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Why Atom Interferometers?

e Not because atoms have short de Broglie wavelength.

e But because atom clouds could be used as test masses for low frequency
detection.

e Some recent proposals
e R. Chiao et al.

e S. Dimopoulos, PW. Graham, J.M. Hogan, M.A. Kasevich and S. Rajendran,
Phys. Rev. D 78, 122002, (2008).

e Paper on how atom interferometers respond to gravitational waves

e A. Roura, D.R. Brill, B.L. Hu, C.W. Misner, and W.D. Phillips, Phys. Rev. D 73,
084018 (2006)
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How does an atom interferometer work?
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e Similar to optical interferometer R
¢ Phaseshift depends on momentum transfer at TX
mirror
kl k2

e De Broglie wavelength A=h/(mv) could be
small, de Broglie k=mv/h could be high, but it
is 0k that matters ®=(k,—k,) x

e How do atom mirrors transfer momentum?
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How does an atom mirror work?

e Atoms are deflected by photons, for example Stimulated Raman Transition
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Stimulated Raman Transition
In reality, excited state has negligible Picture from Dimopoulos et al.
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Mirror vs Beamsplitter: Phase of Rabi Oscillation
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with two opposite beams:
atom sloshes between
state 1 and state 2

Rabi Oscillation
Picture from Dimopoulos et al.

e Depending on phase of the Rabi oscillation, one can make a mirror (r-pulse)
or beamsplitter (1/2-pulse)
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An Atom Interferometer
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An Atom Interferometer
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Space-time diagram of a “linear” atom interferometer
Picture from Dimopoulos et al.
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Large Momentum Transfer & Atom Squeezing

® |t is possible to transfer more momenta, if the transition is Bragg, not Raman
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Picture from Dimopoulos et al.
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Pulses can be iterated
to give N times the
momentum

N ~ 100 - 1000 might
be realizable

.

e Roughly equivalent to the use of a cavity with Finesse equal to N, which is not

very high.
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Why are we still interested in Atom Interferometry?
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e Atoms might be usable as test masses for low-frequency detectors
¢ they do not need to be suspended
e they do not couple to vibration during flight

¢ Recent proposal

e S. Dimopoulos, PW. Graham, J.M. Hogan, M.A. Kasevich and S. Rajendran,
Phys. Rev. D 78, 122002, (2008).

e Two versions: terrestrial & space-based
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Dimopoulos et al.’s Detector
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e Two co-linear atom interferometers sharing the same control and passive light
e Measures delays of laser pulses due to gravitational wave: (T4-T3)-(T2-T1)
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Ground-based version
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o T ~1s, ket ~1.6x10° (with N~1000), n ~ 108, 5 clouds simultaneously, h~10-1/rtHz
at 1 Hz (advanced version is 10x better)
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Sensitivity of Ground-Based Version
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Noises: vibration & laser phase noise

Control Laser Passive Laser

Time

Length

e Phase noise in control pulse unimportant (except for quantum part which seems
small anyway)

¢ \ibration & Phase noise: phase noise of passive laser are subtracted between times

of L/c (short). Requires dx~10-1"m (for 4 km version) or 10 *m (for 1 km version)
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Noises: Gravity Gradient
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e Gravity Gradient: mostly due to gradient of g --- fluctuations in atoms’ path cause
difference in g. This sets requirement on the path of atoms, and therefore on the

atom trap.
¢ Tricks can be used to avoid measuring them
e Add compensation mass
e Using fancy pulses

e Temporal fluctuations in gravity gradient seems unimportant.
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Rotation
 Coriolis force cause acceleration larger than GW da=2wedv with dv~10-°m/s

e Can be cancelled if laser axis is not rotating together with earth. Requires
accuracy of dw<10°(rad/s/rtHz)x(1 km/L)'/2

e | aser jittering will cause the atoms to sense different g, and this requires laser
beam to have dw<10-9(rad/s/rtHz) (for 1 km version)
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Sensitivity to Stochastic Background
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Space-Based Version
*---------. *---------I Sz
= e o e e e
d~30 m IL~100 m IL~IOO m d~30 m
< >
L ~ lO4 Kkm
T ~ 100s, d ~30 mto It ~100 m is the maximum  For 103 km version,

aiming at waves minimize gravity that spacecraft can provide Laser1 W
below 0.01 Hz  gradient caused bias B field. For T ~ 100s,  waistsize 0.5m
by spacecraft this limits ket to ~10°. [v =

hk/m]

Must be shielded from sunlight, otherwise will only work when it’s behind the earth,
when photon-atom scattering timescale is longer than T

Effect from solar wind considered unimportant

Interplanetary magnetic field can be dealt with
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Sensitivity of Space-Based Detector
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Sensitivity to Stochastic Background
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Comparison with LISA requirements
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TABLE II. A comparison between specifications for a three-satellite AGIS configuration that could potentially allow comparable
sensitivity to LISA. and the LISA requirements. There are many caveats and details that cannot be captured in a table and are discussed

in Secs. VB and V C and in the LISA papers (see e.g. [42.47]).

Alttribute AGIS LISA
Baseline 10° km 5% 10° km
sllite o o ~ —2 4

Satellite control (at ~10™“ Hz) 10 :9"”31- 1

Gonr T anrr ~10—2 4 Hz Hz
Laser frequency control (at ~107< Hz) 10 v lm

- -2 H- -2 nrad nrad

otational control (at ~107= Hz -
Rotational ¢« n'lr( l (at ~ 10~ H7) 10 e | ]‘7@ | | . |
Electromagnetic forces Atoms neutral, EM forces naturally small, Cosmic ray charging ol prool mass

predictable response to measured EM field

Collisions with background gas Delete atoms, not a noise source Cause acceleration noise

Photon shot noise does
not seem to have been
taken into account

Limited by photon shot
noise
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Discussions?
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