the RS422 SEL output to '1'
- (d) set the LOOPBACK output to '0'
- (e) make sure the CLKD[31..0] output is set to 0x800000 or 8,388,608 decimal.
- (f) wait a few seconds for the GPS_1PPS and PPS_INDICATIOR input indicators to begin toggling
- (g) wait for additional 15 minutes for the GPS receiver to acquire data
- (h) open WinOncore and perform GPS self-test; fill-up the table below
- (i) in Altium® Designer, open the GPS_IO instrument again and record the status in the provided table

GPS self-test results:

Parameter	Nominal value	Factual value
Antenna Status	OK	
RTC comm. & time	PASS	
Temperature Sensor	PASS	
RAM	PASS	
ROM	PASS	
1 kHz Presence	PASS	
Temp. Sensor Data Checksum	PASS	
Oscillator Data Checksum	PASS	
Manufacturing Data Checksum	PASS	
Channel 12 correlation test	PASS	
Channel 11 correlation test	PASS	
Channel 10 correlation test	PASS	
Channel 9 correlation test	PASS	
Channel 8 correlation test	PASS	
Channel 7 correlation test	PASS	
Channel 6 correlation test	PASS	
Channel 5 correlation test	PASS	
Channel 4 correlation test	PASS	
Channel 3 correlation test	PASS	
Channel 2 correlation test	PASS	
Channel 1 correlation test	PASS	

LSC

GPS_IO instrument status:

Parameter	Nominal value	Factual value
# of tracked GPS satellites	≥ 3	
# of visible GPS satellites	≥ (# of tracked)	
LOCKED value	TRUE	
Highest 3 bits of GPS_STATUS	111	
ERROR value	FALSE	
Value of GPS_SECOND	Use reference*	
GPS_SECOND discrepancy with the reference*	0	

All the nominal values have been met: () Y	ES ()NO	

Notes:

8. Test fiber-delay calculator

Use Altium® Designer;

download bit-file: fpgamasterfanout_cclk.bit

Altium® virtual instrument I/O reference:

DELAY MI of fiber conn				equired for the signal to go through the loop
CLK_CNT[3 DEL_CNT[3 ALT_CNT[3 NO_SIGNAI LED_ON	10] 10]	shows the p same functi be used for displays the when enabl	ion as DEL_CNT[31 verification e presence of the atta	units of clock-cycles0] but alternative implementation; may sched fiber-loop ag 1PPS signal to the LED of the FanOut-1
ALT_CNT[3	Open Device Conne For the provide Obser 000m o 10] sh	Altium Designess menu; ect the longeste given fiber ded below eve and record f the fiber, thould be about	at possible fiber loop length, calculate* th d the actual measured e measured delay sho	own in DEL_CNT[310] and k-cycles). E.g. the measured delay for the
For the fiber-	-loop of	`the	length:	
CLK_CNT[3	310]:	nominal:	67,108,854	measured:
DEL_CNT[3	10]:	nominal:		measured:
ALT_CNT[3	10]:	nominal:		measured:
Notes:				

9. Testing the OCXO interface

Use Altium® Designer, HHD Software Free Serial Port Monitor; download bit-file: **fpgamasterfanout_cclk.bit**

Altium® virtual instrument I/O reference:

FILTER INPUT SWITCH - controls the input of the OCXO-regulating filter.

OUT VAL[31..0] displays the combined output value of the COARSE[10..0], FINE[11..0]

and SFINE[11..0] controls

FOUT[31..0] graphically shows the output value of the OCXO-regulating filter

FONUM[31..0] numerical equivalent of FOUT[31..0]
OVF indicates the overflow status of the filter

IOLD[31..0] reflects the error value previously stored in the filter TO DAC[15..0] shows the value sent to the OCXO-controlling DAC

SIGN shows the sign of the DAC value

O_F indicates the overflow status of the DAC value

COARSE[10..0] simulates the filter error input with full range but minimal resolution same as COARSE[10..0] but with medium range and resolution

SFINE[11..0] same as COARSE[10..0] but with minimal range and highest resolution INP_SEL toggles the filter input between simulation (disabled, red) and actual

(enabled, green) inputs

SUPER GAIN[3..0] applied additional gain (i.e. bit-shift) to the filter output (currently disabled

and non-functional)

SG BYPASS allows bypassing the applied super-gain (currently disabled and non-

functional)

RESET FILTER resets the memory within the filter

SYNC OVERRIDE forces synchronization of the VCXO to the optical input

OCXO MONITOR - monitors various OCXO parameters.

OCXO_PRESENT detects the active presence of the OCXO

ONEPPS_EXT reflects the presence of an external 1PPS signal

ONEPPS_INT toggles along with the internal 1PPS generator

OCXO LOCKED goes high whenever the OCXO error is below the threshold

OCXO ERR[31..0] displays the OCXO error value

FM[31..0] monitors the input value of the OCXO filter engine

OCXO CTRL[15..0] displays the OCXO-adjusting value sent to the DAC circuit, 0x8000

corresponding to zero-adjustment

OCXO DEV[15..0] reflects the absolute value of the OCXO deviation from the reference clock

in terms of clock-cycles per-second

OCXO DEV SIGN GREEN indicates the POSITIVE sign of the OCXO deviation

The procedure:

- (a) Open Altium® Designer, download the bit-file;
- (b) Open the OCXO MONITOR instrument
- (c) Unscrew the OCXO manual adjustment cap on the OCXO chassis
- (d) Using small flat screwdriver, adjust the OCXO so that the value in the OCXO_DEV[15..0] is no greater than 3. *Be very gentle*, as the OCXO's internal adjustment knob is very easy to break. Use <u>counter-clockwise</u> motion for the OCXO DEV to go towards the <u>positive</u> side.
- (e) Open the FILTER_INPUT_SWITCH instrument
- (f) Set INP_SEL flag to HIGH (green); make sure the RESET_FILTER flag is LOW(red)
- (g) Open Free Serial Port Monitor, go to Console Window
- (h) Open a new connection (COM1, 9600-baud, 8-bits, no-parity)
- (i) Allow ~20min for the filter to settle down, then go to the Port Monitor's Console Window and record the string value below

OCXO status serial data format:

The OCXO status string has the following structure:

[flags][hex error][hex correction][dec error][dec correction][hex fiber delay]

where the fields are separated by spaces.

Char. 1	OCXO LOCKED flag					
Char. 2	FILTER OVERFLOW flag					
Char. 3	field separato	or (space)				
Char. 4	OCXO error	sign				
Char. 512	OCXO error value in	n hex base (8-digit nu	ımber)			
Char. 13	field separator (space	e)				
Char. 14	OCXO control sign					
Char. 1518	OCXO control value	e in hex base (4-digit	number)			
Char. 19	field separator (space	e)				
Char. 20	OCXO error sign					
Char. 2128	OCXO error value in	n decimal base (8-dig	it number)			
Char. 29	field separator (space	e)				
Char. 30	OCXO control sign					
Char. 3135	OCXO control value	e in decimal base (5-d	ligit number)			
Char. 36	field separator (space)					
Char. 3744	fiber-delay (clock-cy	cles in hex base; not	used for OCXO testing)			
Allowing ~20min. for the OCXO synchronization, fill in the table below:						
OCXO LOCE	KED flag	nominal: 1	observed:			
FILTER OVE	ERFLOW flag	nominal: 0	observed:			
OCXO error	(decimal)	nominal: 0 ± 4	observed:			

10. Testing BNC ports

Use Altium® Designer;

download bit-file: fpgamasterfanout_cclk.bit

Altium® virtual instrument I/O reference:

BNC FIBER FREQUENCIES	-	measures the frequency of the incoming signal
	throu	igh a given port;

COUNTER_CHANNEL_A the signal frequency of the BNC "1PPS output" port; the signal frequency of the chosen FanOut port.

FO IO ROUTER - routes the signal through chosen optical I/O FanOut (FO);

BIN[15..0] - monitors the active/inactive status of the FanOuts;

MONITOR - toggles when 1PPS signal is received;

INT_FGEN - when enabled, switches to internal frequency generator;

THRU FIBER - when enabled, routes the 8MHz signal through the chosen FO;

CHOOSE_OUT[3..0] - allows to choose FO output; allows to choose FO input;

The procedure:

- (a) Connect the 1PPS OUT and 1PPS IN ports via coaxial cable;
- (b) Open Altium® Designer, download the bit-file;
- (c) Open the BNC FIBER FREQUENCIES instrument;
- (d) In the "Counter Options" set the Counter Time Base to 67.108 MHz;
- (e) Open the FO IO ROUTER instrument;
- (f) Disable the THRU FIBER (the indicator turns *red*);
- (g) Record the listed values below

Value in COUNTER_CHANNEL_A:	Nominal:	8.389 MHz
	Displayed:	
MONITOR indicator toggling rate:	Nominal:	1 per second
	Observed:	

Notes:

Testing summary

For each test, indicate the results in the table below:

On-board voltages	PASS	FAIL	
VCXO circuitry	PASS	FAIL	
EEPROM & JTAG interfaces	PASS	FAIL	
Front-panel LED circuits	PASS	FAIL	
Serial interfaces	PASS	FAIL	
GPS antenna & receiver	PASS	FAIL	N/A
Fiber I/O channels	PASS	FAIL	
Fiber-delay calculator	PASS	FAIL	
OCXO interface	PASS	FAIL	N/A
BNC ports	PASS	FAIL	

Overall MFO board testing: PASSED FAILED

Test engineer:	
Date:	

Appendix

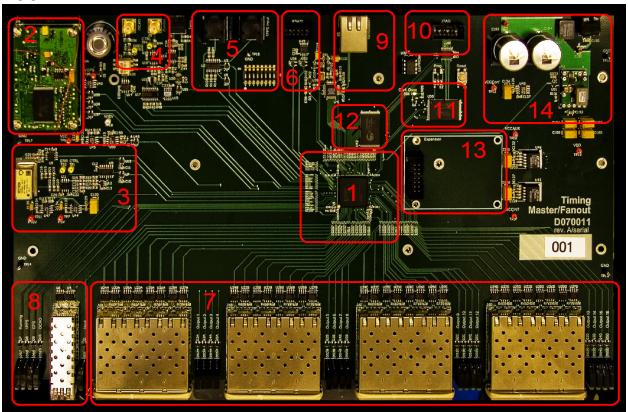


Figure 1. The Master FanOut board (MFO). (1) FPGA core chip. (2) On-board GPS-receiver. (3) 2²⁶Hz voltage-controlled oscillator, used as internal clock. (4) The port for connecting external oven-stabilized 2²⁶Hz oscillator. (5) BNC port for connecting to the external 1PPS source. (6) General purpose RS422 port. (7) 16 optical I/O FanOut channels. (8) Uplink optical I/O channel. (9) General purpose Ethernet port. (10) JTAG port for external programming of the FPGA. (11) Flash memory chip (used for programming FPGA). (12) RAM block. (13) Optional slot (currently used for mounting JTAG programming device). (14) The power supply unit.

The figure above shows the main blocks of the Master/FanOut board. The primary goal of the board is to acquire and distribute precise timing information with an accuracy of better than 1 us, according to the requirements. To perform all the necessary calculations, we use a special logic element called Field-Programmable Gate Array, or FPGA (block #1 of the figure 1). The FPGA is in a sense a reduced version of a Central Processing Unit (CPU) alike those commonly found in computers. It uses the VCXO (block #3 on the figure) as its clocking device for the internal logic. While the VCXO is well suitable for driving the FPGA logic, its precision does not meet the 1 us requirement. To overcome this, the VCXO is synchronized to a much more stable oven-controlled oscillator (OCXO) through the external port (block #4) which in its turn is synchronized to either the reference clocking signal received from the optical INPUT port (block #8), an alternative RF coaxial input (block #5) or the on-board GPS receiver (block #2). This given synchronization hierarchy is expected to hold the internal FPGA clock discrepancy within the 1 us window.

The distinct feature of an FPGA is its ability to be programmed in a way similar to an ordinary CPU. The programming environment in our case is the PC-based Altium® Designer software package. The communication between the PC and the FPGA is done through the parallel port of the computer and the JTAG port of the Master/FanOut board (block #10). The programming code is stored in the flash-ROM module (block #11). All the communications with the PC, other than programming, are routed through either a serial port (block #6) or Ethernet interface (block #9, not tested here). The distribution of timing information to the devices other than PC goes through the 16 optical FanOut ports (block #7).

For more information, look the online documentation posted at http://www.ligo.caltech.edu/docs/T/T070218-00/