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These notes represent a somewhat high-level documentation of ComputeFStatistic v2,
starting from the derivation of the F -statistic, down to expressions that very
closely resemble what is actually implemented in the code.

1 The signal h(t) measured at the detector

A plain gravitational wave hµν propagating along the unit-vector −n̂ can be
written in TT gauge as a purely spatial tensor h, namely

h(t, ~r) = h+(τ) e+ + h×(τ) e× , (1)

where τ = t+ n̂ · ~r/c and the polarization tensors e+,× are defined as

e+ = û⊗ û− v̂ ⊗ v̂ , e× = û⊗ v̂ + v̂ ⊗ û , (2)

in terms of the unit vectors û, v̂, which form an orthonormal basis {û, v̂,−n̂}
of the wave-frame. The choice of basis {û, v̂} in the wave-plane is arbitrary,
but one often chooses preferred directions given either by the source-geometry
or by the principal polarization axis of elliptically polarized waves. It is
convenient to re-express this in a source-independent basis that only depends
on the propagation direction −n̂ of the wave and the choice of an SSB-
fixed reference frame {x̂, ŷ, ẑ}. Such a frame is given by the basis vectors
ξ̂ ≡ ẑ × n̂/|ẑ × n̂|, η̂ ≡ ξ̂ × n̂ and −n̂. We define the polarization angle ψ as
the angle (anti-clockwise around n̂) between û and ξ̂, i.e. cosψ = û · ξ̂. This
allows us to express the polarization basis {û, v̂} in terms of the basis {ξ̂, η̂}
by a simple rotation by ψ around −n̂, namely

û = ξ̂ cosψ + η̂ sinψ , (3)

v̂ = −ξ̂ sinψ + η̂ cosψ . (4)
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Introducing polarization-independent basis tensors in the wave-frame,

ε+ ≡ ξ̂ ⊗ ξ̂ − η̂ ⊗ η̂ , (5)

ε× ≡ ξ̂ ⊗ η̂ + η̂ ⊗ ξ̂ , (6)

we can now express the wave-basis e+,× as

e+ = cos 2ψ ε+ + sin 2ψ ε× (7)

e× = sin 2ψ ε+ + cos 2ψ ε× . (8)

In the long-wavelength limit (L � λ/2π), the scalar response hX(t) of a
detector X to a GW h is expressible simply in terms of its detector tensor
dX, namely

hX(t) = dX(t) : h(τX) = dX
ij h

ij(τX) , (9)

where τX(t) = t + n̂ · ~rX(t)/c is (neglecting relativistic corrections) the ar-
rival time of a wavefront at the SSB, which arrives at the detector X (at
position ~rX) at time t. This timing relation accounts for the Doppler ef-
fect due to the motion of the detector relative to the source. The detector
tensor for an interferometer with arms along n̂1 and n̂2 is simply given by
d = 1

2
(n̂1 ⊗ n̂1 − n̂2 ⊗ n̂2). Using (1), we can write (9) in the form

hX(t) = FX
+ (t)h+(τX) + FX

× (t)h×(τX) , (10)

in terms of the so-called beam-pattern functions

FX
+ (t; n̂, ψ) ≡ dX(t) : e+ , FX

× (t; n̂, ψ) ≡ dX(t) : e× . (11)

Changing to the polarization-independent basis ε+,× using (7), we find

FX
+ (t; n̂, ψ) = aX(t; n̂) cos 2ψ + bX(t; n̂) sin 2ψ , (12)

FX
× (t; n̂, ψ) = bX(t; n̂) cos 2ψ − aX(t; n̂) sin 2ψ , (13)

where the antenna-pattern functions aX, bX are defined as

aX(t; n̂) ≡ dX(t) : ε+(n̂) , bX(t; n̂) ≡ dX(t) : ε×(n̂) . (14)

This formulation has the advantage of explicitly factoring out the polarization
angle ψ. The sky-position n̂ of the source is expressible in standard equatorial
(or ecliptic) coordinates α (right ascension), and δ (declination) as

n̂ = (cos δ cosα, cos δ sinα, sin δ) , (15)
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and by the above definitions, the corresponding polarization-independent
wave-plane basis ξ̂, η̂ is therefore expressible as

ξ̂ = (− sinα, cosα, 0) , (16)

η̂ = (cosα sin δ, sinα sin δ, − cos δ) . (17)

The contractions (14) are explicitly given by

d : ε = d11ε11 + d22ε22 + d33ε33 + 2 (d12ε12 + d13ε13 + d23ε23) , (18)

where ε+,× are easily computed in SSB coordinates from (16), and the prob-
lem of computing a, b is therefore reduced to computing the detector tensor
dX(t) as a function of time in this coordinate system.

2 Continuous Waves

The GW class of “continuous waves” is characterized by a signal model
h+,×(τ) (in the SSB) of the form

h+(τ) = A+ cos Φ(τ) , h×(τ) = A× sin Φ(τ) . (19)

Assuming a slowly varying intrinsic signal frequency 2πf(τ) ≡ dΦ(τ)/dτ , the
phase Φ(τ) can be expanded around the reference time τref , namely Φ(τ) =
φ0 + φ(∆τ), with φ0 = Φ(τref) and

φ(∆τ) = 2π
∑
s=0

f (s)

(s+ 1)!
[∆τ ]s+1 . (20)

The detector-specific timing relation relevant for isolated neutron stars is

∆τX(t; n̂) ≡ τX − τref = t− τref +
~rX(t) · n̂

c
, (21)

where τX is the arrival-time in the SSB of the phase at the detector X at
time t. The spin parameters f (s) are defined as

f (s) ≡ dsf(τ)

d τ s

∣∣∣∣
τref

. (22)

We denote the set of “Doppler parameters” affecting the time evolution of
the phase φ(∆τX) as λ ≡ {n̂, f (s)}. Combining (10), (12) (19), we find

hX(t;A, λ) =
4∑

µ=1

Aµ hX
µ (t;λ) , (23)
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with the four amplitude parameters Aµ given by

A1 = A+ cosφ0 cos 2ψ − A× sinφ0 sin 2ψ , (24)

A2 = A+ cosφ0 sin 2ψ + A× sinφ0 cos 2ψ , (25)

A3 = −A+ sinφ0 cos 2ψ − A× cosφ0 sin 2ψ , (26)

A4 = −A+ sinφ0 sin 2ψ + A× cosφ0 cos 2ψ , (27)

which is a re-parametrization of the (detector-independent) signal-parameters
A+, A×, φ0, ψ. The (detector-dependent) wave-components hX

µ (t;λ) are given
by

hX
1 (t) = aX(t) cosφ(∆τX) , hX

2 (t) = bX(t) cosφ(∆τX) , (28)

hX
3 (t) = aX(t) sinφ(∆τX) , hX

4 (t) = bX(t) sinφ(∆τX) . (29)

We see from (12) that a change of the polarization-angle ψ′ = ψ+∆ψ changes
the antenna-pattern to

F ′+ = F+ cos 2∆ψ + F× sin 2∆ψ , (30)

F ′× = −F+ sin 2∆ψ + F× cos 2∆ψ , (31)

There is some residual gauge-freedom in the amplitude-parameters {A+, A×, ψ, φ0},
namely

• ψ → ψ + π/2, and φ0 → φ0 + π.

• ψ → ψ + π/4, φ0 → φ0 − π/2 and A+ ↔ A×.

• φ0 → φ0 + π and A+ → −A+, A× → −A×

In the case of a triaxial NS, the signal-amplitudes A+/× are expressible ex-
plicitly in terms of the wave-amplitude h0 and the inclination angle ι with
respect to the line-of-sight, namely

A+ =
1

2
h0

(
1 + cos2 ι

)
, A× = h0 cos ι . (32)

and the wave-amplitude h0 can is given by

h0 =
4π2G

c4

ε Izz f
2

d
, (33)

in terms of the triaxial ellipticity ε ≡ (Ixx − Iyy)/Izz, and the distance d.
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3 Noise and detection statistic

We follow the notation of [3, 1] by denoting vectors of detector-specific quanti-
ties in boldface, i.e. {x}X = xX. We can now write the explicit dependencies
of the signal-model (23) on the signal-parameters as

s(t;A, λ) = Aµ hµ(t;λ) , (34)

where here and in the following we implicitly sum over ’amplitude-indices’
µ, ν ∈ {1, 2, 3, 4}.
If the data xX(t) measured at different detectors X consists of stationary
Gaussian noise nX(t) and a signal with parameters As, λs, then we can write

x(t) = n(t) + s(t;As, λs) , (35)

in terms of the signal-model (34).
In the general case of correlated noises nX(t) (which can be relevant for the
two LIGO detectors in Hanford, or for LISA), we define the (single-sided!)
noise density matrix as

SXY(f) = 2

∫ ∞
−∞

κXY(τ) e−i2π fτ dτ , (36)

in terms of the correlation-functions

κXY(τ) ≡ E
[
nX(t+ τ)nY(t)

]
. (37)

We can now define the multi-detector scalar product (in analogy to [2]) as

(x|y) ≡ 4<
∫ ∞

0

x̃X(f)S−1
XY(f) ỹY∗(f) df , (38)

where < denotes the real part, and we use implicit summation over repeated
upper and lower detector-indicies, and the inverse noise-matrix S−1

XY S
YZ = δZ

X.
In the case of uncorrelated noises SXY = SX δXY , this scalar product reduces
to

(x|y) =
∑

X

(xX|yX) , (39)

in terms of the usual single-detector scalar product

(xX|yX) ≡ 4<
∫ ∞

0

x̃X(f) ỹX∗(f)

SX(f)
df . (40)
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With the definition (40) of the multi-detector scalar product, the likelihood-
function for Gaussian stationary noise can be written simply as

P
(
n(t)|SXY

)
= k e−

1
2

(n|n) , (41)

where k is a normalization factor, which is independent of the noise n. This
expression can be used with (35) to obtain the likelihood-function of observ-
ing data x(t) assuming a signal {A, λ}, namely

P (x|A, λ, SXY) = k e−
1
2

(x|x) exp

[
(x|s)− 1

2
(s|s)

]
. (42)

Using Bayes’ theorem, we obtain the posterior probability for a signal {A, λ}
given the data x as

P (A, λ|x, SXY) = k′ exp

[
(x|s)− 1

2
(s|s)

]
P (A, λ) , (43)

in terms of the prior probability of the signal P (A, λ), and the normalization
factor k′ which is independent of the signal.
Assuming a flat prior P (A, λ) = const. and substituting the signal-model
(23) into (43), we can write the posterior probability as

logP (A, λ|x, SXY) = logP0 +Aµ xµ(λ)− 1

2
AµMµν(λ)Aν , (44)

with implicit summation over ’amplitude-indices’, and where we defined

xµ(λ) ≡ (x|hµ) , (45)

Mµν(λ) ≡ (hµ|hν) . (46)

We can now analytically maximize the posterior (44) with respect to the
four amplitudes Aµ, to obtain the partially-maximized (not marginalized!)
posterior probabilty for the Doppler-parameters λ, which defines the so-called
“F -statistic”, namely

2F(λ|x) = xµMµν xν , (47)

where Mµν ≡ {M−1}µν , i.e. MµαMαν = δνµ. Note that we can consider the
four vectors hµ as a basis on the ’amplitude-space’ µ (for fixed λ), and M
the corresponding metric on this space, i.e. we can use it to raise and lower
amplitude-indices, and define the dual basis as

hµ(t) ≡Mµν hν(t) , (48)
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such that (hµ|hν) = δµν . The corresponding “amplitude-components” of the
data-vector x(t) with respect to the dual basis-vectors hµ(t) are

xµ = (x|hµ) =Mµν xν , (49)

as would be expected. With this notation the F -statistic can be written even
more compactly as

2F(λ) = xµ xµ . (50)

The maximum-likelihood estimators for the four unknown amplitudes Aµ are
given by

AµMLE =Mµν xν . (51)

4 F-statistic of perfectly matched signal

Let us first assume there is a signal present in the data which is perfectly
matched by the search-template {A, λ}, i.e.

x(t) = n(t) + s(t;A, λ) , (52)

and the four ’amplitude-components’ xµ defined in (45) are therefore

xµ(A, λ) = nµ(λ) + sµ(A, λ) , (53)

where naturally nµ ≡ (n|hµ) and sµ ≡ (s|hµ). With the above assumptions
about the noise and the definition of the scalar product (38), one can show
the identities

E [nµ] = 0 , and E [nµ nν ] =Mµν , (54)

where E[.] denotes the expectation-value. This allows us to obtain further

E[xµ] = sµ , and E[xµ xν ] =Mµν + sµ sν , (55)

i.e. the four random variables xµ have mean sµ and covariance Mµν . Using
these relations, we can find the expectation value of 2F in the perfectly-
matched case as

E[2F ] = 4 + ρ2(0) , (56)

where ρ(0) is the ’optimal’ signal-to-noise ratio (SNR), which is expressible
as

ρ2(0) = sµMµν sν = AµMµν Aν = (s|s) . (57)
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5 Practical computation

Assuming x(t) and y(t) to describe such narrow-band continuous signals, we
can approximate the scalar product (38) by

(x|y) ≈ 2S−1
XY(fs)

∫ T

0

xX yY dt . (58)

In order to simplify the following derivations and notation, we restrict our-
selves to the more common case of uncorrelated detector-noises, i.e. we
assume SXY = SX δXY. On the other hand, we want to generalize the above
approach in the sense that we don’t have to assume the noise to be exactly
stationary.
In practice we will be computing the power-spectra SX(f) over shorter time-
periods TSFT, and we can allow the noise to be slowly varying from one SFT α
to the next, i.e. SX

α (f). Let us now define the (SFT-dependent) noise-weights

wX
α (f) ≡

〈
SX
α,k

〉−1

k

S−1
, (59)

where the average 〈.〉k is over the frequency-bins k of the SFT α of detector
X. The quantity S−1 is in principle an arbitrary normalization factor, and
for practical reasons we will chose it in such a way as to make the weights
wX roughly of order unity, namely (see LALComputeMultiNoiseWeights())

S−1 ≡
〈
SX
α,k

〉−1

α,k,X
, (60)

where the average 〈.〉α,k,X is over the SFT frequency-bins k of all SFTs α of
all detectors X. With this we can write the scalar product as

(x|y) = 2T S−1 〈x y〉S , (61)

where we defined the noise-weighted average

〈x y〉S ≡
1

T

∑
X

wX

∫ T

0

xX(t) yX(t) dt . (62)

The scalar products encountered in the F -statistic typically involve prod-
ucts of slowly-varying functions (such as the antenna-patterns a(t), b(t)), and
phase-functions sinφ(t) and cosφ(t), which are (approximately) periodic on
very short timescales τ ∼ 1/f � T .
In this approximation, the 4× 4 matrix Mµν defined in (46) reduces to the
the block-form

Mµν = (hµ|hν) ≈ S−1T

(
χ 0
0 χ

)
, with χ ≡

(
A C
C B

)
, (63)
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with the 3 independent components

A ≡
〈
a2
〉
S

=
1

T

∑
X

∫ T

0

(aX)2wX dt,

B ≡
〈
b2
〉
S

=
1

T

∑
X

∫ T

0

(bX)2wX dt, (64)

C ≡ 〈a b〉S =
1

T

∑
X

∫ T

0

wXaXbX dt ,

and we define the determinant D ≡ AB − C2.
We can now write down the F -statistic defined in (47) more explicitly as

2F = xµM−1
µν x

ν =
1

TS−1D

[
B
(
x2

1 + x2
3

)
+ A

(
x2

2 + x2
4

)
− 2C (x1x2 + x3x4)

]
,

(65)
where (see (45) and (61) )

xµ ≡ (x|hµ) = 2S−1
∑

X

∫ T

0

wX xX hX
µ dt . (66)

Now, in the presence of pure noise, the F expectation-value is E[2F ] = 4. For
practical and numerical convenience, we want to make sure that all quantities
involved in computing F are roughly of order O(1). This is already the
case for the antenna-pattern functions A,B,C, the only quantities of wildly
different scale are the input data xX(t), which are of scale

E[x(t)] ∼ h0 ∼ 10−20 , (67)

or thereabouts. Therefore we want to re-normalize the data first by the
’noise-floor’ h0 such that its expectation-value is of order O(1). By the
Wiener-Khintchine theorem we can estimate the (single-sided!) PSDs SX

α (f)
as

TSFT S
X
α (f) ∼ 2E

[∣∣x̃X
α (f)

∣∣2] , (68)

where x̃X
α (f) is the “Short Fourier transform” (SFT)

x̃X
α (f) =

∫ TSFT

0

xX
α (t) e−i2πft dt = TSFT

〈
xX
α e
−i2πft〉 ∼ TSFT h0 , (69)

and the PSD is therefore found to be of the order

SX
α (f) ∼ 2TSFT h

2
0 . (70)
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Therefore, if we re-normalize the data as

yX
α (t) ≡ xX

α (t)√
TSFTSX

α /2
, (71)

we have E[yX
α (t)] ∼ O(1/TSFT) and E[ỹX

α ] ∼ O(1).
Note that in the special --SignalOnly case, the code (ComputeFStatistic v2)
does not try to normalize the data and instead assumes the (single-sided)
noise-power to be SX = 1. Furthermore, in this case therefore have TSFTS−1 =
TSFT. Given that the data does not get normalized in this case, there is now
a “missing” normalization-factor of

√
TSFT/2, which is applied to Fa, Fb and

instead.
The projected data-components xµ can be expressed as

xµ =
√

2γ x̂µ , (72)

where we defined

x̂µ ≡
∑

X

∫ √
wXyXhX

µ dt , (73)

and the overall noise-normalization factor

γ ≡ S−1 TSFT . (74)

Therefore,

x1 − i x3 =
√

2γ
∑

X

∫ √
wXyXaXe−iφ

X

dt , (75)

x2 − i x4 =
√

2γ
∑

X

∫ √
wXyXbXe−iφ

X

dt . (76)

Comparing this to the antenna-pattern factors (64), we see that we can ab-
sorb the noise-weighting factors wX

α completely into the antenna-pattern func-
tions by defining

âX(t) ≡
√
wX(t) aX(t) , b̂X(t) ≡

√
wX(t) bX(t) , (77)

where strictly speaking, â and b̂ are now functions of frequency, but for most
practical purposes (if the frequency-band is not too large) we should be able
to approximate wX

α (f) ≈ wX
α (f0) at some intermediate frequency f0.

This allows us to write

A =
1

T

∑∫
âXâX dt, B =

1

T

∑∫
b̂Xb̂X dt C =

1

T

∑∫
âXb̂X dt .

(78)
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We now define the quantities

FX
a ≡

∫ T

0

yX âX e−iφ
X

dt, FX
b ≡

∫ T

0

yX b̂X e−iφ
X

dt . (79)

and
Fa ≡

∑
X

FX
a , Fb ≡

∑
X

FX
b , (80)

and we see from (75) that Fa,b is related to x̂µ simply via

x̂1 = <(Fa), x̂2 = <(Fb), x̂3 = −=(Fa), x̂4 = −=(Fb) . (81)

We can now express the F -statistic (65) in a more suitable form for numerical
evaluation, namely

2F =

(
TSFT

T

)
2

D

[
B|Fa|2] + A|Fb|2 − 2C< (Fa F

∗
b )
]

(82)

The integrals (79) have the structure of a Fourier-transformation and one
should evaluate them using an efficient FFT-algorithm. For historical rea-
sons, however, we first consider a more “direct” method of calculation which
is more readily implementable in the existing codes.
Note that in practice (see next section), the integrals will be computed using
discrete sums over SFTs α, and it will be more convenient to use “discretized”
versions of A,B,C of (78), so we define

Â ≡
∑
X,α

âX
α â

X
α , B̂ ≡

∑
X,α

b̂X
α b̂

X
α , Ĉ ≡

∑
X,α

âX
α b̂

X
α , (83)

which are related to A,B,C via

A =
TSFT

T
Â, B =

TSFT

T
B̂ , C =

TSFT

T
Ĉ , (84)

and therefore

D =

(
TSFT

T

)2

D̂ , (85)

where D̂ ≡ Â B̂ − Ĉ2, such that (82) can now equivalently be expressed as

2F =
2

D̂

[
B̂ |Fa|2] + Â |Fb|2 − 2Ĉ < (Fa F

∗
b )
]
. (86)

Introducing the ’discretized’ version M̂µν as

M̂µν ≡
(
χ̂ 0
0 χ̂

)
, where χ̂ ≡

(
Â Ĉ

Ĉ B̂

)
, (87)
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we see from (63) that this is related to Mµν via

Mµν = γ M̂µν . (88)

In terms of these quantities, we can express the maximum-likelihood estima-
tors for the amplitudes (24) explicitly as

AµMLE =Mµν xµ =
2√
2γ
M̂µν x̂ν =

2

D̂
√

2γ


B̂ x̂1 − Ĉ x̂2

−Ĉ x̂1 + Â x̂2

B̂ x̂3 − Ĉ x̂4

−Ĉ x̂3 + Â x̂4

 , (89)

5.0.1 The Williams-Schutz approximation (”LALDemod”)

(This section is originally based on Xavie’s LALDemod-notes
http://www.lsc-group.phys.uwm.edu/~siemens/demod.pdf.)
Note that the multi-detector components of F entering (82), namely Fa, Fb of
(79), and A,B,C of (78) are all simply sums over detector-specific quantities
FX
a , F

X
b and AX, BX, CX, which can therefore be calculated independently

for each detector. In the following we focus on calculating these individual
detector pieces, and will therefore completely drop the detector-index for
simplicity of notation.
Based on the approximation-scheme suggested in [4], we now re-index the
(normalized) data timeseries yi with respect to time-stretches α of duration
TSFT, and perform a DFT on each of those short-duration signals (an “SFT”).

yα,j = y(tα,j) , where tα,j = αTSFT + j∆t , (90)

and j = 0, ..., N − 1, and α = 0, ...,M − 1 and TSFT = N∆t. Furthermore we
define the SFTs as

ỹα;k ≡ ∆t
N−1∑
j=0

yα,j e
−i2πkj/N , (91)

which is exactly what is stored in an SFT following the “SFT-v2” specification
(LIGO-T040164-01-Z). Note, however, that in practice we only store the first
bN/2c frequency-bins, as for real yj we have ỹN−k|N = ỹ∗k.
The inverse operation to (91) is

yα,j = ∆f
N−1∑
k=0

ỹα;k e
i2πkj/N . (92)
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We write the discretized version of (79) using the SFT-indexing (90), which
results in

FX
a = ∆t

M−1∑
α=0

N−1∑
j=0

yα,j âα,j e
−i2πϕα,j , (93)

where we defined 2πϕα,j ≡ φ(tα,j). (Note that the factor of 2π is taken out
for convenience in the later evaluations of this sum).
The typical SFT-durations are less than an hour, say, and we can therefore
approximate the antenna-pattern functions as nearly constant over this pe-
riod (e.g. picking the SFT-midpoints), so âα,j ≈ âα. Using this and the
inverse DFT (92), we can write this as

FX
a = ∆f∆t

M−1∑
α=0

âα

N−1∑
j=0

e−i2πϕα,j
N−1∑
k=0

ỹα;ke
i2πjk/N . (94)

The phase-evolution of a typical continuous pulsar-signal is dominated by the
linear term φ(t) ≈ 2πf t, and we approximate it by a first-order expansion
around each SFT-midpoint, namely tα, 1

2
≡ (α + 1

2
)TSFT, for which we find

ϕα,j = ϕα, 1
2

+ ϕ̇α, 1
2
TSFT

(
j

N
− 1

2

)
+O(2) . (95)

Using this expansion we obtain

FX
a = ∆t∆f

M−1∑
α=0

âαe
−i2πλα

N−1∑
k=0

ỹα,k

N−1∑
j=0

e−i2πκ(α;k) j/N , (96)

where we defined

λα ≡ ϕα, 1
2
− 1

2
ϕ̇α, 1

2
TSFT , (97)

κ(α; k) ≡ ϕ̇α, 1
2
TSFT − k . (98)

The last sum is simply a geometrical series, and so we find

N−1∑
j=0

e−i2πκ(α;k)j/N =
1− e−i2πκ

1− e−i2πκ/N

N�1
≈ N

2π

(
sin 2πκ

κ
+ i

cos 2πκ− 1

κ

)
≡ N

2π
P (κ(α; k)) =

N

2π
Pα;k . (99)
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The function P (x) is sometimes called “Dirichlet kernel”, and it has the
property of being strongly peaked around x = 0, and so we can truncate the
sum over k in (96) to a few terms ∆k (referred to as “Dterms” in the code)
on either side of k∗, corresponding the to maximum of P (κ), namely

k∗ ≡ round
[
ϕ̇α; 1

2
TSFT

]
= round

[
f̂(tα, 1

2
)

∆f

]
, (100)

where f̂(t) is the “effective” signal-frequency in the detector frame (the time-
derivative ϕ̇ refers to the time in the detector-frame!), which shows that
generally we’ll have k∗ � 1. With this approximation we find

FX
a ≈

1

2π

M−1∑
α=0

âαe
−i2πλ(α)

k∗+∆k∑
k=k∗−∆k

ỹα;k Pα;k . (101)

We’ll also need explicit expressions for ϕα, 1
2

and ϕ̇α, 1
2

in order to compute

λ(α) and κ(α; k), defined in (97). For this, we only need the timing-function
τ(t) translating detector-arrival times to SSB, which is in the simplest purely
Newtonian approximation is τ(t) = t + ~n · ~r(t)/c. Given this function, we
define

∆τα ≡ τ(tα, 1
2
)− τref , (102)

τ̇α ≡
dτ

dt
(tα, 1

2
) ≈ 1 +

v · ~n
c

, (103)

(which are called SSBtimes in the code), and so the (full) phase-model (20)
yields

ϕα, 1
2

=
∑
s

f (s)

(s+ 1)!
∆τ s+1

α , (104)

ϕ̇α, 1
2

= τ̇α
∑
s

f (s)

s!
∆τ sα . (105)

5.0.2 Efficient computation of FX
a

The computation of (101) will be the most time-consuming part in this code,
in particular the “hot loop” which is the sum over k. It is therefore important
to compute these sums in the most efficient way possible.
First it will be convenient to relabel this sum using l ≡ k − k0 with k0 ≡
k∗ −∆k, and N ≡ 2∆k, and so we find

14



κ(α, l) = κα − l , (106)

where
κα ≡ rem

(
ϕ̇α, 1

2
TSFT

)
+ ∆k , (107)

and where we defined the “remainder”

rem(x) ≡ x− round [x] . (108)

Next we note that

sin 2πκ(α, l) = sin 2πκα ≡ sα (109)

cos 2πκ(α, l)− 1 = cos 2πκα − 1 ≡ cα , (110)

and so the Dirichlet-kernel (99) has the form

Pα;k =
sα

κα − l
+ i

cα
κα − l

. (111)

Now let us look at the “hot loop” in (101), which we can express as

XPα ≡
k0+N∑
k=k0

ỹα;kPα;k = [sα Uα − cα Vα] + i [cα Uα + sα Vα] , (112)

where the two sums we need to evaluate are

Uα ≡
N∑
l=0

ul
pl
, Vα ≡

N∑
l=0

vl
pl
, (113)

with the further definitions

pl ≡ κα − l , (114)

ul ≡ <(ỹα;k0+l) , (115)

vl ≡ =(ỹα;k0+l) . (116)

The above sums (113) are numerically not efficient as they consist of many
divisions, which are slower than multiplications. This can be remedied with a
clever algorithm suggested by Fekete Ãkos: bringing the sums on a common
denominator qN , we get

Uα =
SN
qN

, Vα =
TN
qN

, (117)
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where

SN = u0 p1p2...pN + p0 u1 p1...pN + ...+ p0p1...pN−1 uN , (118)

TN = v0 p1p2...pN + p0 v1 p1...pN + ...+ p0p1...pN−1 vN , (119)

qN = p0p1...pN , (120)

reducing the 2N divisions to only 2. The required three components SN , TN
and qN can be computed efficiently using the following recurrence:

Sn = pnSn−1 + qn−1un , (121)

Tn = pnTn−1 + qn−1vn , (122)

pn = pn−1 − 1 , (123)

qn = pn qn−1 , (124)

and the starting conditions

S0 = u0 , (125)

T0 = v0 , (126)

p0 = κα , (127)

q0 = p0 . (128)

The number of floating-point operations per iteration is 8, so in total we need
8N + 8 operations (not counting one sin/cos), of which only 2 are divisions.
In the previous “LALDemod” algorithm (e.g ComputeFstat.c:1.19) XPα

was computed more directly resulting in 12N floating point operations, of
which N are divisions!

6 Parameter estimation of the signal

From the expression (89) for the maximum-likelihood amplitudesAµ in terms
of the measured Fa, Fb, we can infer the signal-parameters A+, A× (or equiva-
lently h0, cos ι) and ψ, φ0, by using (24) and (32), mostly following Yousuke’s
notes. We compute the two quantities

A2
s ≡

4∑
µ=1

(Aµ)2 = A2
+ + A2

× , (129)

Da ≡ A1A4 −A2A3 = A+A× , (130)

which can easily be solved for A+, A×, namely

2A2
+,× = A2

s ±
√
A4
s − 4D2

a , (131)
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where our convention here is |A+| ≥ |A×|, cf. (32), and therefore the ’+’
solution is A+, and the ′−′ is A×. The sign of A+ is always positive by
convention (32), while the sign of A× is given by the sign of Da, as can be
seen from (130). Note that the discriminant in (131) is also expressible as

disc ≡
√
A4
s − 4D2

a = A2
+ − A2

× ≥ 0 . (132)

Having computed A+, A×, we can now also obtain ψ and φ0, namely defining
β ≡ A×/A+, and

b1 ≡ A4 − βA1 , (133)

b2 ≡ A3 + βA2 , (134)

b3 ≡ βA4 −A1 , (135)

we easily find

ψ =
1

2
atan

(
b1

b2

)
. (136)

and

φ0 = atan

(
b2

b3

)
. (137)

The amplitudes Aµ are seen from (24) to be invariant under the follow-
ing gauge-transformation, namely simultaneously {ψ → π/2, φ0 → φ0 + π}.
Applying this twice, and taking account of the trivial gauge-freedom by 2π,
this also contains the invariance ψ → ψ+π. Note that there is still an overall
sign-ambiguity in the amplitudes Aµ, which can be determined as follows:
compute a ’reconstructed’ A1

r from (24) using the estimates A+,× and ψ, φ0,
and compare its sign to the original estimate A1 of (89). If the sign differs,
the correct solution is simply found by replacing φ0 → φ0 + π.
In order to fix a unique gauge, we restrict the quadrant of ψ to be ψ ∈
[−π/4, π/4) (in accord with the TDS convention), which can always be
achieved by the above gauge-transformation, while φ0 remains unconstrained
in φ0 ∈ [0, 2π).
Converting A+, A× into h0 and µ ≡ cos ι is done by solving (32), which yields

h0 = A+ +
√
A2

+ − A2
× , (138)

where we only kept the ’+’ solution, as we must have h0 > A+ (which can
be seen from (32)). Finally, µ = cos ι is simply given by cos ι = A×/h0.
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6.0.3 Errors in parameter-estimation

From earlier considerations, we know that the errors dxµ satisfy (assuming
Gaussian noise):

E[dxµ dxν ] =Mµν . (139)

As a consequence of (89), we therefore obtain the covariance-matrix of the
estimation-errors dAµ as

E[dAµ dAν ] =Mµν , (140)

which corresponds to the Cramér-Rao bound, and Mµν is seen to be the
inverse Fisher-matrix.
For any functions fi(Aµ) of the four amplitudes, we therefore find the error-
covariances

E[dfi dfj] =
∂fi
∂Aµ

∂fj
∂Aν

E[dAµ dAν ] =
∂fi
∂Aµ

Mµν ∂fj
∂Aν

. (141)

In particular, the absolute errors of fi are given by ∆fi =
√
E[(dfi)2].

Generally, let us consider the “output” parameters Bµ ≡ (A+, A×, φ0, ψ) (or
alternatively B̂µ ≡ (h0, cos ι, φ0, ψ)). We can then easily obtain from (24)
the explicit derivatives

Jµν ≡
∂Aµ

∂Bν
, (142)

and by numerical inversion we have ∂Bν/∂Aµ = J−1ν
µ. We can therefore

directly compute the full covariance matrix of errors dBµ by using (141),
namely

E[dBµ dBν ] = J−1µ
α J
−1ν

βMαβ . (143)

For the sake of verification of the implementation, we explicitly write the
derivatives for the choice of output-parameters Bµ = (A+, A×, φ0, ψ), namely

Jµν =


cosφ0 cos 2ψ − sinφ0 sin 2ψ A3 −2A2

cosφ0 sin 2ψ sinφ0 cos 2ψ A4 2A1

− sinφ0 cos 2ψ − cosφ0 sin 2ψ −A1 −2A4

− sinφ0 sin 2ψ cosφ0 cos 2ψ −A2 2A3

 (144)

Similarly, for the choice of output-variables B̂µ = (h0, cos ι, φ0, ψ), we find,
using A+ = 1

2
h0(1 + cos2 ι) and A× = h0 cos ι:

∂Aµ

∂h0

=
Aµ

h0

,
∂Aµ

∂ cos ι
= Âµ , (145)
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where
Âµ ≡ Aµ | {A+ → A×, A× → h0} , (146)

and so we find

Ĵµν =


A1/h0 Â1 A3 −2A2

A2/h0 Â2 A4 2A1

A3/h0 Â3 −A1 −2A4

A4/h0 Â4 −A2 2A3

 (147)
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