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Significant achievements in the reduction of classical-noise floor will allow macroscopic systems
to prepare nearly Heisenberg-Limited quantum states through a continuous measurement, i.e. con-
ditioning. In order to probe the conditional quantum state and confirm quantum dynamics, we
propose use of an optimal time-domain variational measurement, in which the homodyne detection
phase varies in time. This protocol allows us to characterize the macroscopic quantum state below
the Heisenberg Uncertainty – i.e. Quantum Tomography – and the only limitation comes from read-
out loss which enters in a similar manner as the frequency-domain variational scheme proposed by
Kimble et al. [1]. In the case of no readout loss, it is identical to the back-action-evading scheme
invented by Vyatchanin et al. [2] for detecting gravitational-wave (GW) signal with known arrival
time. As a special example and to motivate Macroscopic Quantum Mechanics (MQM) experiments
with future GW detectors, we mostly focus on the free-mass limit – the characteristic measurement
frequency is much higher than the oscillator frequency – and further assume the classical noises are
Markovian, which captures the main feature of a broadband GW detector. Besides, we consider ver-
ifications of Einstein-Podolsky-Rosen (EPR) type entanglements between macroscopic test masses
in GW detectors, which enables to test one particular version of Gravity Decoherence conjectured
by Diósi and Penrose [3, 4].

I. INTRODUCTION

Due to recent advancements in fabricating lossless de-
vices, various types of macroscopic systems can soon ap-
proach the quantum regime [5–11], which will be able
to test the quantum mechanics of macroscopic objects.
The common strategy of those experiments is preparing
a macroscopic quantum state of the mechanical oscillator
through continuous position measurements. Quantum
mechanically, if the oscillator position is being continu-
ously monitored, a certain classical trajectory in phase-
space can be mapped out and the oscillator is projected
into an a posteriori state [12] which is also called condi-
tional quantum state [6, 13–17].

In Ref. [17], we provided in great details a survey of
the first principles for preparation of macroscopic Gaus-
sian quantum state and creation of entanglements be-
tween two macroscopic objects. The general analysis
of this work is independent of the object’s scale and
mass – these parameters will only modify the structure
of the arising noise – as long as the object is in a Gaus-
sian state of the center of mass position and momen-
tum. In particular, we applied our formalism to discuss
the MQM experiments with macroscopic test masses in
GW detectors. We demonstrated explicitly that given
the design classical-noise budget, next-generation GW
detectors such as Advanced LIGO [18] and Cryogenic
Laser Interferometer Observatory (CLIO) [19] can pre-
pare a nearly Heisenberg-Limited Gaussian quantum
state and create EPR-type quantum entanglements be-
tween macroscopic test masses. Besides, we showed that,
the free-mass Standard Quantum Limit (SQL) [20–22]

for the sensitivity of detecting GW, as given by

SSQL
x (Ω) =

2~
m Ω2

, (1)

also serves as a benchmark for the MQM experiments
with GW detectors. More concretely, we related the pu-
rity of the conditional quantum state of test masses to the
SQL-beating ratio of the classical noise, and the degree
of achievable entanglement to the size of the frequency
window (ratio between upper and lower ends of that fre-
quency window) in which the classical noise budget goes
below the SQL.

However, it is impossible to verify the prepared con-
ditional state from the output data used for the condi-
tioning process. This is because the output in the state-
preparation process only allows to measure the classical
trajectory of the object – quantum fluctuations are only
inferred from classical-noise budget, but not directly vis-
ible. Therefore, it calls for a second measurement stage
which has to follow up the preparation stage. In this
paper, we will address the above issue by considering
a subsequent state verification procedure, in which we
probe the conditional state obtained during the prepara-
tion stage (t < 0) with an accuracy superior than the
Heisenberg Uncertainty. Indeed, to probe a quantum
state, e.g. its Wigner function, we need to synthesize the
marginal distribution of different quadratures X̂ζ , and

X̂ζ ≡ x̂(0) cos ζ +
p̂(0)
m ωm

sin ζ. (2)

Since for a single measurement setup, different quadra-
tures do not commute with each other, namely

[X̂ζ , X̂ζ′ ] =
i ~

m ωm
sin(ζ − ζ ′), (3)
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one needs multiple setups and each measures at a particu-
lar quadrature X̂ζ with an accuracy below the Heisenberg
limit – the synthesis of these measurements yields a quan-
tum tomography. As we will show, for each quadrature,
a sub-Heisenberg accuracy can be achieved by adopting
an optimal time-domain variational scheme, in which the
homodyne detection phase is time-dependent. If there is
no loss in the readout, the measurement-induced back ac-
tion can be completely evaded, which recovers the scheme
first invented by Vyatchanin et al. [2] for detecting grav-
itational waves with known arrival time. Beside, we also
assume that squeezed vacuum can be injected right at
the beginning of the verification process. As in Ref. [17],
we will demonstrate that in the free-mass limit, the SQL
(cf. Eq. (1)) again sets the benchmark for the success of
sub-Heisenberg tomography.

Additionally, verification of quantum state below the
Heisenberg Limit naturally allows us to test whether
macroscopic entanglements can indeed be established, as
predicted in Ref. [16, 17], and how long such entangled
state can survive. In fact, survival of macroscopic entan-
glement can be used to test a particular version of grav-
ity decoherence conjectured by Diósi [3] and Penrose [4].
Although for an individual object it is not entirely clear
the classical superposition of what pointer states gravity
decoherence will drive it into. While for an entangled
state among multiple objects, even though Gaussian, it
would naturally have to decay into the one that is not
entangled, within the gravity decoherence time scale.

In this paper, we will constrain ourselves to MQM
experiments with Markovian noise. Specifically, we
will consider broadband interferometers with arm-cavity
bandwidth far broader than their measurement frequency
scale, and situations where the spectra of the classical
sensing noise (such as the mirror internal thermal noise)
and of the classical force noise (such as the suspension
thermal noise) can be modeled as white noises. Non-
Markovianity of noise sources – although they certainly
arise in actual GW detectors [17] and will be crucial for
the success of a real experiment – is a rather technical
issue. The non-Markovianity will not change the results
presented here significantly, as we will show and address
in a separate paper [23].

This paper is organized as follows: in Sec. II, we pro-
vide the timeline of a full MQM experiment with prepara-
tion and verification, and use simple order-of-magnitude
estimates to convince ourselves that our proposal is in-
deed plausible; in Sec. III, we calculate state verification
accuracy in presence of Markovian noise (largely confirm-
ing the order-of-magnitude estimates, but with precise
numerical factors); in Sec. IV, we apply this scheme to
verify the macroscopic quantum entanglements between
test masses in GW detectors as a test of gravity deco-
herece; in Sec. V, we summarize our main results. In the
Appendix, we present technical details for obtaining the
optimal variational scheme during the verification.

II. OUTLINE OF EXPERIMENT WITH
ORDER-OF-MAGNITUDE ESTIMATE

A. Approximate noise budget

We will simplify the arising noise in a typical MQM
experiment by assuming that both the quantum and the
classical noises are purely Markovian. A more detailed
discussion on quantum and classical noise is presented in
Sec. III A of Ref. [17]. In the free-mass limit, the displace-
ment sensitivity of the device is given by the position-
referred noise spectrum 1,

Sx =
~

mΩ2

[
Ω2

Ω2
q

+
Ω2

q

Ω2

]

︸ ︷︷ ︸
Squant

+
2~

mΩ2

Ω2
F

Ω2︸ ︷︷ ︸
Sforce

+
2~

m Ω2
x︸ ︷︷ ︸

Ssens

, (4)

with the characteristic frequencies for the measurement
given by Ωq and for the classical thermal and sensing
noises by ΩF and Ωx respectively. In this equation, we
have summarized white shot and classical sensing noises
as

Sq
x =

~
mΩ2

q

, Sth
x =

2 ~
m Ω2

x

≡ 2 ζ2
x Sq

x (5)

and white back-action and classical force noises given by

Sq
F = ~mΩ2

q , Sth
F = 2 ~m Ω2

F ≡ 2 ζ2
F Sq

F . (6)

The classical sensing noise is defined as the difference
between the object’s center of mass motion and its sur-
face motion which is actually being measured. We shall
further denote two characteristic time scales by

τq ≡ 1/Ωq , τF ≡ 1/ΩF . (7)

Note that Ωq, ΩF , and Ωx are the frequencies at which
the quantum noise, force noise and classical sensing noise
intersect the SQL (cf. Eq. (1)), respectively, and that we
have defined ζF = ΩF /Ωq and ζx = Ωq/Ωx.

B. Timeline of proposed experiment

Before providing an order-of-magnitude estimate of the
preparation and verification processes, we will first de-

1 Here and throughout the paper we make use of single-sided defi-
nition of spectral density of arbitrary observable ô that is defined
according to Wiener-Khinchin theorem as:

So1o2 (Ω) = 2

∫ ∞

0
dτeiωτ 〈ô1(0)ô2(τ)〉sym ,

where angular brackets 〈 〉sym stand for symmetrized ensemble
average, i.e. for system in quantum state characterized by den-
sity matrix ρ̂, it is defined as

〈ô1(0)ô2(τ)〉sym ≡ Tr

[
1

2
(ô1(0)ô2(τ) + ô2(τ)ô1(0))ρ̂

]
.
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FIG. 1: Space-time diagram showing the timeline of our proposed MQM experiment (see Sec. II B for detailed explanations).
Left part of the plot represents the region of in-going light. The mechanical oscillator world line is shown as vertical line in
the middle. The right part of the plot represents the region of out-going light (even though in reality light may escape from
the same side as they enter). We show light rays in preparation and verification stages in red and blue, with a purple ray
separating the two sets. Conditional variance of test-mass motion is represented in solid curves alongside the central vertical
line (not drawn to the same scale as light propagation). At the beginning of preparation, it is dominated by that of the initial
state (green), after a transient, it is dominated by incoming radiation and detection quadrature (thus shown in red); during
state verification, we show the expected growth of test-mass variance due to classical noise alone, but ignoring the effect of
radiation-pressure fluctuations, because we use back-action evasion (show in blue).

scribe in details the timeline of a plausible MQM exper-
iment in an interferometric setup. We have sketched a
space-time diagram of this experiment in Fig. 1 — with
time going upward, therefore we start from the bottom
of the figure.

Lock Acquisition. At the beginning, the mechanical os-
cillator is in a highly classical state2, so is the optical
field. Therefore, the first step is to “acquire lock” of the
interferometer, and reach a steady-state operation mode,
during which several τq (measurement scale) will have
elapsed. From this time and on, the initial state of the
oscillator will have been forgotten (propagating outward
within the green strip in Fig. 1), and the state of the
system will be determined by the driving fields, includ-
ing classical force and sensing noises, as well as quantum
noise. This will be the beginning of our state-preparation
stage (region above the 45◦ green dashed line in Fig. 1).

State Preparation. This stage is the same as a steady-
state operation of the interferometer. The quantum state
of the oscillator is collapsed continuously due to homo-
dyne readouts of the photocurrent. At any instant t dur-
ing state preparation, based on the measured history of
the photocurrent (mostly on data within several times
τq to the past of t), conditional expectation of the mirror

2 By “classical”, we mean highly impure quantum state, i.e. its
occupation number is much larger than unity.

position x̂cond and momentum p̂cond can be constructed,
and (x̂cond, p̂cond) will be randomly walking in the phase
space. Quantum mechanically, they are the center of the
oscillator’s instantaneous Wigner function, which we as-
sume to be Gaussian. The secondary moments, describ-
able by the covariance matrix (CM) between position and
momentum, which consists of V cond

xx , V cond
xp and V cond

pp ,
can be calculated from the noise budget of the interfer-
ometer — they, together with x̂cond and p̂cond, fully de-
scribe the quantum state of the oscillator at any instant.
In our situation of Gaussian steady state, the construc-
tion of (x̂cond, p̂cond) from the history of the photocurrent
can be accomplished most easily using Wiener Filtering,
as shown in Ref. [17]. We will decide to terminate the
preparation stage at t = 0, when (x̂cond, p̂cond) will be
determined by data from several −τq up to 0 (as shown
by the yellow stripe in Fig. 1).

State Verification. Although the instantaneous condi-
tional state of the mirror at t = 0 is calculable from the
photocurrents and the noise budget, a direct tomography
measurement of its Wigner function provides a verifica-
tion of the calculation which not only depends on our
understanding of the calibration of classical-noise bud-
get, but also on the correctness of quantum mechanics
– for example, we do want to directly verify the macro-
scopic EPR-type entanglement between mirrors that we
predicted to exist [16, 17]. In addition, if we insert an
evolution stage after state preparation, in which the sys-
tem evolves in time, the verification stage can also serve
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as a check of whether the evolution happens as predicted
by quantum mechanics. Moreover, if we were able to
prepare non-Gaussian states with non-positive-definite
Wigner function during the evolution stage, as suggested
by Khalili recently [24], and then verification is crucial
in exposing the negative region of the Wigner function.
In Fig. 1, a purple 45◦ line is drawn between prepara-
tion and verification stages, and blue lines are used to
represent light interacting with the oscillator in the ver-
ification stage — symbolizing the fact that in principle,
a different observer could perform the verification pro-
cess, and verify the quantum state by him/herself. The
only knowledge from the preparer would be the condi-
tional expectation xcond and pcond. This is indeed true if
all noise sources are Markovian. While the noise spectra
are colored, the verification process will need more clas-
sical information obtained during the preparation stage,
in order to make a sub-Heisenberg tomography of the
quantum state of the test mass, as we will discuss in a
later paper [23].

In order to measure a particular quadrature with a
sub-Heisenberg accuracy, we will employ a local oscilla-
tor light whose phase is time-dependent, and optimize
this phase, as well as the weight with which data col-
lected at different time would be combined (cf. Sec. III).
As it turns out, in the case when there is no readout
loss, this optimization automatically gives a detection
scheme that evades measurement back action, the same
as the one proposed by Vyatchanin [2] for the detection
of gravitational-wave signals with known arrival time.
Since gravitational-wave signals with known arrival time
are usually not anticipated, such time-domain variational
schemes will not be as useful for gravitational-wave detec-
tion as the frequency-domain variational scheme invented
later by Kimble et al. [1].

The verification lasts for a time scale between the mea-
surement time scale τq and the thermal decoherence scale
τF , after which the diffusion of x̂ and p̂ in the phase space
becomes much larger than their vacuum level. This pro-
cess is shown in Fig. 1, and explained qualitatively in
Sec. II D.

C. Preparation stage

The mathematical treatment of state preparation has
been given in Ref. [17]. To motivate MQM experiments
with macroscopic test masses in next-generation GW de-
tectors, we focused on the regime where the characteristic
measurement frequency Ωq is much higher than the test-
mass frequency ωm (free-mass-limit), such that the test-
mass can be well approximated as a free mass. By mea-
suring the output phase quadrature, we showed that the
conditional variances of test-mass location and momen-
tum (x̂ and p̂) are given by following CM (cf. Eq. (52)–

FIG. 2: Highly position-squeezed conditional state and mini-
mum time scale required for state verification.

(54) of Ref. [17])

Vcond =

[
N

1
4
F N

3
4
x

√
2δx2

q N
1
2
F N

1
2
x ~/2

N
1
2
F N

1
2
x ~/2 N

3
4
F N

1
4
x

√
2δp2

q

]
(8)

where we have denoted

Nx ≡ 1 + 2ζ2
x , NF ≡ 1 + 2ζ2

F (9)

while

δx2
q ≡ ~/(2m Ωq) , δp2

q ≡ ~m Ωq/2 (10)

are zero-point uncertainties in position x̂ and momentum
p̂ of an Ωq harmonic oscillator. Note that these variances
would be consistent with a Heisenberg-Limited state, if
classical noises are absent (instead of twice Heisenberg
Limit, as could be naively expected since the test-mass is
“being measured”: measurement imposes the Heisenberg
Uncertainty, instead of adding on to it).

The above conditional variances can also be obtained
from an order-of-magnitude estimate. Given a measure-
ment time scale of τ , we would have

δx2∼Stot
x /τ + τ3Stot

F /m2 ∼ N
3
4
x N

1
4
F δx2

q (11)

δp2∼m2Stot
x /τ3 + τStot

F ∼ N
1
4
x N

3
4
F δp2

q (12)

where Stot
x ≡ Sq

x + Sth
x , Stot

F ≡ Sq
F + Sth

F , with optimal
measurement time given by τ ∼ τq.

D. Verification stage

To verify the prepared conditional quantum state, we
first realize that we only obtain information about x̂(0)
and p̂(0) by measuring location, but at different time. In
order for an entire state characterization to be possible,
one might then expect that an oscillation period must
pass and during this time, the thermal noise causes an
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insignificant diffusion of the oscillator momentum com-
pared with its zero-point uncertainty, which requires [22]

kBT

~ωm
< Qm (13)

with T denoting the environmental temperature and Qm

the mechanical quality factor. This requirement is unnec-
essary if the initial quantum state is prepared by a strong
measurement as in the case of using next-generation GW
detector (Ωq À ωm). This is because the conditional
quantum state is highly squeezed in location, and it only
takes t ∼ τq for initial momentum fluctuation to enter
and begin to dominate fluctuations in the oscillator po-
sition as shown in Fig. 2. This means, depending on
the particular strategy, one can extract x̂ and p̂ below
the levels of δxq, and δpq, respectively, if one is able
to measure oscillator position with an accuracy better
than δxq, within a time scale of several τq. This is cer-
tainly possible; in fact, we can give a more detailed order-
of-magnitude estimate. With the back-action-evading
(BAE) scheme, we have

δx2
V ∼ Stot

x /τ + τ3Sth
F /m2 ∼ N3/4

x ζ
1/2
F δx2

q (14)

δp2
V ∼ m2Stot

x /τ3 + τSth
F ∼ N1/4

x ζ
3/2
F δp2

q , (15)

with

δxV δpV ∼ N1/2
x ζF~/2 (16)

Here the optimal verification time would be τV ∼ ζ
−1/2
F τq

and τq < τV < τF . (This is reflected in the left panel of
Fig. 1.) Note that this error can be arbitrarily small by
lowering ζF indefinitely, i.e. a strong measurement, while
a sub-Heisenberg accuracy can be achieved when ζF < 1.
If we inject phase squeezing during the verification stage,
we would have

δxV δpV ∼ (e−2q + 2ζ2
x)1/2ζF~ (17)

Increasing squeezing factor always improves our verifica-
tion sensitivity, with a limit of

(δxV δpV )BAE
lim ∼ ζxζF~. (18)

Had we not evaded the back-action noise, we would
have

√
NF in the place of ζF , which means δxV δpV would

be Heisenberg-Limited — unless different squeezing fac-
tors are assumed. For low squeezing (i.e., e±q both bigger
than ζx and ζF ), we need phase squeezing for x̂ observa-
tion, amplitude squeezing for p̂ observation, with

δxV δpV ∼ e−q~ , (19)

which is a significant factor (1/ζF ) worse than the BAE
scheme. Even though there exists an optimal squeezing
factor that this scheme can apply and yields

(δxV δpV )conv
opt ∼ ζx~ , (20)

yet it is still worse than the limiting situation of the BAE
scheme by a factor of 1/ζF .

III. STATE VERIFICATION IN THE
PRESENCE OF MARKOVIAN NOISE

In this section, we will treat the state verification with
Markovian noise in details. This can justify the order-
of-magnitude estimate we have done in previous section.
Besides, we will show explicitly how to construct the op-
timal variational scheme that gives a sub-Heisenberg ac-
curacy.

A. Equations of motion and dynamics of the
conditional quantum state

In this subsection, we will analyze the dynamics of the
conditional quantum state and evolution of the condi-
tional variance. This shows the necessity of back-action
evading during the verification process, which will be ad-
dressed thoroughly in the next subsection.

The equations of motion (EOM) for the center of mass
of the oscillator, which are valid for t > 0, can be written
as

p̂(t) = m ˙̂x(t), (21)
˙̂p(t) + γmp̂(t) + mω2

mx̂(t) = α â1(t) + ξ̂F (t), (22)

where ωm is the mechanical frequency; γm is the damp-
ing rate and α ≡ (~mΩ2

q)
1/2 = (8 P ω0 ~/c2)1/2 is the

coupling constant between the oscillator and light with P
denoting the intra-cavity optical power. The above equa-
tions describe the oscillator motion driven by back action
α â1 as well as by classical Markovian thermal force ξ̂F ,
which has the correlation

〈ξ̂F (t) ξ̂F (t′)〉sym = Sth
F δ(t− t′)/2 . (23)

The amplitude quadrature operator â1 of the in-going
vacuum fields obeys the correlation

〈â1(t) â1(t′)〉sym = e2 q δ(t− t′)/2 , (24)

with q denoting the squeezing factor. In the paraxial and
narrow-band approximation, the amplitude and phase
quadratures â1,2 are related to the electric field with cen-
tral frequency ω0 by Ê(t) ≡ Ê1(t) cos ω0t+Ê2(t) sin ω0t,
where Êi(t) = (4π~ω0/S c)1/2 âi(t) (i = 1, 2) with S
standing for the effective cross section area of the laser
beam [1, 25].

In the following, we will consider an oscillator with
a high quality factor, i.e. ωm À γm. Within a time
scale much shorter than 1/γm, the oscillator can be well
approximated as a free oscillator. Corresponding, the
analytical solution to the oscillator position in Eq. (21)
can be written as

x̂(t) = x̂q(t)+
∫ ∞

0

dt′Gx(t− t′) [α â1(t′)+ ξF (t′)] . (25)

Here we have defined the Green’s function as

Gx(t) = Θ(t)
sin(ωm t)

m ωm
, (26)
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with Θ(t) denoting the Heaviside function; x̂q represents
the free quantum oscillation of the oscillator, which is
given by

x̂q(t) = δxq

[
X̂0 f1(t) + P̂0 f2(t)

]
, (27)

where we have defined

f1(t) ≡ cos ωm t , f2(t) ≡ Ωq sin ωmt

ωm
, (28)

and

X̂0 ≡ x̂cond(0)/δxq , P̂0 ≡ p̂cond(0)/δpq . (29)

Note that the quantum oscillation x̂q(t) actually corre-
sponds to the signal that we seek to probe in the verifi-
cation process.

Due to the back action and thermal decoherence, the
variances of the conditional quantum state will start to
grow at t > 0. Explicitly, the covariance matrix evolves
as

V(τ) = RT
Φ Vcond RΦ

+
Stot

F

8 m2ω3
m

[
2 Φ− sin 2 Φ 2 mωm sin2 Φ
2 mωm sin2 Φ m2ω2

m (2Φ + sin 2 Φ)

]
,

(30)

where Φ ≡ ωm τ , Stot
F = Sq

F +Sth
F and the rotating matrix

RΦ is given by

RΦ =
[

cosΦ −mωm sinΦ
(mωm)−1sinΦ cos Φ

]
. (31)

The first term in V(τ) simply represents the rotation
of the CM, while the second term is contributed by the
back-action and thermal noises, which will induce diffu-
sion of x̂ and p̂ in the phase space.

In the free-mass limit with Ωq À ωm, for τ ¿ 1/ωm,
the above formulas for the CM can be expanded as series
of Φ (Φ ¿ 1). Up to the leading order of Φ, we have

Vxx(θ) = V cond
xx +

4δx2
q

~
V cond

xp θ +
δx2

q

δp2
q

V cond
pp θ2

+ δx2
q

(
e2 q + 2 ζ2

F

) θ3

3
, (32)

Vxp(θ) = V cond
xp +

~
2δp2

q

V cond
pp θ +

~
4
(e2 q + 2 ζ2

F )θ2 , (33)

Vpp(θ) = V cond
pp + δp2

q(e
2 q + 2 ζ2

F ) θ (34)

with θ ≡ Ωqτ and V cond
xx,xp,pp denoting the elements of

Vcond. Due to the free evolution, Eqs. (32)–(33) indicate
that there is a mixing in the conditional variances. When
θ & 1, or equivalently τ & τq, the initial momentum fluc-
tuation V cond

pp becomes the dominant fluctuations in x̂
due to the fact that we have highly position-squeezed
state, as we have mentioned previously. Besides, the ad-
ditional growth of variance due to force noises is actu-
ally the problems one has to face during the verification

process and it sets forth an optimal time scale for the
verification.

The growth becomes more clear by defining the purity
U of quantum state as in Ref. [17], up to the first order
of θ,

U(θ) ≡ 2
~
√

detV(θ)

≈ U(0) +
1

2δx2
q

(e2q + 2ζ2
F )V cond

xx θ +O(θ2), (35)

with U(0) ≡
√

detVcond. Since the probing light is phase
squeezed with e2q À 1 in the verification process, this
indicates that the quantum back action creates much
stronger decoherence than the thermal noise (ζF ¿ 1),
i.e. causing a faster growth in the purity. In order to
achieve sub-Heisenberg accuracy, back-action-evading is
essential in the verification stage, as will be investigated
in great details in the next subsection.

B. Time-dependent homodyne detection and
back-action evasion

At t > 0, we turn on the verification process, and
the corresponding Heisenberg EOM for the optical fields,
which are actually valid for both preparation t < 0 and
verification t > 0, can be written as

b̂1(t) = â1(t) +
√

η n̂1(t), (36)

b̂2(t) = â2(t) +
√

η n̂2(t) +
α

~
[x̂(t) + ξ̂x(t)]. (37)

Here b̂i are the output quadratures; the vacuum field
quadratures n̂1,2 originate from non-unity quantum effi-
ciency of the photodetector; ξ̂x corresponds to the clas-
sical sensing noise. We note that among the out-going
fields, b̂1 is pure noise, while b̂2 contains both signal and
noise. In order to highlight this, we write

b̂1(t) = δb̂1(t) , (38)

b̂2(t) = δb̂2(t) +
α

~
x̂q(t) (39)

with (cf. Eq. (25))

δb̂2(t) = â2(t) +
√

η n̂2(t) +
α

~
ξx(t)

+
α

h

∫ ∞

0

dt′Gx(t− t′)
[
α â1(t′) + ξ̂F (t′)

]
.

(40)

In this way, we can directly see that measuring an appro-
priate combination of the two output quadratures can al-
low to remove the back-action noise that is imposed onto
the oscillator during the verification process at t > 0.
Searching for such an optimal combination is the main
issue to be addressed in this section.
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In order to study the instantaneous distribution of an
arbitrary oscillator quadrature X̂ζ at t = 0, we apply
homodyne detection of the outgoing optical field

B̂out(t) = b̂1 cosω0t + b̂2 sin ω0t (41)

at t > 0 by mixing it with strong local oscillator light
L(t) with time-dependent amplitude and phase, namely

L(t) = L1(t) cos ω0t + L2(t) sin ω0t (42)

with L1 and L2 corresponding to the amplitude and
phase modulation respectively. Through a low-pass fil-
tering (with bandwidth much smaller than ω0) of the
beating signal, the resulting photocurrent is given by

î(t) ∝ 2B̂out(t)L(t) = L1(t)b̂1(t) + L2(t)b̂2(t) , (43)

where overline means averaging over many optical os-
cillation periods. Note that Heisenberg operator of the
photocurrent commutes at different time, i.e.

[̂i(t), î(t′)] = 0 , (44)

and are therefore simultaneously measurable, as obviously
expected. Based on measurement result of î(t) from 0
to Tint, we can apply a digital filtering and construct a
weighted quantity Ŷ , which is given by

Ŷ =
∫ Tint

0

W (t)̂i(t)dt ≡ (g1|b̂1) + (g2|b̂2) , (45)

where W (t) denoting the weighting function and
g1,2(t) ≡ W (t) L1,2(t), and

(A|B) ≡
∫ Tint

0

A(t)B(t)dt . (46)

Note that the overall re-scaling of g1,2(t) → Cg1,2(t) with
C an time-independent constant does not affect our ver-
ification performance, and that there are multiple ways
of achieving a particular set of g1,2(t), by adjusting the
amplitude/phase modulation of the local oscillator and
the weighting function W (t).

In light of Eqs. (25), (38)–(40) and (45), we decompose
the weighted quantity

Ŷ = Ŷs + δŶ (47)

as a signal Ŷs and a noise part δŶ . They are given by

Ŷs =
α

~

[
(g2|f1)X̂0 + (g2|f2)P̂0

]
δxq,

δŶ = (g1|δb̂1) + (g2|δb̂2). (48)

Since the overall normalization of g1,2 does not matter, if
we want to detect the oscillator position at a quadrature
ζ, we can simply impose, mathematically, that

(g2|f1) = cos ζ , (g2|f2) = sin ζ . (49)

For the noise part, we have

δŶ = (g1|â1 +
√

η n̂1) + (g2|â2 +
√

η n̂2)

+
α2

h
(g2|Gx|â1)

+
α

~
[(g2|Gx|ξF ) + (g2|ξx)] , (50)

where integration with Gx(t−t′) has been augmented into
applying the linear operator Gx on C∞[0, Tint] space. In
the above equation, terms on the first line is the shot
noise and the term on the second line is the back-action
noise, while terms on the third line are the classical force
and sensing noises.

From Eq. (49), we can see that all possible quadra-
tures can be probed by choosing different digital weight-
ing function W (t). Besides, given one particular setup
with fixed amplitude modulation L1(t) and phase mod-
ulation L2(t) of the local oscillator, the additional noise
can still be further minimized by applying an optimal
W (t). One might then naively expect that a quantum
tomography can be achieved simply with optimal dig-
ital filtering. However, this is prohibited by quantum
mechanics. As also mentioned in the introduction, on
the one hand, for a single measurement setup, different
quadratures do not commute, i.e. the signal part of the
readouts

[Ŷs(ζ), Ŷs(ζ ′)] = 2i
α2

~2
δx2

q sin(ζ − ζ ′), (51)

while, on the other hand, [Ŷ (ζ), Ŷ (ζ ′)] = 0 as a conse-
quence of Eq. (44). It immediately follows that

[δŶ (ζ), δŶ (ζ ′)] = −2i
α2

~2
δx2

q sin(ζ − ζ ′). (52)

This means that the additional noise δŶ must be Heisen-
berg limited, as was also shown previously by Buonanno
et al. [26] in discussing the quantum noise of the optimal
heterodyne readout scheme for detecting gravitational-
waves. Therefore, to obtain an sub-Heisenberg tomog-
raphy, we need to design separate optimal measurement
schemes for each quadrature by choosing different L1(t)
and L2(t) rather than only varying W (t). Mathemati-
cally, this means that the additional verification noise is
a functional that has two independent degrees of freedom
g1(t) and g2(t) instead of one degree of freedom W (t).

The optimal g1(t) and g2(t) that give an sub-
Heisenberg accuracy for each quadrature will be rigor-
ously derived for the general cases in the next section. If
â1 and â2 are uncorrelated and there is no optical loss
with η = 0, we can immediately see that an optimal
choice for g1 would be to cancel the entire contribution
from the back-action term â1. This is equivalent to im-
pose that

(g1|â1) +
α2

h
(g2|Gx|â1) = 0 (53)
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or

|g1) +
α2

~
Gadj

x |g2) = 0 , (54)

where Gadj
x is the adjoint of Gx. Physically, this cor-

responds to bringing in a piece of shot noise, (g1|â1) to
cancel the back-action noise, α2/h(g2|Gx|â1) — therefore
achieving a only shot-noise-limited measurement. Writ-
ing out Eq. (54) more explicitly, this is

g1(t) + (α2/~)
∫ Tint

t

dt′Gx(t′ − t)g2(t′) = 0, (55)

which agrees exactly with the “variational-type” BAE
measurement scheme first investigated by Vyatchanin et
al. [2]. It is suitable for detecting signals with known
arrival time. For stationary GW signals, one would pre-
fer frequency-domain variational techniques proposed by
Kimble et al. [1], which evades back-action noise also for
all possible signals as long as they are Gaussian and sta-
tionary processes.

As realized by Kimble et al. [1] in their frequency-
domain treatment, when optical loss is significant (large
η) and/or when back-action noise is strong (large α), vari-
ational approach becomes less effective, because in such
a case, the magnitude of g1 required to bring enough â1

to cancels with back-action noise would also introduce
significant noise n̂1 due to optical losses. This reasoning
apparently leads to the need of a trade-off between the
need to evade back action and the need to minimize loss-
induced shot noise — such an optimization will be made
in the next section.

C. Optimal verification scheme and additional
noise covariance: formal derivation

Imposing BAE does not specify the shape of g2, nor do
Eqs. (49), and we have further freedom in choosing a g2

that minimizes noise in measuring a particular quadra-
ture of X̂ζ . In addition, in presence of optical losses,
totally evading back action is not the obvious optimum,
and therefore we need to optimize g1 and g2 simultane-
ously. In this section, we first carry out this procedure
formally, and apply to the Markovian-noise budget in the
next subsection.

Subject to the constraints in Eq. (49), the total nor-
malized noise variance σ2 for measuring X̂ζ can be writ-
ten as a functional of g1,2,

σ2[g1,2] =
2
Ωq

2∑

i,j=1

(gi|Cij |gj), (56)

where correlation functions Cij among the noises are de-
fined as

Cij(t, t′) ≡ 〈δb̂i(t)δb̂j(t′)〉sym , i, j = 1, 2 . (57)

The optimal g1,2(t) that minimize σ2 can be obtained
through the standard constraint variational method. We
define an effective functional as

Jeff =
1
2

∑

i,j

(gi|Cij |gj)− µ1(f1|g2)− µ2(f2|g2)

=
1
2

∑

i,j

(gi|Cij |gj)− (µ1f1 + µ2f2|g2), (58)

where µ1 and µ2 are Lagrange multipliers due to the con-
straints in Eq. (49). Requiring the functional derivative
of Jeff with respect to g1 and g2 equal to zero, we obtain

C11|g1) + C12|g2) = 0 , (59)
C21|g1) + C22|g2) = |µ1f1 + µ2f2) . (60)

This leads to

|g1) = −C−1
11 C12|g2) , (61)

|g2) = M|µ1f1 + µ2f2) , (62)

where we have defined

M ≡ [
C22 −C21C−1

11 C12

]−1
. (63)

Re-imposing Eqs. (49), Lagrange multipliers µ1,2 are then
related to ζ as

[
(f1|M|f1) (f1|M|f2)
(f2|M|f1) (f2|M|f2)

] [
µ1

µ2

]
=

[
cos ζ
sin ζ

]
(64)

which leads to an optimal σ as the following quadratic
form:

σ2
opt = [cos ζ sin ζ]Vadd

[
cos ζ
sin ζ

]
(65)

where Vadd is a 2× 2 covariance matrix,

Vadd =
2
Ωq

[
(f1|M|f1) (f1|M|f2)
(f2|M|f1) (f2|M|f2)

]−1

. (66)

Due to the linearity in Eqs. (60) and (64), the optimal g1,2

for a given quadrature ζ can also be rewritten formally
as

gζ
j = gX

j cos ζ + gP
j sin ζ , j = 1, 2. (67)

This again manifests the fact that a sub-Heisenberg to-
mography requires different measurement setups for dif-
ferent quadratures.

D. Optimal verification scheme and additional
noise covariance with Markovian-noise budget

In our case, we assume all the noises (âi, n̂i, ξ̂F and
ξ̂x) are Markovian Gaussian processes. They are fully
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characterized by two-point correlation functions as given
by

〈âi(t)âj(t′)〉sym = δije
±2qδ(t− t′)/2 , (68)

〈n̂i(t)n̂j(t′)〉sym = δijδ(t− t′)/2, (69)

〈ξ̂F (t)ξ̂F (t′)〉sym = Sth
F δ(t− t′)/2, (70)

〈ξ̂x(t)ξ̂x(t′)〉sym = Sth
x δ(t− t′)/2. (71)

Therefore, the corresponding correlation functions for the
output noise δb̂i are

C11(t, t′) =
e2q + η

2
δ(t− t′), (72)

C12(t, t′) = C21(t′, t) =
e2qα2

2~
Gx(t′ − t), (73)

C22(t, t′) =
Λ2

4
δ(t− t′) +

α4

~2
(74)

(
e2q

2
+ ζ2

F

) ∫ ∞

0

dt1Gx(t− t1)Gx(t′ − t1),

with Λ ≡
√

2(e−2q + η + 2ζ2
x). Plugging these Cij into

Eq. (61) and (62), we can obtain the equations for the
optimal filtering functions g1 and g2. Specifically, for g1,
we have

g1(t) +
e2q

e2q + η

α2

~

∫ Tint

t

dt′Gx(t′ − t)g2(t′) = 0. (75)

For g2, by writing out M explicitly, it gives

Λ2

4
g2(t) + ζ ′ 2F

α4

~2

∫∫ Tint

0

dt′dt1Gx(t− t1)Gx(t′ − t1)g2(t′)

= h(t) , (76)

where we have redefined the ratio between Brownian
thermal noise SQL touching frequency ΩF and Ωq (i.e.
ζF ) as ζ ′F , which is given by

ζ ′F ≡
[

e2qη

2(e2q + η)
+ ζ2

F

]1/2

≈
[η

2
+ ζ2

F

]1/2

. (77)

We see that although g1 is still defined from g2, the opti-
mal verification strategy does not totally evade the back
action, as is manifested in the term proportional to η in-
side the bracket of Eq. (77). In the limit of no optical
loss with η = 0, it is identical to the BAE condition in
Eq. (55) . Typically, we have 1% optical loss η = 0.01,
squeezing e2q = 10 and ζF = 0.2, this optical loss will
only shift ζF by 6%, which is negligible. However, if the
thermal noise further decreases and/or the measurement
strength increases, the effect of optical loss will become
significant, entering in a similar way as the frequency-
domain variational measurement proposed by Kimble et
al..

The above integral equations for g1 and g2 can be
solved analytically as elaborated in the Appendix, which
in turn gives M and corresponding Vadd defined in Eq.

FIG. 3: Optimal filtering functions g1 (solid curve) and g2

(dashed curve) in presence of Markovian noise. We have as-
sumed Ωq/2π = 100 Hz, ζx = ζF = 0.2, η = 0.01 and vacuum
input (q = 0).

(66). In the free-mass limit with Ωq À ωm, the high Q-
factor oscillator can be well approximated as a free mass.
This allows us to obtain closed forms for g1 and g2, as
given by (cf. Eq. (67))

gX
1 = g1|ζ=0 = (Ωq/χ) e−Ωqχt sinΩqχt; (78)

gP
1 = g1|ζ= π

2
= −

√
2 Ωq e−Ωqχt sin

(
Ωqχt +

π

4

)
, (79)

and

gX
2 = g2|ζ=0 = 2Ωqχ e−Ωqχt cosΩqχt; (80)

gP
2 = g2|ζ= π

2
= 2

√
2 Ωqχ

2 e−Ωqχt sin
(
Ωqχt− π

4

)
, (81)

with χ ≡ [ζ ′ 2F /Λ]1/2. The corresponding verification time
scale is set by τV = (χΩq)−1 and τq < τV < τF , which
recovers the order-of-magnitude estimate in Sec. II D. To
illustrate the behavior of the optimal filtering functions,
we show gX,P

1,2 in Fig. 3. As we can see, the verification
process finishes after several τq, i.e. in a time scale of τV .

The corresponding additional covariance matrix Vadd

is given by

Vadd =

[
Λ

3
2 ζ
′ 1

2
F δx2

q −Λζ ′F~/2

−Λζ ′F~/2 2Λ
1
2 ζ
′ 3

2
F δp2

q

]
. (82)

A more summarizing measure of the additional noise is
the purity, i.e. the area of the additional noise ellipse,
measured in units of that for vacuum ellipse,

Uadd ≡ 2
~
√

detVadd = Λ ζ ′F . (83)

This simply recovers the order-of-magnitude estimate
given in the previous section. In Fig. 4, we show the
additional noise ellipse in the case of ζx = ζF = 0.2,
optical loss η = 1% and with (Green dotted curve) or
without (red long-dashed curve) 10 dB input squeezing.
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FIG. 4: Additional verification noise ellipse in presence of
Markovian noise. We assume ζx = ζF = 0.2, vacuum input
(Dashed curve), ζx = ζF = 0.2 and 10 dB squeezing (Dotted
curve). We also show the vacuum level in a unit circle and
the ideal conditional quantum state in solid ellipse.

In comparison, we also plot the vacuum level (unit cir-
cle) and conditional state obtained through an ideally
noiseless state preparation (blue solid ellipse). As figure
shows, the least challenging scenario already begins to
characterize the conditional state down to the Heisen-
berg Uncertainty. In this two cases, we have Λ = 1.48
and 0.62 respectively, leading to

Uadd = 0.30 (vacuum) , 0.12 (10 dB squeezing). (84)

E. Verification after Evolution

To probe the quantum dynamics of the oscillator and
the thermal decoherence effect, we can delay the verifi-
cation for a finite amount of time τ to let the conditional
quantum state evolve freely. As mentioned in Sec. IIIA,
the variance will grow due to the back-action and ther-
mal noises. It is essential to evade the back-action im-
posed during the evolution to achieve a sub-Heisenberg
accuracy. Ideally, we can switch off the laser during the
interval (0, τ) to evade the back action. However, this is
not easily achievable experimentally due to noise coupling
during transient. Instead, during the evolution stage at
(0, τ), we do not measure the phase quadrature b̂2 which
contains the information about oscillator position x̂, but
rather detect the amplitude quadrature b̂1 to record the
back-action noise imposed during this period. Mathe-
matically, this can be achieved simply by imposing that
g2(t) = 0 at t < τ , namely with the weighted quantity
given by

Ŷ =
∫ Tint

0
[g1(t)b̂1(t) + Θ(t− τ)g2(t− τ)b̂2(t)]. (85)

Applying the same formalism as outlined in the previous
sections, we can derive CM for the minimal additional

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Wq Τ

U
ad

d H
Τ
L

FIG. 5: Area of the additional noise ellipse as a function of
evolution duration τ . The specifications and styles are the
same as in Fig. 4.

noise including evolution to be

Vadd(τ) =
[

V add
xx V add

xp

V add
px V add

pp

]
, (86)

where in the free-mass limit,

V add
xx = [Λ

3
2 ζ ′F

1
2 + 2Λζ ′F θ + 2Λ

1
2 ζ ′F

3
2 θ2 + (2/3)ζ ′F

2
θ3]δx2

q,

V add
xp = V add

px = −(Λζ ′F + 2Λ
1
2 ζ ′

3
2 θ + ζ ′F

2
θ2)~/2,

V add
pp = 2(Λ

1
2 ζ ′F

3
2 + ζ ′F

2
θ)δp2

q,

with dimensionless evolution duration θ ≡ Ωqτ . In Fig. 5,
we show the area of the additional noise as a function of
τ . As we can see from the figure, with optimal variational
measurement we are able to achieve sub-Heisenberg accu-
racy even after waiting for serval τq, which can be applied
to verify the quantum dynamics of the oscillator.

IV. VERIFICATION OF MACROSCOPIC
QUANTUM ENTANGLEMENT

In this section, we will apply our protocol in verifying
macroscopic entanglement between test masses in GW
detector, which was proposed in Refs. [17, 27]. In the ex-
periment as shown schematically in Fig. 6, measurements
at the bright and dark port of the interferometer contin-
uously collapse the quantum state of the corresponding
common and differential modes of the test-mass motion.
This creates two highly squeezed Gaussian state in both
modes. Since the common and differential modes are
linear combinations of the center of mass motion of the
north arm x̂N and the east arm x̂E, namely x̂c = x̂E + x̂N

and x̂d = x̂E − x̂N, this will naturally generate quan-
tum entanglement between the test masses in two arms
(e.g. ITMN and ITME), which is similar to creating en-
tanglements by mixing two squeezed beams at the beam
splitter [28, 29].
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FIG. 6: Advanced GW detectors for macroscopic entangle-
ments between test masses as a test for gravity decoherence.
For simplicity, we haven’t displayed the setup at the bright
port, which is identical to the dark port as shown.

A. Entanglement survival time

To quantify the entanglement strength, we follow Refs.
[17, 27] by evaluating the logarithmic negativity defined
in Refs. [30, 31]. The bipartite covariances among
(x̂E, p̂E, x̂N, p̂N) (p̂E,N ≡ µ ˙̂xE,N with reduced mass µ =
m/2) form the following CM

V =
[

VEE VEN

VNE VNN

]
, (87)

where

VEE = VNN =
[

(V c
xx + V d

xx)/4 (V c
xp + V d

xp)/2
(V c

xp + V d
xp)/2 (V c

pp + V d
pp)

]
, (88)

VNE = VEN =
[

(V c
xx − V d

xx)/4 (V c
xp − V d

xp)/2
(V c

xp − V d
xp)/2 (V c

pp − V d
pp)

]
. (89)

The logarithmic negativity EN can then be written as

EN = max[0,− log2 2σ−/~], (90)

where σ− ≡
√

(Σ−√Σ2 − 4 detV)/2 and Σ ≡
detVNN + detVEE − 2 detVNE. In contrast to Refs.
[17, 27], now the covariance V corresponds to the to-
tal variance Vtot after the entire preparation-verification
process. In case of Markovian process, Vtot would sim-
ply be a sum of the conditional variance of the prepared
quantum state and the added verification noise, namely
Vtot = Vcond + Vadd.

FIG. 7: Logarithmic negative as a function of free-evolution
duration, which indicates how long the entanglement survives.
The solid curve corresponds to the case where ΩF /2π = 20 Hz
and the dashed curve for ΩF /2π = 10Hz. To maximize the
entanglement, the common mode is 10 dB phase squeezed at
t > 0 and t < 0 while the differential mode is 10 dB amplitude
squeezed at t < 0 and switching to 10 dB phase squeezed at
t > 0.

B. Entanglement Survival as a Test of Gravity
Decoherece

In order to investigate the survival of the macroscopic
quantum entanglement, we will include the free evolu-
tion stage mentioned in the previous section. This can
help us to understand whether there is any additional de-
coherence effects, such as Gravity decoherence suggested
by Diósi and Penrose [3, 4]. According to their mod-
els, quantum superpositions vanishes within a time scale
of ~/EG. Here EG can be (a) self-energy of the mass-
distribution-difference, namely

E
(a)
G =

∫
dxdy G[ρ(x)− ρ′(x)][ρ(y)− ρ′(y)]/r (91)

with ρ denoting the mass density distribution and r ≡
|x − y|; Alternatively, it can be (b) spread of mutual
gravitational energy among components of the quantum
superposition, namely

E
(b)
G =

∫
dxdy Gρ(x)ρ′(y) δr/r3/2. (92)

For the prepared test-mass quantum states with width of
δxq, we have

τ
(a)
G ≈ Ωq/(Gρ) , τ

(b)
G ≈ ~1/2L2Ω1/2

q /(GM3/2) . (93)

where L is the distance between two ITMs, and M is the
mass. Plugging the typical values for LIGO mirrors with
ρ = 2.2 g/cm3, L ≈ 10m (ITMs) and M = 10 kg, we
have

τa
G = 4.3× 109 s, τ b

G = 1.2× 10−5 s. (94)

It is therefore quite implausible to test model (a); while
for model (b), Ωqτ

(b)
G is less 0.01 with Ωq/2π = 100 Hz.

In Fig. 7, we show the entanglement survival as a func-
tion of evolution duration. As we can see, the model (b)
of gravity decoherence can easily be tested, for the entan-
glement can survive for several times of the measurement
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time scale 1/Ωq, which is much longer than the predicted
τ

(b)
G .

V. CONCLUSIONS

In this paper, we have shown that a two-staged MQM
experiment including preparation and verification pro-
cesses allows to study quantum mechanics of macro-
scopic objects. We have demonstrated that an optimal
time-domain variational measurement can provide a sub-
Heisenberg tomography of prepared macroscopic quan-
tum state and a high-accuracy verification of macroscopic
quantum entanglements as a test of gravity decoherece.
To motivate MQM experiments in future long-baseline
interferometric GW detectors, we have been focusing on
the relevant free-mass regime where the measurement fre-
quency is much higher than the mechanical frequency.
However, techniques described in this paper applies in
general cases, such as small-scale experiments which may
be able to reach the SQL in a shorter time frame. To this
respect, we note that in our results for Markovian sys-
tems only depend on the ratio between various noises and
the SQL, and therefore carries over directly to systems
with other scales. In addition, the Markovian assumption
applies more accurately to smaller-scale systems which
operate in higher frequencies.
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APPENDIX A: SOLVING THE INTEGRAL
EQUATIONS WITH WIENER-HOPF METHOD

Here we will give the analytical solutions to the inte-
gral equations we encountered in obtaining the optimal
filtering functions g1 and g2. Let’s consider the general
case with a free evolution stage (0 < t < τ). Given the
weighted quantity Ŷ in Eq. (85),

Ŷ =
∫ Tint

0
[g1(t)b̂1(t) + Θ(t− τ)g2(t− τ)b̂2(t)] (A1)

and following the same steps outlined in the main text,
we obtain the integral equations for g1,2, written out ex-
plicitly as

∫ Tint

0

dt′
[

C11(t, t′) C12(t, t′ + τ)
C21(t + τ, t′) C22(t + τ, t′ + τ)

] [
g1(t′)
g2(t′)

]

=
[

0
h(t + τ)

]
, (A2)

where Cij (i, j = 1, 2) are given by Eq. (73). Since the
optimal filter functions g1,2(t) will automatically cut off
at large t after when the thermal noise dominates the
variance in the oscillator position, we can extend the in-
tegration upper limit Tint to ∞. In this way, it allows an
analytical solution to g1,2 using the Wiener-Hopf method.
In the frequency domain, they can be written as

[S̃11g̃1]+ + [S̃12 eiΩτ g̃2]+ = 0, (A3)

[S̃21 e−iΩτ g̃1]+ + [S̃22g̃2]+ − Γ̃ = e−iΩτ h̃, (A4)

Γ̃ = β[G̃xe−iΩτ (G̃xeiΩτ g̃2)−]+. (A5)

where spectral densities S̃ij are the Fourier transforma-
tion of the noise correlations Cij and β ≡ (α4/~2)[e2q +
2ζ ′F

2]; [ ]+ means taking the causal part of the func-
tion inside brackets which only has poles in the lower-
half complex plane and [ ]− corresponds to taking the
anti-causal part which only has poles in the upper-half
complex plane. By [e−iΩτ f̃(Ω)]+ with τ > 0, we mean

[e−iΩτ f̃(Ω)]+ =
∑

k

Res[e−iΩτ f̃(Ω), Ω−k ]
(Ω− Ωk)θk

(A6)

with Ω−k denoting poles of f̃(Ω) in the lower-half com-
plex plane and θk the order of the pole (Similar for
[eiΩτ f̃(Ω)]−). The single-sided spectral densities S̃ij(Ω)
are given by

S̃11 = e2q + η, (A7)

S̃12 = − e2qΩ2
q

(Ω + ωm − iγm)(Ω− ωm − iγm)
, (A8)

S̃21 = S̃∗12(Ω), (A9)

S̃22 =
Λ2

2
+

[e2q + 2ζ ′F
2]Ω4

q

[(Ω + ωm)2 + γ2
m][(Ω− ωm)2 + γ2

m]
.

(A10)

Since S̃11 is only a number, for g1, we simply have

g̃1 =− S̃−1
11 [S̃12e

iΩτ g̃2]+. (A11)

In the time-domain, this recovers the result in Eq. (75).
Through a spectral factorization

ψ̃+ψ̃− ≡ S̃22 − S̃−1
11 S̃12S̃21 (A12)

with ψ̃+(−) denoting the causal (anti-causal) part, we
obtain the solution for g̃2:

g̃2 =
1

ψ̃+

{[
e−iΩτ h̃− S̃−1

11 S̃21e
−iΩτ (S̃12e

iΩτ g̃2)− + Γ̃
]
+

/ψ̃−

}

+

.

(A13)
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Plugging Γ̃ into the above equation, g̃2 becomes

g̃2 =
1

ψ̃+

{[
e−iΩτ h̃ + κ G̃xe−iΩτ (G̃∗xeiΩτ g̃2)−

]
/ψ̃−

}
+

(A14)
with κ ≡ m2Ω4

qζ
′
F

2. On the right hand side of the above
equation, they only involve values of g̃2 at those poles
of G̃∗x in the upper half complex plane. They can be
obtained by solving the corresponding algebra equations.

Therefore, we obtain the analytical solution to g̃1 and g̃2.
A simple inverse Fourier transformation gives g1(t) and
g2(t), from which we can derive the CM Vadd(τ) for the
added noise. As long as the evolution duration τ is not
much longer than the measurement time scale ∼ 1/Ωq,
in the free-mass limit where Ωq À ωm, we can expand
Vadd(τ) as series of ωmτ ¿ 1, as we have written out
explicitly in Eq. (86).
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