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The problem of the detection and mapping of a stochastic gravitational wave background (SGWB),
either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave
background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in
terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely
arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological
gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we
use is the cross correlation between the data from a pair of detectors. In order to ‘‘point’’ the pair of
detectors at different locations one must suitably delay the signal by the amount it takes for the
gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw
(observed) sky map of the SGWB is the signal convolved with a beam response function that varies with
location in the sky. We first present a thorough analytic understanding of the structure of the beam
response function using an analytic approach employing the stationary phase approximation. The true sky
map is obtained by numerically deconvolving the beam function in the integral (convolution) equation.
We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient
method that has been successfully used in the broadly similar, well-studied CMB map-making problem.
We numerically implement and demonstrate the method on signal generated by simulated (unpolarized)
SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We
include ‘‘realistic’’ additive Gaussian noise in each data stream based on the LIGO-I noise power spectral
density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near
future the network of GW detectors, including the Advanced LIGO and Virgo detectors that will be
sensitive to sources within a thousand times larger spatial volume, could provide promising data sets for
GW radiometry.

DOI: 10.1103/PhysRevD.77.042002 PACS numbers: 04.80.Nn, 04.30.Db, 95.55.Ym, 98.70.Vc

I. INTRODUCTION

The existence of gravitational waves (GW) has long
been verified ‘‘indirectly’’ through the observations of
Hulse and Taylor [1]. However, direct observation of
such waves with manmade gravitational wave detectors
has been lacking. At present the laser interferometric de-
tectors have achieved sensitivities close to that required for
detecting such waves [2]. The space mission LISA [3] is
also planned by the ESA and NASA to detect low fre-
quency GW. The significance of the direct detection of GW
lies, not only in the opening of an entirely new window into
observational astronomy by probing phenomena in the
regime of strong gravity; it further promises to test our
present theories of gravitation.

Different types of GW sources have been predicted and
may be directly observed by Earth-based detectors in the
near future (see [4–10] and references therein for recent
reviews): (i) Transient sources—such as binary systems of
neutron stars (NS) and/or black holes (BH) in their in-
spiral phase, BH/BH and/or BH/NS mergers, and super-
novae explosions, whose signals last for a time much
shorter, typically between a few milliseconds and a few
minutes, than the planned observational time; (ii) Con-
tinuous wave (CW) sources—e.g. rapidly rotating neutron
stars, where a weak deterministic signal is continuously
emitted, and (iii) Stochastic backgrounds of radiation,
either of primordial or astrophysical origin.

In this paper we will address the problem of a spatially
resolved search of the gravitational wave stochastic back-
ground. This approach was advocated in the LIGO techni-
cal note [11] and the basic analysis was recently
implemented on the fourth science run data from the
LIGO interferometers to prepare an upper limit map [12].
Our main focus will be on a stochastic astrophysical GW
background (AGWB), which might arise from a superpo-
sition of a large number of independent and unresolved
GW sources. The gravitational wave background can arise
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from a variety of sources: supernovae with asymmetric
core collapse, binary black hole (BBH) mergers, GWs
from low-mass x-ray binaries (LMXBs) and hydrodynam-
ical instabilities in neutron stars (r-modes), or even GWs
from astrophysical objects that we never knew existed.
When a collection of any subset of these sources is unre-
solvable, it can appear as a stochastic GW background
(SGWB) of a variable duration in our detectors of interest.
While an astrophysical background will provide informa-
tion about our immediate neighborhood, cosmological GW
backgrounds (CGWB) could probe the physics of the early
universe. There exist cosmological scenarios (e.g., cosmic
strings and superstring models) which predict CGWB that
should be detectable by Advanced LIGO [13].

We propose and develop a data analysis method that
measures and maps the power in the SGWB from a specific
location in the sky—GW radiometry using a network of
detectors. We find that the angular resolution essentially
depends on the effective GW bandwidth and the linear size
of the network. In this paper we will restrict ourselves to
the network of the two 4 km LIGO detectors at Hanford
(LHO) and Livingston (LLO). For the purposes of our
analysis, we take their noise curves to be identical with
the LIGO-I design power spectral density [14]. Our future
plan is to include VIRGO and other detectors around the
world in the numerical implementation of this analysis.

The basic statistic is the cross correlation between the
data from a pair of detectors. In order to ‘‘point’’ the pair of
detectors at different locations one must suitably delay the
signal by the amount it takes for the GW to travel to both
detectors corresponding to the source direction. This delay
will be a function of the source position and will vary as the
Earth rotates. Using the delay allows the detectors to
sample the same wave front from the source. The cross
spectrum formulation has been carried out in [15,16].
Methods for searching for isotropic backgrounds [17] us-
ing the cross correlation and for anisotropies using spheri-
cal harmonic decomposition [18] have been devised.
Efforts have also been made to devise methods to measure
the spherical harmonic moments of the SGWB anisotropy
using a network of ground or space based detectors
[19,20]. Here we focus on a spatially resolved search and
the final goal is to make a map of the true SGWB sky. We
achieve this goal by pixelizing the sky, that is, we use a
pixel basis.

The advantage of a spatially resolved search is seen
immediately if we examine the so-called overlap reduction
factor, which partially determines the fractional power of
source spectrum the search filter will receive at different
frequency bands. The overlap reduction factor, normally
denoted by ��f� in the literature [17] for the isotropic
unpolarized background, becomes a time-dependent factor
���̂; f; t� for the spatially resolved search. For the LIGO
detectors, ��f� quickly reduces to zero beyond few tens of
Hz, while ���̂; f; t� has infinite bandwidth. So the band-

width of the spatially resolved search is essentially detector
bandwidth limited. This is typically valid for a network of
detectors and therefore important from the point of view of
the sensitivity regime of GW detectors which lies in this
region.

As in radio-interferometry, the correlation statistic so
constructed produces a ‘‘dirty’’ map where a point source
does not produce a point image, but one that is smeared by
a beam response function (beam, for brevity). The
‘‘cleaned’’ GW sky map is obtained from the measured
cross correlation statistic by deconvolving the beam. In
other words, to obtain the GW power from each direction
in the sky one needs to solve an integral equation where the
measured power (data) is a convolution of the actual power
with a kernel (beam). In order to understand the structure
of the beam we carry out a numerical and an analytical
study using the stationary phase approximation (SPA). We
find that at low declinations (latitudes) of a point source,
the kernel essentially has the shape of a ‘‘figure 8’’ with a
bright spot at the intersection. The bright spot is at the
location of the point source. The figure of 8 continuously
changes and bifurcates into a ‘‘tear drop’’ as the point
source moves to higher declinations. The declination at
which this bifurcation occurs is determined by the half-
angle of the cone traced out by the vector joining the two
detectors. For the LIGO detectors this declination is about
26�. The size of the bright spot or effective sky patch,
defined by a certain percentage of reduction in the beam
response function, say 50%, is determined by the inverse of
the bandwidth divided by the light (GW) travel time be-
tween the detectors. Considering a broadband source and
LIGO detectors having kHz bandwidth with 10 ms light
travel distance between them, the angular size is about 5�

in radius. We find that these results agree very well with
those obtained by applying singular value decomposition
to the kernel matrix; the eigenvalues fall off steeply after a
certain point which determines essentially the number of
‘‘degrees of freedom’’ of the kernel matrix and thereby the
size of the sky patch.

We employ the maximum likelihood (ML) approach for
deconvolving the sky map. The integral equation for a
discrete pixelized sky leads to a set of linear algebraic
equations. Several deconvolution algorithms exist in litera-
ture for solving such a problem. However, because of the
broad similarity of our present problem with the cosmic
microwave background (CMB) analysis, we have opted for
techniques that have been successfully applied to decon-
volve CMB sky maps. Moreover, the ML approach pro-
vides a framework to study the SGWB anisotropy in
another basis of interest, e.g., the spherical harmonic basis.
We find the ML estimate by employing the conjugate
gradient method. To verify our method, we apply the
analysis on simulated sky maps mapped by a GW radi-
ometer consisting of the LIGO pair of detectors LHO and
LLO. We generate ‘‘realistic’’ colored Gaussian noise
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corresponding to the LIGO-I design sensitivity curve [14]
detector noise and embed various simulated sky maps of
the GW stochastic background into the noise. We demon-
strate that the true sky maps can be recovered satisfactorily.

The paper is organized as follows: In Sec. II we briefly
review the GW radiometer concepts and obtain an expres-
sion for the GW radiometric cross correlation signal, which
is then optimized for the maximum signal-to-noise (SNR).
In Sec. III, we set up the integral equation that must be
solved in order to obtain the true sky map from the data. A
time-frequency analysis is performed and the directed
optimal filter is derived for anisotropic searches.
Moreover, a stationary phase analysis is presented which
provides us with the understanding of the kernel or the
point spread function. In Sec. IV, we describe the maxi-
mum likelihood approach and the conjugate gradient
method and apply it to simulated data to test the efficacy
of this method. Later subsections outline the extension of
the GW radiometer analysis to incorporate multiple base-
lines obtained with a network of detectors and the exten-
sion of the GW radiometer to search for polarized SGWB.
The numerical implementation of the method is described
in Sec. V. We conclude in Sec. VI.

II. GW RADIOMETER EMPLOYING EARTH
ROTATION APERTURE SYNTHESIS

A. The principle of a radiometer

Radiometry or aperture synthesis is a well-known tech-
nique in radio astronomy and CMB experiments. The idea
is to point a pair of detectors separated by a baseline to a
desired direction in the sky by introducing an appropriate
time delay between their data streams. This delay corre-
sponds to the difference between the times of arrival of a
GW signal if it were to arrive at those two detector sites
from that direction. For a given source in the sky, this delay
will change as the baseline orientation changes due to the
rotation of the earth. The cross correlation of the data from
the two detectors, appropriately time delayed, would cause
potential GW signals arriving from the chosen direction to
interfere constructively. Whereas signals from other direc-
tions will tend to cancel out because of destructive inter-
ference. This principle of Earth rotation aperture synthesis,
which is well known in radio astronomy, could very well be
used in GW astronomy using pairs of GW antennae.
Figure 1 illustrates the principle on which the GW radi-
ometer works.

We consider the Celestial Equatorial frame whose origin
coincides with the center of the Earth. The axes are defined
as follows: For a fixed but arbitrarily chosen time t � 0, the
x-axis is directed towards the intersection of the equator
and the longitude � � 0, which can be taken as the
Greenwich meridian; the z-axis is directed towards the
North Celestial Pole, and the y-axis is chosen orthogonal
to the previous two axes forming a right-handed triad. The
Earth rotates in this frame with the angular velocity !E �

2�=�1 sidereal day� � 7:3� 10�5 radians= sec oriented
along the z-axis. The two detectors are at locations xI
(where I � 1, 2), and the baseline vector joining the two
sites is �x :� x2 � x1. �̂ is the unit vector in the direction
to the source, which is fixed in the barycentric frame. The
baseline �x rotates with the Earth, but its magnitude j�xj,
which is the distance between the detectors, remains con-
stant. The map of the SGWB can be constructed by per-
forming this synthesis for each location in the sky, patch by
patch. An approximate size of the patch or resolution of the
GW radiometer and number of patches required to cover
the full sky can be estimated from the following simple
argument. This simple model produces a fringe pattern
with resolution given by the standard formula for the
central width ��� �GW=�j�xj sin�� where �GW is the
GW wavelength and � is the angle of incidence. This is,
however, a naive estimate. A better estimate of the resolu-
tion would follow from considerations involving the pixel-
to-pixel Fisher information matrix, in which case the solid
angle resolution will scale inversely proportional to the
square of the SNR.

In this paper we will consider a GW radiometer made
using the two 4 km LIGO detectors LHO and LLO in the
United States. However, this analysis is equally well ap-
plicable to any other baseline or a network of baselines
involving other detectors such as VIRGO, TAMA, GEO,
etc. The light travel time between the LHO and LLO is
�10 ms, which at a bandwidth of 1 kHz gives a resolution
�� of few degrees. This resolution implies that a few
thousand patches or pixels are required to completely cover
the full sky. This estimate, in turn, will be useful for
assessing the computational cost and numerical complica-
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FIG. 1 (color online). Geometry of an elementary radiometer.
Above, �x�t� is the separation or baseline vector between the
two detectors; as the Earth rotates, its direction changes, but its
magnitude remains fixed. The direction to the source �̂ is also
fixed in the barycentric frame. The phase difference between
signals arriving at two detector sites from the same direction is
also shown.
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tions in handling large matrices for obtaining the full sky
map. We make these estimates more robust below.

B. Basic framework and the statistical properties of the
data

We first set up the notation and framework needed for
investigating the problem.

In the transverse traceless (TT) gauge the metric pertur-
bation hij�t;x� in the equatorial frame can be expanded in
terms of plane waves of the two polarizations �, � in the
following way:

 hij�t;x� �
Z 1
�1

df
Z
S2

d�̂ ~hA�f; �̂�eAij��̂�e
2�if�t��̂	x=c�;

(2.1)

where a tilde on a variable denotes its Fourier transform;
the complex Fourier amplitudes satisfy the relation
~h
A�f; �̂� � ~hA��f; �̂� owing to the reality of hij�t;x�.
Here A � f�;�g is the polarization index and summation
over the repeated index A is implied. In terms of the
spherical polar coordinates ��;��, the source direction is
given by

 �̂ � cos� sin�x̂� sin� sin�ŷ � cos�ẑ (2.2)

and, hence, the infinitesimal solid angle along the direction
�̂ is d�̂ � sin�d�d�. Note that the wave propagation
direction is ��̂. The polarization tensors eA��̂� are de-
fined by the following expressions:
 

e���̂� � ê� � ê� � ê� � ê�; (2.3a)

e���̂� � ê� � ê� � ê� � ê�; (2.3b)

where
 

ê� � cos� cos�x̂� sin� cos�ŷ � sin�ẑ;

ê� � � sin�x̂� cos�ŷ;

are the two orthonormal basis vectors on a two-sphere.
The statistics of the GW signal can be best described in

the Fourier domain: If we assume the signal to be stochas-
tic and uncorrelated in the two polarizations [21], different
frequencies, and different directions, then the Fourier com-
ponents of the GW strain obey,
 

h~h
A�f; �̂�~hA0 �f
0; �̂0�i � �AA0��f� f0��2��̂� �̂0�

� P A��̂�H�f�; (2.5)

where P A��̂� is proportional to the strength of the SGWB
in the direction �̂ and H�f� is the two-sided GW source
power spectral density (PSD). The interpretation of the
quantity P A��̂� can be made apparent by relating it to
the specific intensity or brightness [22] of GW IGW�f; �̂�.
Specific intensity is defined as (c times) the incident energy
density per unit frequency interval per unit solid angle, or,

equivalently, specific intensity is the (normally incident)
flux per unit solid angle. Following the convention com-
monly used in SGWB analysis, if the incident GW energy
density is expressed in the units of critical energy density
for a flat universe �c :� 3c2H2

0=�8�G�, where H0 is the
Hubble constant at the current epoch andG is the Newton’s
gravitational constant, it can be shown that [23]:

 IGW�f; �̂� �
4�2c

3H2
0

f2H�f�
P���̂� � P���̂��: (2.6)

Therefore, P A��̂� can be interpreted as the specific inten-
sity of SGWB for the corresponding polarization (up to a
certain proportionality constant).

In general, we cannot separate H�f� from P A��̂�, be-
cause the frequency power spectrum H�f� could also de-
pend on the direction �̂. A more general treatment would
use a quantity like P A��̂; f� which describes both fre-
quency and angular distribution of SGWB power together.
But for a small enough bandwidth the assumption may be
justified, as the signal is expected to have a smooth profile
of the power spectra. Further, it should be noted that P A is
actually a second rank tensor and should be represented by
two indices as P AA0 , but because we assume that the two
polarizations are uncorrelated the quantity P�� is zero and
thus absent. To avoid unnecessary indices and with a slight
abuse of notation, we therefore write P A with a single
index instead of P AA0 .

We consider two GW detectors located at xI�t�; I � 1, 2.
The detector frames are denoted by the coordinates
�XI; YI; ZI� where the arms of the respective detectors lie
along the �XI; YI� axes. Then the detector tensors dI are
given by

 dI �
1
2
X̂I � X̂I � ŶI � ŶI�: (2.7)

The factor 1
2 is inherited from the geodesic deviation equa-

tion. Owing to the Earth’s rotation, the detector coordinates
and dI are functions of t. Thus in matrix form:

 dI�t� �RT�t� 	 dI�t � 0� 	R�t�; (2.8)

where R�t� is the rotation matrix describing a rotation of
angle !Et around the Earth’s rotation axis, namely, the
z-axis. Here !E is the Earth’s sidereal angular velocity
� 7:3� 10�5 radians= sec .

The strain hI�t� in the Ith detector is given by

 hI�t� � hij�t;xI�t��d
ij
I �t�: (2.9)

We define the antenna pattern functions as

 FAI �t; �̂� � eAij��̂�d
ij
I �t� (2.10)

for a wave incident from the direction �̂.
Contracting Eq. (2.1) with the detector tensors dI, the

signal amplitudes can be expressed in terms of the antenna
pattern functions as
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 hI�t� �
Z 1
�1

df
Z
S2

d�̂~hA�f; �̂�FAI �t; �̂�e2�if�t��̂	x=c�:

(2.11)

The baseline �x at any time t (in matrix form) is given by

 � x�t� �RT 	�x�t � 0�: (2.12)

The detector output sI�t� is a sum of the GW signal hI�t�
and noise nI�t�

 sI�t� � hI�t� � nI�t�: (2.13)

Statistically, the gravitational wave strains hI�t� are uncor-
related with the detector noise nJ�t�; that is, the following
four correlations, in the time domain are zero:

 hhI�t�nJ�t
0�i � 0; I; J � 1; 2; (2.14)

where t, t0 are any two time instants. We also assume that
the noise in different detectors is uncorrelated; that is,
hn1�t�n2�t

0�i � 0. This assumption is not unreasonable
when the detectors are widely separated. Thus the only
possible correlation is between h1�t� and h2�t

0�. The statis-
tic that we construct in the next subsection is based on this
fact.

C. The cross correlation statistic for the directed search

Stochastic GW signals inherently can arrive from any
direction with any amplitude. Moreover, they are charac-
terized by the statistical expectation values of energy den-
sity. The noise in the two detectors are assumed to be
essentially independent. In this situation the cross correla-
tion of the data from the two detectors is an appropriate
statistic for detecting and observing stochastic GW. In
order to optimize the SNR, the cross correlation statistic
for the directed search involves a direction-dependent filter
function Q�t; �̂; t0; t00�, which connects sidereal time t0 of
one detector’s data to t00 of the other detector’s data to
match the phases of the GW strains in the detectors. The
filter does an inverse noise weighting using the PSDs of the
two detectors in order to suppress noisy frequency bands
and enhance the SNR by assigning relatively large weight
to the sensitive regimes of the detectors and the bands
where the source is expected to emit more power. (In
general, Q will depend on P A��̂�. However, for the di-
rected search that we envisage here, as we will see later, the
P A��̂� are delta functions and, therefore, the filter Q only
depends on �̂.)

The sampling interval with which the data are sampled is
determined by the Nyquist frequency of the stochastic
signals of interest, and can be well below a millisecond,
corresponding to several kilohertz. While it is possible to
compute the filter function on a time segment of this
sampling interval, it is erroneous to do so for the physical
problem at hand. This is because the signals at the two
detectors will be incoherent on time scales smaller than the

light travel time, td, of that baseline, which is at most a few
tens of milliseconds for ground-based detectors. Thus td
sets the lower limit on the duration of the time segment on
which the filter function should be computed. The upper
limit, �, is set by the smaller of the time scales, on which
the data are stationary and the time scale on which the
detector orientation changes appreciably. We thus divide
the data into time segments, �t, such that td � �t� �.
The time segments used currently in LSC data analysis
vary from 32 to 192 seconds, and are consistent with these
limits.

The final statistic for the full observation time T is
obtained by linearly combining the cross correlations
over the smaller time intervals as a weighted sum. The
filter is optimized for each time segment, Ik �

tk ��t=2; tk ��t=2�, at sidereal time tk and the statistic
for the kth segment is given by
 

�S�t � tk; �̂� � �Sk��̂�

�
Z
Ik

dt0
Z
Ik

dt00s1�t0�s2�t00�Q�tk; �̂; t0; t00�:

(2.15)

The final cross correlation statistic S for all the n �
T=�t sidereal time bins can then be obtained by combining
the �Sk as a weighted sum as follows:

 S��̂� �
Xn
k�1

wk��̂��Sk; (2.16)

where, the n quantities wk��̂� are to be chosen so that the
SNR for the statistic S��̂� is maximized. We denote the
SNR of S by �S � 	S=
S, where 	S and 
S are the mean
and standard deviation of S, respectively. We use normal-
ized weights

Pn
k�1 wk � 1.

The 	S, 
S, and the SNR �S are given in terms of the
means	k � h�Ski and variances 
2

k � h�S
2
ki � h�Ski

2 of
the individual mutually uncorrelated time segments as
follows:

 	S �
Xn
k�1

wk	k; 
2
S �

Xn
k�1

w2
k


2
k;

�S �
�Xn
k�1

wk	k

���Xn
k�1

w2
k


2
k

�
1=2
:

(2.17)

The maximization is achieved elegantly by invoking the
Schwarz inequality. We consider an n-dimensional
Euclidean space equipped with the usual scalar product
in which ~w is a vector with components wk. We define ~�
and ~� having the components �k � wk
k and �k �
	k=
k, respectively. Then, we may write �S � �̂ 	 ~�
where the vector �̂ is a unit vector in the direction of
~�. �S is maximized when ~� points in the direction of ~�.
Thus, wk / 	k=
2

k, the proportionality factor being


Pn
k�1 	k
�2

k �
�1. We have the results:
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 S �

Pn
k�1 	k
�2

k �SkPn
k�1 	k
�2

k

; (2.18)

 �S � j ~�j �
�Xn
k�1

	2
k=


2
k

�
1=2
: (2.19)

Further, we are free to choose the normalization of the filter
Q. We choose the normalization such that all 	k are made
identical, equal to 	, say. This simplifies the statistic S and
its SNR �S:

 S �

Pn
k�1 �Sk
�2

kPn
k�1 


�2
k

; (2.20)

 �S � 	
�Xn
k�1


�2
k

�
1=2
; (2.21)

which are their final forms. Normally the GW signal is
expected to be weak so that even after its integration over
�t it is still smaller than the noise, that is, j	kj � 
k.
Therefore the variance in each segment obeys
2

k � h�S
2
ki.

The signal, however, builds up when we integrate over all
the time segments during the observation time. Second,
from Eq. (2.20), it is evident that noisy time intervals
contribute less to the statistic S leading to its optimal
character.

III. THE CONVOLUTION EQUATION FOR THE
SKY MAP

Since the GW power spectra and the detector noise are
modeled in the frequency domain, it is convenient to for-
mulate the whole analysis in that domain. However, since
the detector output is a time series, it is pertinent to ask
over what time duration must one compute their Fourier
transforms. As discussed in the last section, typical accept-
able segment sizes are a few tens to a few hundreds of
seconds. Fourier transforms computed over such ‘‘small’’
(vis à vis the total observation) time scales are termed as
short-term Fourier transforms (SFTs). Each SFT becomes
a function of time t as well because t is essentially the
identifier of the segment. Thus we have a time-frequency
representation of the data. As we shall see, this represen-
tation is most suitable for further analysis and has also been
used in previous literature [17–19].

A. Time-frequency analysis of the signal and noise

The (approximate) SFT of a segment of detector output
can be defined as [18],

 ~s I�t; f� :�
Z t��t=2

t��t=2
dt0sI�t0�e�2�ift0 : (3.1)

We retain here the convention of using ‘‘tilde’’ over a
symbol to denote Fourier transform—the distinction
should be evident from the context. Most importantly, by
taking the inverse Fourier transform,
 Z 1
�1

df~sI�t; f�e
2�ift

�
Z 1
�1

dfe2�ift
Z t��t=2

t��t=2
dt0sI�t0�e�2�ift0 � sI�t�; (3.2)

the exact time series segment sI�t� can be recovered. The
same notation will be used for several other quantities as
well in this analysis.

While constructing the statistic, it was assumed that the
true GW strains hI�t� in the detectors are correlated, but
that the noise streams are uncorrelated. The expression for
the correlation between the GW strains in two detectors
will be derived here, which is necessary for the derivation
of the optimal filter in the next subsection. The detector
parameters can be approximated to be stationary over the
period of the time segment. Hence we may consider the
quantities dI and xI to be nearly constant over a time
segment and regard them as functions of the time t labeling
the time segment. The SFT of the GW strain in detector I
over a time segment is given by
 

~hI�t; f� �
Z t���t=2�

t���t=2�
dt0

Z 1
�1

df0
Z
S2

d�̂~hA�f
0; �̂�FAI ��̂; t�

� e2�i
f0t0�ft0�f0��̂	xI�t�=c��

�
Z
S2

d�̂FAI ��̂; t�
Z 1
�1

df0 ~hA�f
0; �̂�

� e2�i
�f0�f�t�f0��̂	xI�t�=c����t�f� f
0�; (3.3)

where summation over A is implied. The ��t�f� is the finite
time delta function (sinc function) defined by

 ��t�f� :�
Z �t=2

��t=2
dte�2�ift �

sin�f�t
�f

: (3.4)

The finite time delta function ��t�f� behaves as the Dirac
delta function ��f� in the limit �t! 1, but has the
property ��t�0� � �t. Hence for a large time segment �t
the SFT from detector I takes the simple form:

 

~h I�t; f� �
Z
S2

d�̂~hA�f; �̂�FAI ��̂; t�e2�if�̂	xI�t�=c: (3.5)

The important result of this subsection is the expectation
of cross correlation between the SFTs of time segments of
detector outputs at time t from the two detectors 1 and 2,
which can be obtained from Eqs. (2.5) and (3.3) as

 

h~h
1�t; f�~h2�t; f0�i � e2�it�f�f0�
Z 1
�1

df00H�f00���t; f00; ��; dP A���t�f00 � f���t�f00 � f0�; (3.6)
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 ��t; f; ��; dP A� �
Z

���S2
d�̂
F�1 ��̂; t�F�2 ��̂; t�P���̂� � F�1 ��̂; t�F�2 ��̂; t�P���̂��e2�if�̂	�x�t�=c: (3.7)

The general overlap reduction function defined by Eq. (3.7)
is a generalization of the usual overlap reduction function
for the isotropic SGWB case, first constructed by Nelson
Christensen [15] and formally written in a closed form by
Flanagan [16]. In this case it is a more complex object.
Besides the frequency, it is also a function of the segment
time t. It also depends on P A��̂� which is integrated over
the full sky S2. Thus it is a functional of P A��̂�. In general,
when we construct our directed filters, the integral will be
restricted to a small patch of the sky, �� � S2. (In prin-
ciple, �� can be any (measurable) subset of S2.)
Accordingly, P A��̂� plays the part of a weight function
over the sky and we may define the measures

 dP A � P A��̂�d�̂: (3.8)

Thus, the � in general becomes a functional of the SGWB
power in both polarizations coming from the patch ��.
We therefore separate the function arguments, t and f,
from the nonfunction arguments, �� and P A, by a semi-
colon. Finally, the exponential term in Eq. (3.6) before the
integral is just the time shift term in the Fourier transform
of the segment at time t.

In the limit of a large time segment, Eq. (3.6) takes the
simple form:

 h~h
1�t; f�~h2�t; f0�i � ��f� f0�H�f���t; f; S2; dP A�:

(3.9)

The advantage of expressing h~h
1�t; f�~h2�t; f�i by
Eq. (3.6) can be readily realized if we put f � f0. In this
case, the correlation given by Eq. (3.9) diverges in the limit
�t!1. But, in practice, �t is finite, and hence, we expect
a finite value for the correlation. Equation (3.6) lets us
compute that finite value of h~h
1�t; f�~h2�t; f�i at f � f0.
We use the large �t limit and replace one of the finite
time delta functions ��t�f

00 � f� in the integrand of
Eq. (3.6) by the Dirac delta function ��f00 � f�, while
treating the other ��t�f

00 � f� as a normal function and
put ��t�0� � �t. We get

 h~h
1�t; f�~h2�t; f�i � �tH�f���t; f; S2; dP A�: (3.10)

This formula was derived by following the same procedure
as prescribed in [17], so, not surprisingly, for isotropic
backgrounds our result matches the formula obtained in
[17]. This result is important for injecting test signals in the
detector output [24].

Next we describe the properties of detector noise in a
finite time segment.

The noise in the segment labeled by t is a time series
nI�t� in a detector I. Its SFT is given by

 ~n I�t; f� :�
Z t��t=2

t��t=2
dtnI�t�e

�2�ift: (3.11)

We take the mean to be zero: hnI�t�i � h~nI�t; f�i � 0.
Since nI�t� is real, its SFT obeys the reality condition,
~n
I �t; f� � ~nI�t;�f�. The noise in a detector is uncorre-
lated with the noise in another detector and with the GW
signal, i.e., hn1�t�n2�t0�i � hh1�t�n2�t0�i � hn1�t�h2�t0�i �
0 [see Eq. (2.14)]. These relations also hold for their
corresponding SFTs. The length of the time segment is
usually kept a few tens of seconds long, over which the
detector noise can be regarded as stationary. Thus
hnI�t0�nI�t00�i is a function of t00 � t0, provided both t0, t00

are in the same segment centered at time t. Then, using the
fact that nI�t� is real, we have

 hnI�t0�nI�t00�i �
1

2

Z 1
�1

dfPI�t; jfj�e2�if�t00�t0�; (3.12)

where PI�t; f� is the one-sided noise PSD. This noise PSD
is also a function of time t as detector noise is nonsta-
tionary. The correlation between the corresponding SFTs
can be easily obtained from the above relations:
 

h~n
I �t; f�~nI�t; f
0�i �

1

2

Z 1
�1

df00PI�t; jf00j���t�f00 � f�

� ��t�f00 � f0�: (3.13)

In the limit of large length of the time segment, we arrive at
the usual formula

 h~n
I �t; f�~nI�t; f
0�i � 1

2��f� f
0�PI�t; jfj�: (3.14)

Again, the advantage of using Eq. (3.13) in expressing
h~nI�t; f�~nI�t; f

0�i becomes evident when we set f � f0.
The usual formula, Eq. (3.14), involving Dirac delta func-
tion diverges, whereas, in practice, that expression is ac-
tually finite because of a finite observation time. However,
in Eq. (3.13), if we replace one finite time delta function by
the Dirac delta function and treat the other as a normal
function we obtain a finite result,

 hj~nI�t; f�j
2i � 1

2�tPI�t; jfj�: (3.15)

This is used in our work when generating simulated noise
for our test analyses.

B. Optimal filters for anisotropic searches and the
directed search

The aim of this subsection is to construct an optimal
filter to maximize the SNR of the cross correlation statistic
over the small time segments. We essentially generalize the
analysis presented in [17] for isotropic background search
to the case of anisotropic background search.
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The optimal filter depends on the theoretical model of
the SGWB, that is, onPA��̂� andH�f�. First we will derive
the filter for the general case of the anisotropic search and
then specialize to the directed search. Our first goal is to
compute the SNR ��t� of the statistic �S�t� over the time
segments of length �t at time t.

The equation for the general case is the generalization of
Eq. (2.15):

 �S�t� �
Z
I�t�

dt0
Z
I�t�

dt00s1�t0�s2�t00�Q�t; t0; t00�; (3.16)

where I�t� is the interval 
t� �t=2; t� �t=2�. Here we
have suppressed the model dependence of Q. Assuming
that the noise in both detectors and the Earth are stationary
within the duration of each time segment, we may write
Q�t; t0; t00� � Q�t; t0 � t00�, which allows us to expand the
filter in terms of its SFT ~Q�t; f� as

 Q�t; t0 � t00� �
Z 1
�1

dfe2�if�t0�t00� ~Q�t; f�: (3.17)

Thus in terms of SFTs the statistic can be expressed as

 �S�t� �
Z 1
�1

df~s
1�t; f�~s2�t; f� ~Q�t; f�: (3.18)

The mean of the statistic �S�t� is

 	�t� :� h�S�t�i �
Z 1
�1

dfh~s
2�t; f�~s2�t; f�i ~Q�t; f�:

(3.19)

Replacing sI by hI within the ensemble average, since the
relevant correlations of signal and noise are zero except for
h~h
1�t; f�~h2�t; f�i, we obtain from Eq. (3.10),

 	�t� � �t
Z 1
�1

dfH�f���t; f; S2; dP A� ~Q�t; f�: (3.20)

Here the H and P A are the actual quantities pertaining to
the SGWB source. The corresponding quantities of the
theoretical model are hidden inside the filter Q.

The variance after a routine but fairly involved calcu-
lation is obtained as

 
2�t� � h
�S�t� � h�S�t�i�2i

�
�t
4

Z 1
�1

dfP1�t; jfj�P2�t; jfj�j ~Q�t; f�j
2: (3.21)

From these results the SNR ��t� for the segment at time t
can be computed. However, we need to maximize the SNR
over each time segment. Here again we follow the pre-
scription presented in [17]—we invoke the Schwarz in-
equality. To this end it is convenient to define a scalar
product of two functions A and B on each time segment,
labeled by t, as

 �A;B��t� :�
Z 1
�1

dfP1�t; jfj�P2�t; jfj� ~A

�t; f� ~B�t; f�:

(3.22)

The norm of a function A�t� is defined as k A k2� �A; A�.
Then the mean and variance are given in terms of the scalar
product as follows:

 	�t� � �t
�
H�f���t; f; S2; dP A�

P1�t; jfj�P2�t; jfj�
; Q�t�

�
; (3.23)

 
2�t� � 1
4�t k Q k

2 �t�: (3.24)

The SNR ��t� is just the ratio 	�t�=
�t�. The SNR is
maximized when the ‘‘signal’’ and the ‘‘filter’’ vectors
are parallel, which happens when

 

~Q�t; f� � ��t�
H�f��
�t; f; S2; dP A�

P1�t; jfj�P2�t; jfj�
; (3.25)

where ��t� is a (real) proportionality constant for the time
segment. It is a function of the segment time t. This
function will be chosen so that the SNR of S for the full
observation is maximized.

For the optimal filter, the expression for the mean given
by Eq. (3.20) simplifies to

 	�t� �
�t k Q k2 �t�

��t�
: (3.26)

We exploit the freedom of choosing ��t� by setting 	�t� �
1 for each time segment. This immediately gives

 ��t� � �t k Q k2 �t�; (3.27)

 
2�t� �
��t�

4
: (3.28)

We further require to find ��t� explicitly. This is done by
computing k Q k2 . We find k Q k2� �2P2

NW where

 P2
NW�t� �

Z 1
�1

df
H2�f�j��t; f; S2; dP A�j

2

P1�t; jfj�P2�t; jfj�
: (3.29)

The integral on the right-hand side (rhs) of the above
equation is positive definite: Its integrand contains the
fourth power of the GW amplitude. Therefore, it may be
denoted by the square of a real quantity PNW , which is
determined by the GW power accessible to the network of
the two detectors. The above equation gives the normal-
izations
 

k Q�t� k2 � 
�tPNW�t��
�2;

��t� � 
�tP2
NW�t��

�1 � 4
2�t�:
(3.30)

The optimal statistic is then easily obtained as in
Eq. (2.20). We replace the sum in that equation by an
integral over the segment time t:
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 S �

R
�S�t�
�2�t�dtR

�2�t�dt

; (3.31)

where the integration is over the observation time (which
could consist of disconnected time intervals).

The filter given by Eq. (3.25) is the general optimal filter
to search for any anisotropic SGWB, which, unfortunately,
requires the knowledge of H�f� and P A��̂�. In practice,
we do not have an exact a priori model for H�f� and
P A��̂�, which anyway we are trying to measure. We
then must use models for those quantities, H0�f� and
P 0A��̂�, to search for different anisotropic backgrounds.
These models will be used to construct the model-
dependent overlap reduction function ��t; f; ��; dP 0A�
and the filter Q.

The angular power distribution for only one unit point
source on the sky in the direction �̂ with equal power in
both the polarizations can be expressed as

 P A��̂
0� � ���̂0 � �̂�: (3.32)

This immediately simplifies the expression for the overlap
reduction function because now the integral in Eq. (3.7)
simplifies owing to the delta function, and � becomes a
function of �̂ as well. Therefore, we have

 ���̂; t; f� � ���̂; t�e2�if�̂	�x�t�=c; (3.33)

 ���̂; t� �
X
A

FA1 ��̂; t�FA2 ��̂; t�: (3.34)

Unlike the time-independent overlap reduction function of
the isotropic SGWB case, the direction-dependent overlap
reduction function, ���̂; t; f�, accepts power from all the
frequencies and in fact has infinite bandwidth in the limit
of vanishing pixel area. So the bandwidth of the filter Q in
this case would only be limited by the bandwidth of the
detectors through the coefficients PI�t; f�.

If, instead, the source has a finite spatial extent, the
bandwidth would be limited, because the integral in
Eq. (3.7) would have to be performed over the solid angle
�� subtended by the source. If one takes a small patch of
the sky of size ���;��� around some fixed (source)
direction �̂0 :� ��0; �0�, it is easy to show that � is
essentially a product of sinc functions in ���;���. In fact,
 Z

��
d�̂e2�if��̂��̂0�:�x=c

� j��jsinc
�f���x:ê�

c
sinc

�f���x:ê�
c

; (3.35)

where j��j � sin����� is the solid angle subtended by
the patch ��. In the integral, the factor ���̂; t� remains
nearly constant. The sinc functions go to zero when their
arguments reach � radians. Taking this definition as the
bandwidth and taking j�xj=c� 10 ms for the two LIGO

detectors, the bandwidth is about 750 Hz for a square
source of side 10� on the sky.

If there were known models for the anisotropic SGWB,
the optimal filter for the general anisotropic case would
have included P 0A��̂� and we would perform a full sky
search for an anisotropic background. However, no rea-
sonable model for the anisotropic SGWB sky exists in
literature and, so, blind estimations are currently the only
possible alternatives.

Directed search is one blind estimation approach, where
the strength of each point (pixel) of the sky is ‘‘observed’’
using a direction-dependent filter, assuming that the other
points on the sky do not contribute towards the observed
value. So, in the directed case,Q becomes a function of �̂:

 

~Q��̂; t; f;H� � ���̂; t�
H�f��
��̂; t; f�
P1�t; jfj�P2�t; jfj�

; (3.36)

where ���̂; t� is the normalization constant, which now
varies from pixel to pixel. It is given by Eq. (3.30), but with
the � in the expression for P2

NW in Eq. (3.29) replaced by
the simpler � of Eq. (3.34). The directed filter given in
Eq. (3.36) is an optimal filter if there is a single point
source in the direction �̂ and no sources elsewhere in
the sky. If there are other sources in the sky, as in a general
anisotropic background, the filter becomes suboptimal as it
stands. However, we use the above filter to make a ‘‘dirty’’
map of the sky, which is a convolution of the actual
anisotropic background with the beam function and con-
tains additive noise. We intend to extract information
about the true background by the process of deconvolution.
The convolution equation will be derived in the next
subsection.

The working principle of the above filter is evidently
similar to the earth rotation aperture synthesis often used in
CMB and radio astronomy to make a map of a certain
portion or the whole sky. The phase lag between two
detectors, separated by a distance �x�t�, in receiving a
plane wave front from a certain direction �̂, as shown in
Fig. 1, is compensated in the filter via the phase factor
exp
2�if�̂ 	�x�t�=c�. As the earth rotates this factor
adjusts, so that, waves from the given direction are coher-
ently added, while the waves from other directions tend to
cancel out. Note that, we did not introduce the phase factor
by hand, it appeared automatically through the process of
the maximization of the SNR. Though the whole radiome-
ter analysis is based on this principle, the idea is clearly
realized in the directed search analysis.

C. The integral equation for the directed search

In this subsection we set up the convolution equation,
which is an integral equation for the statistic S��̂�—the
dirty map of directed search. The kernel of the integral
equation consists of beam functions that we define below.
The goal is to obtain the power in both polarizations
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P A��̂�, given the statistic S��̂�. To this end we take the
expectation value of the statistic S��̂� in Eq. (3.31) and use
Eq. (3.20) for the expectation value of �S inside the
integral sign. We must also use expressions for the source
overlap reduction function from Eq. (3.7) and the directed
filter from Eq. (3.36). The final form of the (noiseless)
convolution equation is given by
 

s��̂� � hS��̂�i �
Z
S2

d�̂0
B���̂; �̂0�P���̂
0�

� B���̂; �̂0�P���̂
0��; (3.37)

where the beam functions BA��̂; �̂0� are defined as
 

BA��̂; �̂0� � ���̂�
Z

dt
Z 1
�1

df
H�f�H0�f�

P1�t; jfj�P2�t; jfj�

� FA1 ��̂
0; t�FA2 ��̂

0; t����̂; t�

� e�2�if���	�x�t�=c� (3.38)

 ��1��̂� :�
1

�t

Z
��1�t; �̂�dt: (3.39)

The function H0�f� is the model power spectrum of the
source we insert in the kernel and �� � �̂� �̂0. We
measure hS��̂�i and from the kernels BA��̂; �̂0�, we pro-
pose to solve the integral equation for P A��̂�. Physically,
we may expect the power in both polarizations to be the
same, that is, P���̂� � P���̂� � P ��̂�, say, the kernel
then is just the sum of the two individual kernels of each
polarization,
 

B��̂; �̂0� � B���̂; �̂0� � B���̂; �̂0�

� ���̂�
Z

dt
Z 1
�1

df
H�f�H0�f�

P1�t; jfj�P2�t; jfj�

� ���̂0; t����̂; t�e�2�if��	�x�t�=c: (3.40)

Our numerical deconvolution strategy is described in the
next section. But before we do that we examine the kernel
in Eq. (3.40) and try to understand it from a physical point
of view. This will afford us some insight into the beam
patterns associated with directed filters.

It is worth noting that the beam function B��̂; �̂0� is not
symmetric only due to the leading normalization factor
���̂�, which comes from the normalization of the statistic
S��̂�. We make use of this observation to introduce a
symmetric kernel in Sec. V, which is advantageous for
numerical deconvolution.

D. The stationary phase approximation of the kernel
and its singular value decomposition

The GW radiometer beams are not pointed but have a
spread out profile, which varies with sky position. Thus in
order to make progress towards deconvolving the GW sky
map we try to understand the beam pattern. We find that the

stationary phase approximation (SPA) of B��̂; �̂0�, given
in Eq. (3.40), yields useful results. It is essentially the
exponential term exp
�2�if�� 	�x�t�=c� containing
the phase that determines the integral—the integrand con-
structively contributes when the phase in the integral in
Eq. (3.40) is stationary. We also use the fact that the rest of
the functions in the integrand vary slowly with time, so that
they effectively behave as constants as far as the integral is
concerned.

We obtain the beam function for a unit point source at
�̂0 � ��0; �0�. We write �� :� �̂� �̂0. Note that ��
may not be necessarily small; the points �̂, �̂0 can lie
anywhere on the unit sphere. By performing a numerical
computation for an observation time of one sidereal day,
we find that for low declinations, the beam is shaped like
the figure of 8, as shown in Fig. 2(a), while as one goes
higher in declination, the 8 smoothly turns into a tear drop.

FIG. 2 (color online). Illustration of the agreement between
numerical and theoretical GW radiometer beam patterns at
declination �12� for the LIGO detectors at Livingston and
Hanford (with white noise, upper cutoff frequency of 1024 Hz,
H�f� � constant and observation time of one sidereal day).
Same color map has been used for both panels. Note that, the
shape of the beam does not depend on the right ascension of the
pointing direction for observation time of full sidereal day(s).
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With the application of the SPAwe can explain the shape
of the beam. The integrand in the kernel usually oscillates
rapidly, because of the exponential phase term, except
when the phase is stationary. The kernel is a double integral
over f and t and therefore the SPA must be carried out in
two dimensions. Setting the first derivative of the phase
with respect to both variables f and t equal to zero, we
obtain

 � � 	�x�t� � 0; (3.41)

 � � 	� _x�t� � 0; (3.42)

where � _x�t� :� d�x�t�=dt. The detector separation vector
�x�t� rotates about the Earth’s rotation axis (z-axis in our
coordinate system) with the angular velocity !E.
Geometrically �x�t� traces out a right circular cone with
z-axis as its symmetry axis [see Fig. 3]. It is explicitly
given by

 � x�t� � �R�sin� cos!Et; sin� sin!Et; cos��; (3.43)

where �R � j�x�t�j is the constant distance between the
detectors. As !Et ranges from 0 to 2�, �x�t� traces out a
cone with half-angle �. The half-angle � of the cone, 0 �
� � �, is given by

 cos��
cos�1� cos�2�����������������������������������������������������������������������������������������������

2
1� cos�1 cos�2� sin�1 sin�2 cos��1��2��
p ;

(3.44)

where ��I; �I� are the detector coordinates. For the LIGO
pair of detectors, �� 27�.

From Eqs. (3.41) and (3.42) it is clear that the phase is
stationary when �x�t�, � _x�t�, and �� form an orthogonal
triad. Since the unit vector normal to the baseline at any
given time as well as to the cone

 n̂ cone�t� �
�x�t� �� _x�t�
j�x�t� �� _x�t�j

; (3.45)

the SPA condition is satisfied when

 � � � ��n̂cone�t�; (3.46)

where �� � j��j can take both positive or negative
values. Since both �̂0 and �̂�t� � �̂0 ����t� are con-
strained to lie on the unit sphere and thus both have unit
norm, it follows from Eq. (3.46) that the SPA solution �̂�t�
is a curve on the unit sphere given by [23],

 �̂�t� � �̂0 � 2
�̂0 	 n̂cone�t��n̂cone�t�: (3.47)

The trajectory has been parametrized in terms of the side-
real time t. One can even obtain an approximate analytical
expression for the beam function along the SPA trajectory
using standard SPA techniques as [23]
 

B��̂�t�; �̂0� � ���̂�t�����̂�t�; t����̂0; t�

�����
fu
p
�

�����
fl
p

!E

�

�������������������������������������������������������������
8c

j
ẑ 	�x�t��
ẑ 	 ��̂�t� � �̂0��j

s
: (3.48)

As t is varied over a full sidereal day, the shaded figure of 8
is generated through Eqs. (3.47) and (3.48) as shown in
Fig. 2(b). Clearly, SPA results match very well with the
numerical beam pattern shown in Fig. 2(a).

The case where Eq. (3.48) does not apply (though the
analysis still remains valid) is when the detectors are at the
same latitude, as the normal to the baseline cone, n̂cone�t�,
always remains parallel to the ẑ axis, causing the denomi-
nator of Eq. (3.48) to vanish. In this case the whole SPA
trajectory shrinks to a point, which is the image of the
pointing direction about the equatorial plane, �̂ � �̂0 �

2
�̂0 	 ẑ�ẑ. The value of the beam function at the image
point,

 

Z T

0
dt���̂0; t����̂0 � 2
�̂0 	 ẑ�ẑ; t�=

Z T

0
dt
���̂0; t��

2;

(3.49)

is also quite easy to compute. Therefore, a sky map pro-
duced by such a baseline will be a superposition of the
(blurred) true sky and its (differently blurred) reflection
about the equatorial plane. In practice, a situation like this
arises for the LHO-Virgo pair, as their latitudes are quite
close, 46�2700N and 43�3700N, respectively.

The SPA solution given in Eq. (3.48) does not remain
finite very close to the pointing direction, as the denomi-
nator vanishes. However, close to the pointing direction a
better approximation is obtained by expanding the phase
term exp
�2�if�� 	�x�t�=c� up to the second order,
which can also be used for more accurate modeling of the
core of the beam.

The stationary phase analysis also indicates an approxi-
mate resolving power of the radiometer. Since near the
maximum of the beam function, the phase must not vary
too much over the bandwidth, say no more than a radian,
this implies that the resolving power is determined by
j��j � �=j�xj, where the � corresponds to the band-
width f � �f of the detectors. For the LIGO detectors,

Θ

ω

n^ cone

E

x(t)∆

FIG. 3 (color online). The baseline formed by two detectors,
�x�t�, traces out a cone as the earth rotates. A schematic
diagram is shown here. The vector n̂cone�t� is normal to the
baseline as well as the cone.
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j�xj � 3000 km. If we take the bandwidth to be �1 kHz,
then �� 300 km, so the radiometer resolution is
�0:1 radians, that is, �6 degrees, which we find is con-
sistent with the numerically obtained beam profiles. A
contour plot of the core of the beam of the radiometer
formed by the LIGO pairs (with white noise and upper
cutoff frequency of 1024 Hz) is shown in Fig. 4. The plot
confirms that the beam size in this case is 6� � 0:1 rad.

The width of the beam estimated above is seen to be
consistent with the ‘‘number of degrees of freedom’’
present in the kernel (beam). A widely used method that
identifies the linearly independent modes in a linear trans-
formation is the singular value decomposition (SVD) [25].
The decomposition identifies linear combinations of
modes that have almost zero eigenvalues—the null sub-
space. It then projects out the solution orthogonal to the
null subspace which spans the true degrees of freedom. The
singular values of the kernel for the LIGO detectors at
Hanford and Livingston for white noise with upper cutoff
frequency fu � 1024 Hz are plotted in Fig. 5 (solid line).
The figure shows that the eigenvalues become essentially
negligible after �1000 implying that this is the number of
degrees of freedom in the kernel. The numerical and the
SPA analysis shows that the size of the central spot or the
resolution is �0:1 radian, which means that there are

4�=�0:1�2 � 1000 independent patches in the sky. So the
SVD results are consistent with the size of the beam
obtained by numerical and theoretical methods.

In practice, however, the higher frequency response of
the detectors is not as good, hence the achievable angular
sensitivity of the radiometer becomes relatively poor. The
plot of singular values for the same detector pair both
having LIGO-I goal noise PSD with an upper cutoff fre-
quency of fu � 512 Hz is overlaid (dashed line) on Fig. 5.
Clearly, the number of degrees of freedom, which repre-
sents the amount of information content in a map, is less in
this case.

IV. THE MAXIMUM LIKELIHOOD
DECONVOLUTION

A. Unpolarized background and single baseline

We first consider the simpler case of detecting and
deconvolving the signal from an unpolarized SGWB using
one pair of detectors. We later indicate in the subsections
that follow how this method can be extended to the more
general cases of SGWBs and detector baselines.

The observed data construct, S��̂�, consists of a signal
and additive noise, namely,

 S��̂� � s��̂� � n��̂�: (4.1)

The first term on the rhs, the expectation of the dirty map

FIG. 4 (color online). Contour plot of GW radiometer beam
pattern at declination �12� revealing the approximate size and
the (negative) side lobes of the beam for the LIGO detectors with
white noise, upper cutoff frequency fu � 1024 Hz, H�f� �
constant, and observation time of one sidereal day. The contours
are drawn starting from the highest level of 0.9 with a difference
in levels of 0.1. The beam falls by 1=e in between the 5th and the
6th contour (from the highest value), which is a good indicator
for the beam size. Clearly, the narrowest beam size (along the
‘‘minor axis’’) is in reasonable agreement with the theoretical
prediction of 6� � 0:1 rad. The beam becomes broader (not
shown in the figure) for real detector noise and negative source
spectral index, e.g., H�f� / f�3.
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FIG. 5 (color online). The solid line is a plot of the singular
values of the kernel for the LIGO pair of detectors with white
noise, upper cutoff frequency of fu � 1024 Hz, and observation
time of one sidereal day. From the plot it is evident that the
singular values are negligible after �1000. These results agree
with the numerical and SPA results which give the size of the
central spot �0:1 radian. The dotted line shows the singular
values for the same detector pair, but with LIGO-I noise PSD and
upper cutoff frequency of fu � 512 Hz. Clearly, the latter curve
indicates a loss of angular resolution due to relatively poorer
higher frequency response of the detectors.
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given in Eq. (3.37), is a convolution of the true power in
SGWB P A��̂� in the two polarizations arriving from a
direction �̂ in the sky with corresponding beam response
functions BA��̂; �̂0�. Note that, though the definitions of
the above quantities involve complex Fourier transforms,
these quantities are all real owing to the fact that they were
originally derived from real time series, so that,
~s
I �t;�f� � ~sI�t; f�, �
��̂; t;�f� � ���̂; t; f�, and so on.

In this section, we construct the maximum likelihood
(ML) estimator for the angular power distribution P A��̂�
given the measured data S��̂�. For simplicity and clarity of
presentation, we first limit the analysis to the simple case
where both the polarizations follow the same angular
power distribution P ��̂�. This simplifies the form of the
construct to
 

S��̂� �
Z
S2

d�̂0
B���̂;�̂0� �B���̂;�̂0��P ��̂0� �n��̂�:

(4.2)

In practice, the sky is divided into a finite number of
pixels. Then, the observed data vector is denoted by S,
whose component Si :� S��̂i� is the signal measured at
the ith pixel. We similarly define the vectors P and n, with
components P ��̂i� and n��̂i�, respectively. In this nota-
tion the convolution leads to a set of linear algebraic
equations,

 S � B 	P � n; (4.3)

where B is the known [26] beam matrix, expressed as
Bij :� B���̂i; �̂j� � B���̂i; �̂j�. In the weak-signal ap-
proximation, the variances of the signal-noise cross terms
~h
1;2�t; f�~n2;1�t; f� are much smaller than the variance of the
noise-noise cross term ~n
1�t; f�~n2�t; f�. So the observed
pixel noise is strongly dominated by the noise-noise term
and can be written as
 

ni :� n��̂i�

�

�Z
dt��1�t; �̂i�

�
�1 Z

dt
Z 1
�1

df~n
1�t; f�~n2�t; f�

�
~Q��̂i; t; f;H�

��t; �̂i�
; (4.4)

the cross terms ~h
1;2�t; f�~n2;1�t; f� have been dropped. The
pixel noise is a sum of a large number of zero mean random
numbers, where none of the addend strongly dominate
(statistically) over the others. Hence, following the gener-
alized central limit theorem [27], one can argue that the
pixel noise tends to be zero mean Gaussian. If this argu-
ment is used to calculate the variance of n��̂�, we con-
sistently get the same result as expected from Eq. (2.16).
After a routine but fairly involved algebra, the pixel-to-
pixel noise covariance matrix, N � Nij, of the dirty map

turns out to be

 Nij :� hninji �
�t
4

�Z
dt��1�t; �̂j�

�
�1
Bij: (4.5)

The deconvolution problem is, of course, a very standard
problem in many areas of science. In particular, Eq. (4.3) is
identical in structure to the set of equations that arise in the
map-making stage of CMB experiments. The temperature
anisotropy �Ti in a direction is inferred from time stream
data, dt using a linear model dt �

P
iAti�Ti � nt. The

convolution kernel Ati that relates the time domain to the
pixel domain is determined by the pointing or scan strategy
as well as the beam response function of the antenna. The
noise nt is (assumed to be) Gaussian and described by the
noise covariance matrix Ntt0 . As described below, a ML
solution for the sky map �Ti is readily obtained in this
linear model under the assumption that the noise is
Gaussian. We adapt this technique to solve our problem
since it has been applied with great success in the CMB
field and there exists an extensive literature [28] and also
public domain package for implementing it numerically
[29,30]. However, it should be noted that the problem
differs in two important aspects. First, in our case there is
the simplicity that the kernel connects two vectors which
are both in sky pixel space. This implies the kernel is a
square matrix for the case of single baseline and unpolar-
ized background. Second, in our case the statistics of the
noise is potentially nontrivial; the noise in this situation is a
complex object built by integrating the product of two
random variables corresponding to the noise streams in
each detector. The Gaussianity of the noise has to arise
from the generalized central limit theorem [27].

We proceed assuming that the joint probability distribu-
tion of the elements of n is a multivariate Gaussian distri-
bution [31] given by the probability distribution function:

 P �n� �
1

�2��Npix=2kNk1=2
exp

�
�

1

2
nT 	N�1 	 n

�

�
1

�2��Npix=2
exp

�
�

1

2
�nT 	 N�1 	 n� Tr
lnN��

�
;

(4.6)

where Npix is the total number of pixels and N :� hnnTi is
the known noise covariance matrix [see Eq. (4.5)]. Thus,
given a signal vector P, the probability of observing
radiometer output S is [29]
 

P�SjP̂� � �2���Npix=2

� exp
�1
2��S�B 	 P̂�T 	N�1 	 �S�B 	 P̂�

� Tr
lnN���: (4.7)

Solving for @P�SjP̂�=@P̂ � 0, using the fact that N is
symmetric and positive definite, it is straightforward to
show that the above probability is maximum when
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 P̂ � �BTN�1B��1BTN�1 	 S; (4.8)

which is, therefore, the well-known result for the desired
ML estimator of the true sky map of SGWB anisotropy.
The deconvolved map will also have pixel noise, given by
 

n :� P̂ �P � �BTN�1B��1BTN�1 	 �B 	P � n� �P

� �BTN�1B��1BTN�1 	 n (4.9)

and the pixel-to-pixel noise covariance matrix of the ML
map is obtained as

 � :� hnnTi � �BTN�1B��1: (4.10)

Therefore, to obtain the ML map estimate one has to first
compute the inverse of the pixel-to-pixel noise covariance
matrix ��1 � BTN�1B. The ML map is then obtained as a
solution to the linear algebraic equations,

 ��1P̂ � BTN�1 	 S: (4.11)

In solving this equation, we have a choice of either using
one of a number of direct methods or one of the iterative
methods. In the low resolution regime, the matrix inversion
looks feasible with reasonable accuracy. However, in gen-
eral, direct methods are computationally more expensive
and iterative methods are preferred, provided their conver-
gence to the solution is rapid. For sparse matrices the
iterative conjugate gradient (CG) method is well suited
for this inversion [25,32] problem. The CG method solves
linear systems with symmetric positive definite matrix and
have been found to be more advantageous compared to
other iterative methods such as the Jacobi method [28,33].
Starting with a guess solution, the convergence of the
method can be often greatly improved by ‘‘precondition-
ing’’ the system of equations. i.e., multiplying both sides
with a suitable matrix (say, the inverse of diagonal ele-
ments of the matrix). Our choice is also motivated by the
fact that the CG method has been successfully imple-

mented for map making in CMB experiments [28,29,34–
36].

The above method can be extended to include multiple
baselines and also to estimate power in each polarization
component. We discuss these extensions in the following
subsections.

B. Multiple baselines

The above analysis can be extended to a set of Nb GW
radiometer baselines. Let S�i� be the observed map by the
ith baseline with beam matrix B�i� and observed noise n�i�.
Then Eq. (4.3) can still be written as

 S � B 	P � n;

where

 X :�

X�1�

X�2�

..

.

X�Nb�

0BBBB@
1CCCCA; (4.12)

with X representing the matrices S, B, and n. Note that S,
n are now 1� NpixNb vectors and B is a Npix � NpixNb

matrix, while P (the true SGWB sky) remains unchanged.
This is similar to CMB experiments where each pixel is
visited by the detector several times. In the multibaseline
GW radiometer case each pixel is visited by different
baselines, and, unlike a CMB experiment, each pixel is
visited an equal number of times. In this case too the
maximum likelihood estimate [37] and the pixel-to-pixel
noise covariance matrix of the ML map are given by

 P̂ � �BTN�1 	 S; ��1 :� BTN�1B; (4.13)

but the noise covariance matrix N :� hnnTi of the raw sky
map has to be modified. Let ni��̂� be the pixel noise from
the radiometer baseline i with detectors I and I0 and we
follow the same convention for �i and Qi. Then,

 

hni��̂1�nj��̂2�i �

�Z
dt��1

i �t; �̂1�

�
�1
�Z

dt��1
j �t; �̂2�

�
�1 Z

dt1
Z

dt2
Z 1
�1

df1

Z 1
�1

df2

Z 1
�1

df01

�
Z 1
�1

df02��t�f1 � f
0
1���t�f2 � f

0
2�h~n



I �t1; f1�~n



J�t2; f2�~nI0 �t1; f

0
1�~nJ0 �t2; f

0
2�i

~Qi��̂1; t1; f01;H�

�i�t1; �̂1�

�
~Qj��̂2; t2; f02;H�

�j�t2; �̂2�
: (4.14)

If i and j denote the same baseline we get back the previous
result [Eq. (4.5)]. However, if i and j denote different
baselines, at least one of the two detector pairs will be
different (i.e. either I � J or I0 � J0), so in that case
hni��̂1�nj��̂2�i � 0. Hence, one can write

 hni��̂1�nj��̂2�i � �ijhni��̂1�nj��̂2�i: (4.15)

Thus, the matrix N for a network of baselines will be a

block diagonal matrix, where each diagonal block N�i� is
the noise covariance matrix for the corresponding baseline,
N�i�kk0 :� hni��̂k�ni��̂k0 �i, provided in Eq. (4.5).

The above algebra suggests that it is fairly straightfor-
ward to combine the observations made by multiple base-
lines for the estimation of the true SGWB angular power
distribution. In [17,38] it was shown that the optimal way
to search for an isotropic SGWB using a network of
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detectors (with uncorrelated noise) is to linearly combine
correlations from pairs of detectors, instead of computing
higher order correlations using data from more than two
detectors. We can extrapolate the same logic to the directed
search and argue that the procedure described above to
combine data from a network of detectors is also optimal.

The search for a SGWB using a network of detectors is
becoming progressively relevant as other kilometer scale
detectors, namely, Virgo, GEO, and LCGT, are expected to
reach their initial goal sensitivity in the next few years. A
network of detectors can enhance the directed search in
many ways. The resolution of a radiometer is proportional
to the length of the baseline. Inclusion of a detector at a
distance like Virgo, which is further away of the LIGO
detectors than the mutual separation of the LIGO sites, will
clearly increase the highest baseline separation and hence
the resolution of the baseline. However, more important
enhancement would be realized due to better coverage of
the sky. An analogy with radio astronomy using an array of
antennas may be appropriate to mention in this context
[39]. As the Earth rotates, the projections of the radio
antenna baselines on the plane perpendicular to the source
direction sample different points on the two-dimensional
Fourier plane (commonly known as the u-v plane). The
sampled Fourier plane is then inverse transformed to gen-
erate the image. While the highest resolution of the net-
work is limited by the projection of maximum antenna
separation, the addition of more antennas to the network
ensures better sampling of the u-v plane reducing the side
lobes, thereby producing a more faithful image of the sky.
A detailed introduction to the basic principles of Earth
rotation aperture synthesis can be found in most of the
standard texts on radio astronomy, e.g., [40]. In GW radio-
metry with a network of detectors we expect that a similar
scenario will arise—better coverage of the sky should be
possible due to different orientations of the baselines with
respect to the source. Moreover, since the true power
distribution will be estimated from an overconstrained set
of equations, the error in the estimated quantities will be
reduced. In addition, a radiometer search can benefit from
certain technical advantages that a network of detectors
can provide: A detector at a third site joining the LIGO
detectors will boost the ‘‘single-baseline integration time,’’
i.e., the single-baseline duty cycle in a three-site network
will be at least as good as, but will likely be better than, that
in a two-site network. Also, owing to common instrumen-
tal noise sources in the LIGO detectors, certain frequency
bands are currently notch-filtered in computing the cross
correlation statistic. Some of these noise sources are
known not to affect Virgo and, therefore, the LIGO-Virgo
cross correlation statistics. For example, the powerline
noise affects the LIGO detectors at the harmonics of
60 Hz, whereas it affects the Virgo detector at the harmon-
ics of 50 Hz. Therefore, a radiometer search that benefits
from the LIGO-Virgo baseline’s contribution will probe

the presence of astrophysical signals over a larger set of
frequencies than one limited to the baseline consisting of
the LIGO pair of detectors.

C. Polarization map

We may also choose to extract power from different
polarizations separately. The discrete convolution equa-
tion,

 S � B� 	P� � B� 	P� � n; (4.16)

can also be expressed by Eq. (4.3)

 S � B 	P � n;

where

 B :�
�

B� B�

�
; P :�

P�
P�

� �
: (4.17)

Again in this case the ML estimator of sky map can be
expressed by Eq. (4.13):

 P̂ � �BTN�1 	 S; ��1 :� BTN�1B:

This case can also be generalized for a network of
detectors by retaining the same definition of P
[Eq. (4.17)], but redefining the beam matrix as

 B :�

B�1�� B�1��
B�2�� B�2��

..

. ..
.

B�Nb�
� B�Nb�

�

2
666664

3
777775 (4.18)

and, again, using the same ML estimation formula given in
Eq. (4.13).

V. IMPLEMENTATION AND NUMERICAL
RESULTS

In this work we have numerically implemented the
maximum likelihood estimation algorithm on simulated
data using the MATLAB® software package [41] to esti-
mate the ‘‘true’’ (unpolarized) SGWB sky observed with a
single-baseline ground-based GW radiometer. The details
of the computation scheme, the numerical deconvolution
algorithm, the simulated data, and the deconvolved maps
are presented in this section.

A. Preparation of simulated dirty maps

The data are simulated in the frequency domain for each
time segment. Since the noise of ground-based interfero-
metric detectors is very high at frequencies greater than a
few 100 Hz and the computation cost increases with the
number of frequency bins, we use an upper cutoff fre-
quency of fu � 512 Hz and bin width of �f � 2 Hz for
testing of the algorithm. The length of each time segment
is chosen as �t � 192 sec and the total integration time
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is T � 86 400 sec [42]. The sky is pixelized using the
Hierarchical Equal Area isoLatitude Pixelization
(HEALPix) [43] scheme, which divides the 2-sphere (S2)
in 12n2

side pixels, where nside is an integer power of 2. Since
the radiometer beam width is greater than �6�, we chose
nside � 16, which corresponds to a pixel width of�3� and
a total of 3072 pixels. The HEALPix scheme also allows
fast spherical harmonic transform on a sphere, which may
become useful for more advanced analysis in future. Note
that, the algorithm is independent of the pixelization
scheme; other equal area pixelization schemes can also
be used in the analysis.

We generate the detector noise ~nI�t; f� using a Gaussian
pseudo random number generator for each time segment.
The noise is colored using the (one-sided) noise PSD
PI�t; f� of the corresponding detector according to
Eq. (3.15). MATLAB® software’s pseudo random number
generator randn can generate very long sequences of
random numbers, so we relied on that routine for simulat-
ing detector noise. For each of T=�t � 86 400=192 � 450
time segments, we generated a complex random sequence
(that is, two real random sequences) of fu=�f � 512=2 �
256 real numbers. The total number of random numbers,
2�T=�t��fu=�f� � 225 000, is much less than the period
of randn, which is 21492 * 10449 [44].

Signal is also generated directly in the frequency do-
main. However, the GW strain in each detector, ~hI�t; f�, is
not generated independently; rather the product of the
strains in the detectors, ~h
1�t; f�~h2�t; f�, is generated di-
rectly using the statistical properties of the strain correla-
tion described in subsection III A, in particular, Eq. (3.10).
We may write the product of the strains as a sum of its
expectation value and statistical fluctuations:

 

~h 
1�t; f�~h2�t; f� � h~h


1�t; f�~h2�t; f�i � fluctuations: (5.1)

Since our main aim is to generate

 ~s 
1�t; f�~s2�t; f� � 
~h


1�t; f� � ~n
1�t; f��
~h2�t; f� � ~n2�t; f��

(5.2)

and since statistically the variation in the signal terms are
much weaker than the zero mean uncorrelated detector
noise terms, we may simply drop the signal ‘‘fluctuations’’
term from Eq. (5.1)—that is, we may approximate the
product of the detector outputs using the formula [45]:

 ~s 
1�t; f�~s2�t; f� � h~h


1�t; f�~h2�t; f�i � ~n
1�t; f�~n2�t; f�:

(5.3)

For all the cases considered in this paper we have used flat
source PSDs, i.e., H�f� � constant.

In this analysis we assume the sky to be a collection of
uncorrelated point sources of different strengths placed at
every pixel. Moreover, the numerical analysis has been
restricted to the case of equal power in each polarization.
So the (injected) true sky is constructed by putting

 P true��̂� �
X
k

P k���̂� �̂k�; (5.4)

where P k is the strength of the point source placed at pixel
k, located in the direction �̂k (in order to inject only one
point source at pixel k0, we make all the P k � 0 except for
k � k0). In this setup, the expression for the overlap re-
duction function [Eq. (3.7)] for the true SGWB strain
becomes

 ��t; f; ��; dP A� �
X
k

���̂k; t�P ke2�if�̂k	�x�t�=c; (5.5)

where we use our usual notation for ���̂; t� defined by
Eq. (3.34).

We substitute the above in Eq. (3.10) and inject that
simulated signal in noise using Eq. (5.3) to generate prod-
ucts of outputs from two detectors. In order to preserve the
reality of time series data, the products of signals are
generated only for positive frequencies and setting the
negative frequencies equal to the complex conjugates of
their positive frequency counterparts, that is, ~sI�t;�f� �
~s
I �t; f�.

The radiometer analysis is then run on the simulated data
by placing filters ~Q��̂k; t; f;H� at each pixel k to generate
the dirty maps.

B. Deconvolution: Clean maps

Any deconvolution routine requires the beam function at
all the points of interest on the sky. For a GW radiometer,
the filters (and hence the beam functions) are dependent on
the data set itself. So, if the beam function is calculated for
each sky pixel, apparently the computational cost should
go up by a factor of the number of pixels (Npix � 3000)
times the cost to make one sky map of beam for a given
pointing direction. However, we can use algebraic tricks to
make this method computationally viable. A possible way
to implement this method for the simple case of one base-
line and equal power in each polarization is demonstrated
below.

The beam and noise covariance matrices are given by
 

Bij � 2�f
�XT
t�0

1

��t; �̂i�

�
�1 XT

t�0

���̂j; t����̂i; t�

� <

�Xfu
f�0

e2�if��̂j��̂i�	�x�t�=cG�t; f�
�
; (5.6)

 Nij �
�t
4

�XT
t�0

1

��t; �̂j�

�
�1
Bij; (5.7)

where
 

���̂; t� :� F�1 ��̂; t�F�2 ��̂; t� � F�1 ��̂; t�F�2 ��̂; t�;

G�t; f� :� H2�f�=
P1�t; f�P2�t; f��: (5.8)
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Now one can see that the beam matrix is a summation of
parts which depend on either �̂i or �̂j. So, it is possible to

precompute the arrays ���̂; t�, ���̂; t�, G�t; f�, and �x�t�,
only once, and then use them efficiently to evaluate the
whole B matrix. Since each of these arrays are functions of
any two of the three variables �̂, t, f, the memory size
required for each two-dimensional array will not be too
large. Once the arrays are computed, the next step is to
obtain each element of the beam matrix separately. Each
element requires the evaluation of two sum loops (like
matrix multiplication) involving one exponential. The
symmetry of the beam matrix (without the normalization
constant) can be utilized here to reduce the computation
cost by a factor close to 2. To summarize, a significant
amount of CPU time required to make a sky map of the
beam for one pointing direction could be utilized to make
the beam maps for all other pointing directions. This is true
for the noise covariance matrix as well, which, in this case,
is proportional to the (unnormalized) beam matrix. A fast
Fourier transform (FFT) with interpolation trick [46] and
assumption of stationarity of noise for deconvolution (not
for making the dirty map, where nonstationarity will be
accounted for) can also be incorporated in the future to
reduce the CPU time.

In this simple case, since the beam matrix is a square
matrix, so that � � �BTN�1B��1 � B�1N�B�1�T , the es-
timated map given by Eq. (4.13) is just the least square
solution:

 P̂ � B�1 	 S: (5.9)

Even for the general cases of multiple baselines and po-
larized background, the estimation equation takes the
above simple form [see Sec. IV].

The first task was to compute the beam matrix, which
happens to be the computationally most intensive task. A
typical beam matrix for the LIGO baseline using 192
HEALPix pixels is shown in Fig. 6. By construction, Bkk �
1 and jBkk0 j< 1 for k � k0, hence the matrix is diagonal
dominated. The ‘‘stripes’’ in the matrix are related to the
pixelization scheme. The beam is stronger if the pixels are
closer to the pointing direction and it weakens as the
distance between the pixels and pointing direction in-
creases. In other words, the pixels closer to a point source
will have stronger contamination from the point source.
However, since we have used an isoLatitude pixelization
scheme, the indices of two neighboring pixels at different
latitudes differ by the total number of pixels on that lati-
tude. This fact is reflected in the plot of the beam matrix—
the matrix is sparse with certain ‘‘periodic’’ behavior
which produces the stripes in the plot. The matrix becomes
even more sparse for finer resolutions as a greater number
of isoLatitude pixel rings pass through the core of the
beam. Making a legible plot of the beam matrix for higher
resolution is difficult, so the plot presented here is re-
stricted to lower resolution—192 pixels instead of 3072.

Since the sparseness of the beam matrix depends on the
pixelization scheme, it may be possible to make the beam
matrix significantly diagonal by using a nested pixelization
scheme, where the indices of the neighboring pixels are
close. This possibility is being explored.

Sparse matrices are computationally easier to invert;
however, the stability of inversion of such matrices is a
numerical challenge. Therefore, as mentioned in Sec. IV,
instead of evaluating P̂ � B�1 	 S [Eq. (5.9)], we choose
to algebraically solve for P̂ from the set of linear equations

 B 	 P̂ � S; (5.10)

with the same number of unknowns as the number of
equations (i.e., the system is not under or overconstrained).
The above equation can be cast into a linear system with
symmetric kernel,

 b 	 P̂ � s; (5.11)

by introducing two new quantities,

 b ij :�
�XT
t�0

1

��t; �̂i�

�
Bij; si :�

�XT
t�0

1

��t; �̂i�

�
Si:

(5.12)

Comparing with Eq. (5.6) one can clearly see that b is a

FIG. 6 (color online). A typical beam matrix for the LIGO
Hanford-Livingston baseline at a low resolution (192 pixels) is
shown in this figure. Each row of the matrix is the beam response
function for the pointing direction that corresponds to the row
index. The matrix is diagonal dominated as the radiometer
receives maximum contribution from the pointing direction.
The stripes are related to the isoLatitude pixelization
scheme—the indices of the neighboring pixels at different
latitudes differ by the total number of pixels on that latitude.
The possibility of making the beam matrix more diagonal
dominated using a nested pixelization scheme, where the indices
of the neighboring pixels are close, is being explored.
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symmetric matrix. A symmetric kernel is always preferred
by most of the algorithms for solving numerical linear
equations. Moreover, it is possible to show from the alge-
bra presented in subsection IV B that, to incorporate ob-
servations from multiple baselines, one can simply replace
s and b by the sum of those respective quantities over all
the baselines and solve Eq. (5.11) for P̂ (which is, of
course, independent of any baseline). Thus the extension
of this analysis to incorporate a network of detectors
becomes straightforward with these new quantities.

Following the discussion presented in Sec. IV, we use a
conjugate gradient (CG) iterative technique to solve the
above set of linear equations. CG algorithm solves a set of
linear equations A 	 x � b, where A is a square matrix and
x, b are vectors, by minimizing the quadratic form 1

2 x 	A 	
x� b 	 x. We use the minimum residual method, which
efficiently utilizes the fact that b is symmetric and does not
require b to be positive definite. The minimum residual
method aims to minimize the residual jA 	 x� bj2 itself,
instead of the quadratic form 1

2 x 	A 	 x� b 	 x. Further
details on CG methods can be found in standard literature,
e.g., [47].

The clean maps also contain pixel noise—partly due to
the random noise present in the data and partly due to the
numerical errors introduced at each stage of the pipeline,
mainly during the process of deconvolution. There are
pixels in the deconvolved map, which have negative val-
ues, even though the injected map is positive. To reduce the
noise in the clean maps, we introduce an additional step:
We compute the root-mean-square (RMS) noise ‘‘
’’ in a
map when there is no injected source. Then in the clean
map (with source) we mask, that is, set to zero, all the
pixels that have values less than a threshold of few 
. The
number of iterations for deconvolution and the threshold
for masking can be adjusted according to the tolerable
levels of false alarm and false dismissal probabilities.

The above can be easily extended to handle real data
where we have no control on the injections. One can
calculate the equivalent of RMS noise for no injection by
shifting the data streams from different detectors by a large
time lag (much smaller than the segment duration), say,
1 sec, that corresponds to distances much greater than the
earthly distances, so that, true GW signals are not added
coherently. To be more careful, one can perform this ex-
ercise for a few large time shifts and confirm that the noise
levels are not significantly different for different shifts.

It is, however, not so straightforward to measure the
quality of deconvolution. The SNR of individual pixels
do not carry enough significance, as the neighboring pixels
are highly correlated. It is also difficult to define a quantity
that can take into account the pixel-to-pixel noise covari-
ance due to the difficulty in inverting the beam matrix. In
this paper, we use a rather simplistic measure to quantify
the quality of deconvolution, which is often used in image
processing to measure the reconstruction error. We use a

quantity known as the ‘‘normalized mean square error’’
(NMSE) [48], expressed in terms of the injected P and the
estimated P̂ maps as

 NMSE :�
jP̂ �Pj2

jPj2
: (5.13)

Obviously, the lower the NMSE, the better the
reconstruction.

The whole analysis was tested for different kinds of
injected maps consisting of localized sources and diffuse
sources. In all these cases each pixel k of the injected map
was assigned a value P k between 0 and 1 with a source
PSD H�f� � 5� 10�47=Hz. This means that, if a pixel of
a test map has strength 1, the standard deviation of the
Fourier transform of stochastic GW coming from that pixel
is

�����������
H�f�

p
� 7� 10�24=

�������
Hz
p

. This standard deviation is
about one-third of the standard deviation of Fourier trans-
form of noise at the most sensitive frequency band of the
LIGO-I detectors which is about 2� 3� 10�23=

�������
Hz
p

. To
our knowledge, the strength of anisotropic astrophysical
GW background has not so far been predicted theoretically.
However, if we try to extend the results from the all-sky
averaged (isotropic) astrophysical background [49] to have
a crude estimate of the strength of the anisotropic back-
ground, it turns out that, the PSD of the anisotropic astro-
physical background in the Universe is weaker than the
H�f� we have injected by roughly a few orders of magni-
tude. In the present work we have used an observation time
of one day to demonstrate the method. With longer obser-
vation times and employing several baselines comprising
of the upcoming advanced (more sensitive) detectors,
the difference between the expected background and the
detectable background would diminish or altogether
disappear.

We first inject a 4-pixel wide localized source near the
Virgo cluster, a potential point source of SGWB, as illus-
trated in Fig. 7. Figure 7(a) shows the injected map.
Figure 7(b) shows the dirty map made from simulated
data. Figure 7(c) shows the clean map, obtained by decon-
volving the above dirty map with the beam using 15
conjugate gradient iterations and Fig. 7(d) shows the
same clean map masked using a 5
 threshold. It is evident
that deconvolution has successfully localized the source in
a relatively smaller area as compared to the dirty map. Still,
one should note that, the deconvolution routines do not
perform well when the injected source is like a delta
function. This causes high NMSE, 1.22 for the unmasked
and 0.64 for the masked clean maps, and significant loss of
the peak strength of the reconstructed point source, as
indicated in Fig. 7. Moreover, increasing the number of
iterations beyond a certain level actually deteriorates the
quality of deconvolution due to noise amplification, and
this level is dependent on the kind of source one is search-
ing for. In this basic analysis we have used 15 iterations to
search for localized sources and 40 iterations to search for
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broad sources, which offer reasonably clean deconvolution
and comparatively low NMSE. The introduction of a mini-
mum error criterion [50] to terminate the iteration process
is being considered. Several other deconvolution algo-
rithms are being explored in order to identify the one which
is best suited for the GW radiometer analysis.

Next, we inject two kinds of diffuse sources, viz., one
that is nearly equatorial and another that is distributed
across multiple declinations, as illustrated in Fig. 8. We
injected modified (using FTOOLS [51]) galactic fore-
ground seen in CMB temperature anisotropy measure-
ments as our test patterns for the diffuse SGWB sources.
The left panels of Fig. 8 correspond to a modified form of
the temperature anisotropy map measured by the WMAP
satellite [52]. We emphasize that the sky looks different in
barycentric coordinates, similar to what is shown in the
top-right panel of Fig. 8. We omit the coordinate trans-
formation step intentionally in order to get a diffuse equa-
torial source. The right panels of Fig. 8 correspond to a
modified form of the temperature anisotropy map in the
barycentric coordinates generated by the Planck simulator
[53]. One of the main modifications applied to both of
these maps was to mask the brightest part of the Galaxy.
This step reveals more structures in the maps, which is
useful for testing a deconvolution algorithm. Figure 8(a)
shows the injected toy maps. Figure 8(b) shows the dirty
maps obtained by the radiometer analysis. One can see that
the dirty maps have lost all the fine structures present in the
injected maps. Furthermore, they show certain features that
were not even present in the injected map. Also, the pixel
values in the dirty maps are spread over a range consisting
of large positive and almost equally negative values.
Figure 8(c) shows the clean maps recovered by 40 CG
iterations. Clearly, many of the features of the injected
maps have been recovered in the clean maps, which is
also evident from the lower values of NMSE, 0.33 and
0.22, respectively. Also, the positivity of the estimated map
has been vastly improved—the pixel values of the clean
maps lie mostly on the positive side, as one should expect.
Finally, Fig. 8(d) shows the masked clean maps obtained
by using a 4
 threshold. Though the masked maps give
better visual impression, masking can actually discard
several pixels which have weak sources, thereby increasing
the NMSE. In Fig. 8(d), for example, masking increases
NMSE to 0.36 and 0.33, respectively, though the masked
maps look more similar to the injected maps shown in
Fig. 8(a) than the unmasked clean maps in Fig. 8(c).

VI. CONCLUSION

The stochastic astrophysical GW background is likely to
be dominated by sources in the nearby anisotropic uni-
verse, so the detection of localized sources is more favor-
able than the all-sky-averaged search. Making a skymap of
the SGWB sky has been a long standing ambition of
stochastic GW research. Different analysis methods have
been proposed to create sky maps by measuring the first
few spherical harmonic multipoles of the sky. Here we
have presented a direct approach of directed GW radiome-
ter analysis. In this approach, the whole sky is decomposed
in a discrete set of pixels and the contribution from each
pixel is measured separately by correlating phase shifted

FIG. 7 (color online). Illustration of deconvolution for local-
ized sources: A 4-pixel wide localized source was injected near
the location of the Virgo cluster—a potential source of SGWB.
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FIG. 8 (color online). Illustration of deconvolution for broad sources: Maps similar to CMB temperature anisotropy sky with the
galactic foreground were injected as toy maps. The left panels correspond to a map measured by the WMAP satellite [52], as seen in
the galactic coordinates, as a toy model for an equatorial source and the right panels correspond to a map generated by the Planck
simulator [53], as a toy model for a multideclination extended source.
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detector outputs to generate the whole sky map, which is a
clear application of earth rotation aperture synthesis.
Specifically, for the AGWB detection statistic, we have
defined a correlation statistic with a directed optimal filter
that targets a fixed point in the sky by adjusting the time
delay across a baseline to track its rotation with the Earth.
This statistic, however, provides us with a dirty map of the
sky which we numerically deconvolve to obtain the true
sky map. For this purpose, we have employed the conju-
gate gradient method. We numerically implement the de-
convolution on simulated unpolarized GW sky maps
obtained with the LIGO detector baseline. The success of
this method is demonstrated by the recovery of simulated
source distributions, namely, (i) of a point source, (ii) of a
diffuse source in the equatorial plane, and (iii) of a diffuse
source off the equatorial plane.

This work needs to be implemented on other baselines of
the upcoming/future network of detectors such as LIGO-
VIRGO, LIGO-LCGT, LISA, etc. The outline of the analy-
sis has been presented here. However, a further detailed
analysis and the implementation is a future goal. Even for
the single baseline, SPA analysis shows that, perhaps a
more efficient method of deconvolution, yielding better
accuracy and convergence, lower computational costs,
and convenience of application may be possible using a
more sophisticated analysis, for example, one involving
basis functions. The maximum likelihood framework pre-
sented here is, in fact, independent of any particular choice
of basis. So once a suitable basis is chosen, the rest of the
analysis can be applied without requiring any major
change. It may also be possible to deconvolve only a patch
of the sky using a similar method [54].

The work presented in this paper should also benefit two
other searches. First, since the long-duration integration of
the data will essentially comprise a sum over short
stretches, a large signal in a short stretch will constitute a
candidate for a transient or burst (short-duration) event.
Unlike the coincidence search being currently conducted
for such events, our work will combine coherently the
outputs of several detectors and, thus, improve their de-
tectability. Second, the long-duration integration of the
data should be able to find gravitational wave signals

from modeled sources, such as pulsars. Although our
method is optimal for searching unmodelled sources, it is
not so for pulsars, the signals from which can be matched
filtered. The problem with the latter method is that owing
to the very large parameter space volume, an all-sky, all-
frequency search for pulsars with matched filtering is not
computationally viable. Our proposed method is not handi-
capped by this problem since it does not use the intrinsic
source parameters for the search; rather it uses the data
from one detector to ‘‘filter’’ that from others in the net-
work, after appropriately time shifting them and weighting
them with the respective antenna patterns. Thus, our
method can be used as the first step in a two-step hierarch-
ical search for pulsars, where triggers from our method are
followed up with matched filtering.

ACKNOWLEDGMENTS

S. Mitra would like to acknowledge the Council of
Scientific and Industrial Research (India) and Centre
National d’Etudes Spatiales (France) for supporting his
research and Caltech for supporting his visit to LIGO
Laboratory, Caltech in 2006, where part of this work was
done. He further thanks Stuart Anderson for helpful sug-
gestions and Kent Blackburn and Patrick Sutton for pro-
viding useful help with the software computing facilities.
Some of the results in this paper have been derived using
the HEALPix [55] package, the Planck Simulator [53], and
FTOOLS [56] and some of the plots were made using a
colormap, specifically designed for compatibility with
grayscale printing, included in the GNUPLOT package
[57]. The LIGO Data Analysis System (LDAS) at
Caltech and the High Performance Computing (HPC) fa-
cility at IUCAA were used for the numerical implementa-
tion. This work was supported in part by the Department of
Science and Technology Grant No. DST/INT/(US-RP077)/
2001 and the National Science Foundation Grants No. INT-
01-38459, No. PHY-0630121, and No. PHY-0239735, and
the NSF LIGO Laboratory Cooperative Agreement
No. PHY-0107417. This paper has LIGO Document
No. LIGO-P070033-Z.

[1] R. A. Hulse and J. H. Taylor, Astrophys. J. 195, L51
(1975); J. H. Taylor, L. A. Fowler, and J. M. Weisberg,
Nature (London) 277, 437 (1979); J. H. Taylor, Rev. Mod.
Phys. 66, 711 (1994).

[2] A. Abramovici et al., Science 256, 325 (1992); C.
Bradaschia et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 289, 518 (1990); K. Danzmann, in Gravitational
Wave Experiments, edited by E. Coccia, G. Pizzella, and
F. Ronga (World Scientific, Singapore, 1995), p. 100;

K. Tsubono, in Gravitational Wave Experiments, edited
by E. Coccia, G. Pizzella, and F. Ronga (World Scientific,
Singapore, 1995), p. 112; R. J. Sandeman et al., A.I.G.O.
Prospectus (unpublished).

[3] P. L. Bender et al., Report No. MPQ 233, 1995).
[4] K. S. Thorne, in 300 Years of Gravitational, edited by

S. W. Hawking and W. Israel (Cambridge University
Press, Cambridge, England, 1987), p. 330.

[5] K. S. Thorne, in Proceedings of the Snowmass 95 Summer

GRAVITATIONAL WAVE RADIOMETRY: MAPPING A . . . PHYSICAL REVIEW D 77, 042002 (2008)

042002-21



Study on Particle and Nuclear Astrophysics and
Cosmology, edited by E. W. Kolb and R. Peccei (World
Scientific, Singapore, 1995), p. 398.

[6] E. Flanagan, in Gravitation and Relativity: At the Turn of
the Millennium, edited by N. Dadhich and J. Narlikar
(IUCAA, Pune, 1998), p. 177.

[7] B. F. Schutz, Classical Quantum Gravity 16, A131
(1999).

[8] K. S. Thorne, arXiv:gr-qc/9704042.
[9] V. Kalogera, R. Narayan, D. N. Spergel, and J. H. Taylor,

Astrophys. J. 556, 340 (2001).
[10] B. F. Schutz, Classical Quantum Gravity 6, 1761 (1989).
[11] A. Lazzarini, R. Weiss, LIGO Technical Document

No. LIGO-T0401-40-00-Z, 2004.
[12] B. Abbott et al. (LIGO Scientific Collaboration), Phys.

Rev. D 76, 082003 (2007).
[13] M. Maggiore, Phys. Rep. 331, 283 (2000). Also see the

references therein.
[14] Plots and data files of the initial LIGO noise curves can

be found at http://www.ligo.caltech.edu/ jzweizig/
distribution/LSC_Data/.

[15] P. F. Michelson, Mon. Not. R. Astron. Soc. 227, 933
(1987); N. Christensen, Ph.D. thesis, MIT, 1990; Phys.
Rev. D 46, 5250 (1992).

[16] E. Flanagan, Phys. Rev. D 48, 2389 (1993).
[17] B. Allen and J. Romano, Phys. Rev. D 59, 102001

(1999).
[18] B. Allen and A. Ottewill, Phys. Rev. D 56, 545 (1997).
[19] N. J. Cornish, Classical Quantum Gravity 18, 4277

(2001).
[20] H. Kudoh and A. Taruya, Phys. Rev. D 71, 024025 (2005);

A. Taruya and H. Kudoh, Phys. Rev. D 72, 104015 (2005);
A. Taruya, Phys. Rev. D 74, 104022 (2006).

[21] It is important to note that, even if the polarizations are
independent in a certain direction, there can be mixing
between polarizations in other directions due to the rota-
tion of basis vectors. This complication has not been
considered here, although it may not be too difficult to
incorporate this in our analysis.

[22] G. B. Rybicki and A. P. Lightman, Radiative Processes in
Astrophysics (John Wiley & Sons, New York, 1979).

[23] S. Mitra, Ph.D. thesis, IUCAA, Pune, India [LIGO tech-
nical document No. LIGO-P070034-00-Z, 2006].

[24] S. Bose et al., Classical Quantum Gravity 20, S677
(2003).

[25] G. H. Golub and C. F. Van Loan, Matrix Computations
(John Hopkins, Baltimore, 1996), 3rd ed.

[26] As mentioned in the text, we assume here that we know
the correct source PSD H�f�, which is of course not
known prior to a detection. However, as long as it is
known that H�f� follows a power law with a finite set of
possible spectral indices, one can estimate/constrain
SGWB anisotropy for each possible spectral index.

[27] W. Feller, An Introduction to Probability Theory and its
Applications (Wiley, New York, 1965), Vol. II.

[28] T. Poutanen et al., Astron. Astrophys. 449, 1311 (2006).
[29] J. Borrill, in Proceedings of the 5th European SGI/Cray

MPP Workshop, Bologna, Italy, arXiv:astro-ph/9911389
(1999)

[30] Microwave Anisotropy Dataset Computational Analy-
sis Package (MADCAP), http://crd.lbl.gov/borrill/cmb/

madcap/.
[31] D. F. Morrison, Multivariate Statistical Methods

(McGraw-Hill, New York, 1990), 3rd ed.
[32] J. Reid, Large Sparse Sets of Linear Equations, edited by

J. Reid (Academic, New York, 1971).
[33] C. Armitage and B. Wandelt, Phys. Rev. D 70, 123007

(2004).
[34] E. L. Wright, in Proceedings of the IAS CMB Data

Analysis Workshop, Princeton, 1996 (unpublished).
[35] A. Challinor et al., Mon. Not. R. Astron. Soc. 331, 994

(2002).
[36] N. Jarosik et al., Astrophys. J. Suppl. Ser. 170, 263 (2007).
[37] Of course, one could combine the maps from different

baselines with suitable pixel dependent weight factors wi,

 S �
X
i

wi 	 S�i�;

which may also reduce the noise by a factor of �
������
Nb

p
.

But, it would have issues of combining data from base-
lines with different beam functions. Further analysis might
be required to assess which method would be more
advantageous.

[38] O. Malaspinas and R. Sturani, Classical Quantum Gravity
23, 319 (2006).

[39] Notably, aperture synthesis technique using earth rotation
was first introduced by Martin Ryle for radio observation
of cosmic sources.

[40] A. R. Thompson, J. M. Moran, and G. W. Swenson, Jr.,
Interferometry and Synthesis in Radio Astronomy (Wiley,
New York, 2001), 2nd ed.

[41] MATLAB® Matrix Laboratory, http://www.mathworks.
com/.

[42] For convenience we have used 86 400 sec for one sidereal
day, instead of 86 164 sec. It hardly affects the accuracy of
the results presented in this paper, as the same duration has
been used for both injecting signals and analyzing data.
Even for analyzing real data the same segments can be
used, however, Earth’s rotation frequency should be accu-
rately supplied in order to establish correct correspon-
dence between time and celestial coordinates.

[43] http://healpix.jpl.nasa.gov/.
[44] MATLAB® function reference: rand, http://www.

mathworks.com/access/helpdesk/help/techdoc/ref/rand.
html.

[45] Note that, it is also possible to generate the correlated
detector strains hI�t� independently and construct
~sI�t; f� � ~hI�t; f� � ~nI�t; f� for each detector I separately
using simulated colored noise ~nI�t; f� to test the analysis.
However, we chose the above method in order to reduce
complications in the primary testing of the analysis pre-
sented in this paper.

[46] S. W. Ballmer, Classical Quantum Gravity 23, S179
(2006).

[47] W. Press et al., Numerical Recipes: the Art of Scientific
Computing (Cambridge University Press, Cambridge,
England, 1992).

[48] J. R. Fienup, Appl. Opt. 36, 8352 (1997).
[49] D. Coward and T. Regimbau, New Astron. Rev. 50, 461

(2006).
[50] H. Tang, L. W. Cahill, in TENCON ’92. Technology

Enabling Tomorrow: Computers, Communications and

SANJIT MITRA et al. PHYSICAL REVIEW D 77, 042002 (2008)

042002-22



Automation towards the 21st Century. 1992 IEEE
Region 10 International Conference, 1992, Vol. 2, p. 578.

[51] http://heasarc.gsfc.nasa.gov/ftools/.
[52] G. Hinshaw et al., Astrophys. J. Suppl. Ser. 170, 288

(2007).
[53] Planck Simulator, http://www.g-vo.org/planck/.
[54] C. Burigana and D. Saez, Astron. Astrophys. 409, 423

(2003).
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