#### LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO

#### **SPECIFICATION**

E0900072 V1 Drawing No Rev. Group

> of 7 Sheet 1

|               |                |         | APPROVALS |     |      |
|---------------|----------------|---------|-----------|-----|------|
| AUTHOR:       | CHECKED:       | DATE    | DCN NO.   | REV | DATE |
| R. Dannenberg | G. Billingsley | 3/20/09 |           |     |      |
|               |                |         |           |     |      |
|               |                |         |           |     |      |
|               |                |         |           |     |      |
|               |                |         |           |     |      |

| Name                                                                                 | FM          |
|--------------------------------------------------------------------------------------|-------------|
| Applicable Documents                                                                 |             |
| Blank Specification                                                                  | E080045     |
| Blank Drawing                                                                        | D080054     |
| <b>Polish Specification</b>                                                          | E080515-v3  |
| <b>Polish Drawing</b>                                                                | D080661-A   |
| <b>Coating Specification</b>                                                         | E0900072-v1 |
| Fabricate From                                                                       | D080054     |
| Surface Quality<br>(Scratch Total Area)                                              |             |
| Max Scratches Surface 1 inside 170mm diameter (units of um²)                         | 500000      |
| Max Scratches Surface 1 outside 170mm to 255 mm diameter (units of um <sup>2</sup> ) | 1500000     |
| Max Scratches Surface 2 inside 170mm diameter (units of um²)                         | N/A         |
| Surface Quality<br>(Total Defect Number)                                             |             |
| Max Point Defects Surface 1 inside<br>170mm diameter                                 | 50          |

#### LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY



#### **SPECIFICATION**

E0900072 V1

Drawing No Rev. Group

Sheet 2 of 7

| Max Point Defect Density Surface 1 inside 170 mm diameter     | 5 per 4 mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max Point Defects Surface 1 outside 170 mm to 255 mm diameter | N/A                                                                                                                                                                                                                                                                                                                                                                                      |
| Max Point Defects Surface 2 inside 170 mm diameter            | N/A                                                                                                                                                                                                                                                                                                                                                                                      |
| General to All Surfaces                                       |                                                                                                                                                                                                                                                                                                                                                                                          |
| Coating Thickness Uniformity                                  | Fractional Change <0.001 over 170 mm diameter. If the physical thickness variation of the coating cannot be measured with a profilometer or inferred interferometrically, it may be inferred from the wavelength shift of the coating as a function of position.                                                                                                                         |
| v                                                             |                                                                                                                                                                                                                                                                                                                                                                                          |
| Coating Relative Wavelength Uniformity                        | Fractional Change < 0.001 over 170 mm diameter.                                                                                                                                                                                                                                                                                                                                          |
| Coating Area                                                  | To Bevel                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                               | Once Witness Piece Per Run:  Coating to resist adhesion test per MIL-C-48497A 4.5.3.1 Adhesion (snap tape).  MIL-C-4.5.3.2 Humidity (120F 95% RH for 24 hours), combined with before/after spectrophotometer scan from 400 - 2500 nm, marking the specimen ensure the same area is scanned. There should be no measureable spectral shift.  MIL-C-4.5.3.3 Moderate Abrasion (cheesecloth |
| Witness Sample Durability Testing                             | rub).                                                                                                                                                                                                                                                                                                                                                                                    |
| Surface 1                                                     | NOTE: ARROWS ON OPTIC SIDE POINT<br>TO SURFACE 1                                                                                                                                                                                                                                                                                                                                         |
| Coating Type                                                  | High Reflection                                                                                                                                                                                                                                                                                                                                                                          |

#### ${\bf LASER\ INTERFEROMETER\ GRAVITATIONAL\ WAVE\ OBSERVATORY}$



LIGO

E0900072 V1

Drawing No Rev. Group

Sheet 3 of 7

| Angle of Incidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45 degrees          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| 1211910 02 21101101101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | is disgrees         |  |  |
| Transmission at 1064 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <15 ppm requirement |  |  |
| THE PROPERTY OF THE PROPERTY O | To ppin requirement |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
| <b>Transmission Matching Between Parts at 1064 nm</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                 |  |  |
| 1004 IIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IVA                 |  |  |
| Transmission at 532 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                 |  |  |
| Thermal Stability at 532 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV/A                |  |  |
| Thomas Ctability of 1064 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                 |  |  |
| Thermal Stability at 1064 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IN/A                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27/4                |  |  |
| Coating Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
| G . 6 . 71 . 1 . 71 . 13 . 13 . 13 . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27/4                |  |  |
| Surface Electric Field 1064 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |

#### LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO

# **SPECIFICATION**

E0900072 V1 Drawing No Rev. Group Sheet 4 of 7

| Thermal Noise                                                                                                                                                           | N/A                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                                                                                                         |                                                                                                  |
| Surface 2                                                                                                                                                               |                                                                                                  |
| Coating Type                                                                                                                                                            | Antireflection                                                                                   |
|                                                                                                                                                                         |                                                                                                  |
|                                                                                                                                                                         |                                                                                                  |
|                                                                                                                                                                         |                                                                                                  |
|                                                                                                                                                                         |                                                                                                  |
|                                                                                                                                                                         |                                                                                                  |
|                                                                                                                                                                         |                                                                                                  |
|                                                                                                                                                                         |                                                                                                  |
| Angle of Incidence                                                                                                                                                      | 45 degrees                                                                                       |
| Angle of Incidence Reflection at 1064 nm                                                                                                                                | 45 degrees < 0.004 requirement                                                                   |
| Angle of Incidence Reflection at 1064 nm Reflection at 532 nm                                                                                                           | 45 degrees < 0.004 requirement N/A                                                               |
| Reflection at 1064 nm                                                                                                                                                   | < 0.004 requirement                                                                              |
| Reflection at 1064 nm Reflection at 532 nm                                                                                                                              | < 0.004 requirement N/A                                                                          |
| Reflection at 1064 nm Reflection at 532 nm Surface Electric Field                                                                                                       | < 0.004 requirement  N/A  N/A  N/A                                                               |
| Reflection at 1064 nm Reflection at 532 nm Surface Electric Field                                                                                                       | < 0.004 requirement  N/A  N/A                                                                    |
| Reflection at 1064 nm Reflection at 532 nm Surface Electric Field Scatter                                                                                               | < 0.004 requirement  N/A  N/A  N/A  N/A  IBS Coatings expected to be < 3ppm. No test             |
| Reflection at 1064 nm Reflection at 532 nm Surface Electric Field Scatter Absorption                                                                                    | < 0.004 requirement  N/A  N/A  N/A  IBS Coatings expected to be < 3ppm. No test requirement.     |
| Reflection at 1064 nm Reflection at 532 nm Surface Electric Field Scatter  Absorption Thermal Stability at 532 nm                                                       | < 0.004 requirement N/A N/A N/A IBS Coatings expected to be < 3ppm. No test requirement. N/A     |
| Reflection at 1064 nm Reflection at 532 nm Surface Electric Field Scatter  Absorption Thermal Stability at 532 nm Thermal Stability at 1064 nm Coating Materials        | < 0.004 requirement N/A N/A N/A IBS Coatings expected to be < 3ppm. No test requirement. N/A N/A |
| Reflection at 1064 nm Reflection at 532 nm Surface Electric Field Scatter  Absorption Thermal Stability at 532 nm Thermal Stability at 1064 nm                          | < 0.004 requirement N/A N/A N/A IBS Coatings expected to be < 3ppm. No test requirement. N/A N/A |
| Reflection at 1064 nm Reflection at 532 nm Surface Electric Field Scatter  Absorption Thermal Stability at 532 nm Thermal Stability at 1064 nm Coating Materials  Other | < 0.004 requirement N/A N/A N/A IBS Coatings expected to be < 3ppm. No test requirement. N/A N/A |
| Reflection at 1064 nm Reflection at 532 nm Surface Electric Field Scatter  Absorption Thermal Stability at 532 nm Thermal Stability at 1064 nm Coating Materials        | < 0.004 requirement N/A N/A N/A IBS Coatings expected to be < 3ppm. No test requirement. N/A N/A |

#### LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

#### **SPECIFICATION**

LIGO

 $\begin{array}{ccc} E0900072 & V1 \\ \\ \text{Drawing No} & \text{Rev. Group} \end{array}$ 

Sheet 5 of 7

|                                      | For all layers in the design, measured thickness   |
|--------------------------------------|----------------------------------------------------|
|                                      | data from the deposition for each run), designed   |
|                                      | thicknesses, and measured indices of refraction at |
| 2. Measured and Design Layer         | both 1064 nm and 532 nm for both coating           |
| Thicknesses                          | materials (based on individual layers).            |
|                                      |                                                    |
|                                      | On a representative witness piece for each run,    |
|                                      | spectrophotometer graphs of reflectance and        |
|                                      | transmission of Surface 1 (HR coating) from 350-   |
|                                      | 2500 nm before it is coated, between Surface 1 and |
|                                      | Surface 2 coating, and after coating is completed. |
|                                      | LIGO's preference is to have all spectrophotometer |
| 3. Surface 1 Spectrophotometer Scans | data be provided in Excel spreadsheet format.      |
|                                      |                                                    |
|                                      | On a representative witness piece for each run,    |
|                                      | spectrophotometer graph of reflectance of Surface  |
|                                      | 2 (AR coating) from 350-2500 nm before it is       |
|                                      | coated, between Surface 1 and Surface 2 coating,   |
|                                      | and after coating is completed. LIGO's preference  |
|                                      | is to have all spectrophotometer data be provided  |
| 4. Surface 2 Spectrophotometer Scans | in Excel spreadsheet format.                       |
|                                      | Maps of scatter, absorption, and transmission over |
|                                      | central 160 mm diameter with optic orientation     |
|                                      | specified. Scatter should be measured accurately   |
|                                      | to $\pm$ 1 ppm, absorption to $\pm$ 0.1 ppm, and   |
| 5. Scatter Maps.                     | transmission to $\pm 0.001$ .                      |

# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY SPECIFICATION

LIGO

E0900072 V1
Drawing No Rev

Drawing No Rev. Group

Sheet 6 of 7

|                                                            | METHOD 1.                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | The surface is examined visually by two observers independently. The examination is done against a dark background using a fiber optic illumination system of at least 200 W total power. A 100% inspection of the surface is carried out. Pits and scratches down to 2 micrometers in width can be detected using this method of inspection. Any scratches or sleeks that are detected will be measured using a calibrated eyepiece. |
| 6. Scratches & Point Defects Methods<br>1&2 (Hand Sketch). | METHOD 2. Further inspection will be done with a minimum 6X eyeglass using the same illumination conditions, again with two observers. Sleeks down to 0.5 micrometers wide can be detected using this method. The surface will be scanned along one or two chords from centre to edge, then at ten positions around the edge, and ten to fifteen positions near the centre.  METHOD 3.                                                |
|                                                            | An inspection is then carried out with a dark or bright field microscope, with 5x objective at four positions at each of the following locations:  a) Within 10mm of the center of the surface.  b) Equally spaced along the circumference of a centered, 60 mm diameter circle.                                                                                                                                                      |
| 7. Scratches & Point Defects Method 3 (Digital Images).    | c) Equally spaced along the circumference of a centered, 120 mm diameter circle.  All samples from the durability tests and data, including spectrophotometer scans of the                                                                                                                                                                                                                                                            |
| 8. Durability Test Data & Samples.                         | representative coating on each side in an Excel spreadsheet.                                                                                                                                                                                                                                                                                                                                                                          |

# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY SPECIFICATION

E0900072 V1

Drawing No Rev. Group

Sheet 7 of 7