Echoes of supersymmetry: BAU, relic Q-balls, and gravity waves

- Introduction: SUSY Q-balls
- Inflation+SUSY \Rightarrow Q-balls
- stable Q-balls as dark matter
- constrains
- gravitational waves

Lago Mar '09

Echoes of supersymmetry: BAU, relic Q-balls, and gravity waves

Alexander Kusenko (UCLA) Lago Mar '09 SUSY and Q-balls nucleus SUSY Why would one suspect that ¥ SUSY \Rightarrow Q-balls? SUSY SUSY **Bose–Einstein Q**-ball

Let us consider a complex scalar field $\phi(x, t)$ in a potential that respects a U(1) symmetry: $\phi \rightarrow e^{i\theta} \phi$.

vacuum: $\phi = 0$

conserved charge:
$$oldsymbol{Q}=rac{1}{2i}\int\left(\phi^{\dagger}\stackrel{\leftrightarrow}{\partial_{0}}\phi
ight)oldsymbol{d}^{3}oldsymbol{x}$$

 $Q \neq 0 \Rightarrow \phi \neq 0$ in some finite domain \Rightarrow Q-ball [Rosen; Friedberg, Lee, Sirlin; Coleman]

Lago Mar '09

Q-balls exist if

$$U(\phi)\left/\phi^2=\min, ~~ ext{for}~\phi=\phi_0>0
ight.$$

[Coleman]

Finite ϕ_0 : $M(Q) \propto Q$

Flat potential ($U(\phi) \sim \phi^p, p < 2$); $\phi_0 = \infty$:

 $M(Q) \propto Q^lpha, lpha < 1$

Lago Mar '09

Q-balls exist in (softly broken) SUSY because

- the theory has scalar fields
- the scalar fields carry conserved global charge (baryon and lepton numbers)
- attractive scalar interactions (tri-linear terms, flat directions) force $(U(\phi)/\phi^2) = \min$ for non-vacuum values.

Lago Mar '09

MSSM, gauge mediated SUSY breaking

Baryonic Q-balls (B-balls) are entirely stable if their mass per unit baryon charge is less than the proton mass.

 $egin{aligned} M(Q) &= M_S Q^{3/4} \Rightarrow \ rac{M(Q_B)}{Q_B} &\sim M_S Q^{-1/4} \ < 1 {
m GeV} \end{aligned}$

$${
m for}\; oldsymbol{Q}_B \gg \left(rac{M_S}{1\,{
m TeV}}
ight)^4 \stackrel{>}{_\sim} 10^{12}$$

Such B-balls are entirely stable.

Lago Mar '09

Baryon asymmetry

$$\eta \equiv \frac{n_B}{n_\gamma} = \left(6.1 \, {}^{+0.3}_{-0.2}
ight) imes 10^{-10} (\mathrm{WMAP})$$

COSMOLOGY MARCHES ON

Lago Mar '09

What happened right after the Big Bang?

- Inflation probably took place
- Baryogenesis definitely *after* inflation

Standard Model is **not** consistent with the observed baryon asymmetry (assuming inflation)

Lago Mar '09

Affleck–Dine baryogenesis

- Natural if SUSY+Inflation
- Can explain matter
- Can explain **dark** matter
- Predictions can be tested soon

Lago Mar '09

All matter is produced during reheating after inflation.

 $\begin{array}{l} \textbf{SUSY} \Rightarrow \textit{flat directions.} \\ \textbf{During inflation, scalar fields} \\ \textit{are displaced from their minima.} \end{array}$

Lago Mar '09

Affleck – Dine baryogenesis

at the end of inflation a scalar condensate develops a large VEV along a <u>flat direction</u>

CP violation is due to time-dependent background.

Baryon asymmetry: $\phi = |\phi| e^{i\omega t}$

Lago Mar '09

Fragmentation of the Affleck-Dine condensate

 $\begin{bmatrix} \mathsf{AK}, \mathsf{Shaposhnikov} \end{bmatrix} \\ \text{small inhomogeneities can grow} \\ \text{unstable modes:} \\ 0 < k < k_{\max} = \sqrt{\omega^2 - U''(\phi)} \\ \Rightarrow \text{Lumps of baryon condensate} \\ \Rightarrow \text{Q-balls} \\ \end{bmatrix}$

Lago Mar '09

Fragmentation \approx **pattern formation**

Familiar example:

Lago Mar '09

Numerical simulations of the fragmentation

[Kasuya, Kawasaki]

Two-dimensional charge density plots [Multamaki].

Three-dimensional charge density plots [Multamaki].

Lago Mar '09

[AK, Shaposhnikov; Enqvist, McDonald]

Lago Mar '09

Stable Q-balls as dark matter

Q-balls can accommodate baryon number at lower energy than a nucleon \Rightarrow B-Balls catalyze proton decay Signal:

$$rac{dE}{dl} \sim 100 \left(rac{
ho}{1\,{
m g/cm}^3}
ight) rac{{
m GeV}}{{
m cm}}$$

 $\mathsf{Heavy} \Rightarrow \mathsf{low flux}$

 \Rightarrow experimental limits from Super-Kamiokande and other *large* detectors

Lago Mar '09

Alexander Kusenko (UCLA)

A "candidate event"

C.M.G. Lattes et al., Hadronic interactions of high energy cosmic-ray observed by emulsion chambers

Fig. 47. Illustration of penetrating cores of Pamir experiment. [Lattes, Fujimoto and Hasegawa, Phys.Rept. **65**, 151 (1980)]

Gravitational radiation from the fragmentation process

One can expect gravitational waves if

- large masses move around
- relativistic velocities
- no spherical symmetry

All of these conditions can be satisfied for *some* flat directions.

Two-dimensional charge density plots.

Lago Mar '09

Three-dimensional charge density plots.

The lack of spherical symmetry in the early steps of fragmentation means gravity waves can be produced.

Lago Mar '09

Analytical estimates

The mass density of the condensate undergoing fragmentation can be written as $ho(x,t)=
ho_0+
ho_1(x,t)$, where

$$ho_1(x,t) = \epsilon
ho_0 \int d^3k \, e^{lpha_k t} \cos(\omega t - ec k \cdot ec x) \, .$$

The quadrupole moment that generates gravity waves:

$$D_{ij} = \int d^3x \; x_i x_j \, T^{00}(x,t) \, ,$$

where the energy-momentum tensor $T^{00}(x,t) \approx \rho(x,t)$.

Based on the analytical and numerical calculations of the condensate fragmentation

G0900625-v1

Alexander Kusenko (UCLA) [Kawasaki et al.],

$k\sim oldsymbol{\xi}_k imes 10^2 H_*, \; \omega_k\sim vk\sim oldsymbol{\xi}_k imes 10^2 vH_*,$

where H_* is the Hubble constant at the time of the condensate. For $\omega \sim 10^2 v H_*$, the power in gravitational waves in a Hubble volume:

$$P \sim 10^4 m{\xi}_k^{-2} \, G rac{
ho_0^2 v^6}{H_*^4} \, .$$

For mode $\phi(x, t) \approx R(t) \exp\{\alpha_k t\} \cos(\omega_k t - kx)$, where R(t) is a slowly changing function of time,

Lago Mar '09

Alexander Kusenko (UCLA)

At the time of production [AK, Mazumdar],

$$\Omega_{GW*} \sim 10^{-3} m{\xi}_k^{-3} m{\xi}_v^6 \, rac{m{
ho}_0^2}{(H_* M_{
m Pl})^4}$$

The energy density depends on the type of SUSY breaking and the type of flat direction. Strong gravitational waves:

- gravity mediated SUSY breaking (more mass per scalar)
- not the flat direction of AD baryogenesis: $\eta_B = n_B/n_\gamma \sim 10^{-10}$ too small
- (B + L) flat directions OK: sphalerons destroy (B + L), so there is no constraint on the initial density carried by the (B + L) flat directions.

Lago Mar '09

Predictions:

Peak frequency of the gravitational radiation observed today, $f_* = \omega_k/2\pi$:

$$egin{split} f &= f_* rac{m{a}_*}{m{a}_0} = f_* \left(rac{m{a}_*}{m{a}_{
m rh}}
ight) \left(rac{m{g}_{s,0}}{m{g}_{s,
m rh}}
ight)^{1/3} \left(rac{m{T}_0}{m{T}_{
m rh}}
ight) \ pprox m{0.6~
m Hz} \; m{\xi}_k m{\xi}_v \; \left(rac{m{g}_{s,
m rh}}{m{100}}
ight)^{1/6} \left(rac{m{T}_{
m rh}}{m{10^3~
m TeV}}
ight) \left(rac{m{f}_*}{m{10H}_*}
ight) \;, \end{split}$$

 $T_{\rm rh} \sim 1 {
m TeV} \Rightarrow {
m mHz}$ frequency, accessible to LISA $T_{\rm rh} \sim 10^3 - 10^5 {
m TeV} \Rightarrow 10$ –100 Hz frequency, accessible to LIGO and BBO

Spectral signature: signal is peaked at the longest wavelength, determined by the size of the Q-balls, and it falls off as $1/f^3$ for larger frequencies.

The fraction of the critical energy density ho_c stored in the gravity waves today is

$$\Omega_{\rm GW} = \Omega_{\rm GW^*} \left(\frac{a_*}{a_0}\right)^4 \left(\frac{H_*}{H_0}\right)^2$$

$$\approx \frac{1.67 \times 10^{-5}}{h^2} \left(\frac{100}{g_{s,*}}\right)^{1/3} \Omega_{\rm GW^*} \approx 10^{-8} \, \boldsymbol{\xi}_k^{-3} \boldsymbol{\xi}_v^6 \, \boldsymbol{h}^{-2}$$

LISA band: $\Omega_{\rm GW}h^2 \sim 10^{-11}$ at mHz frequencies LIGO band: $\Omega_{\rm GW}h^2 \sim (10^{-5} - 10^{-11})$ in the $(5 - 10^3)$ Hz frequency band.

- SUSY + Inflation \Rightarrow Q-balls, some may be stable, may be dark matter
- Typical size large \Rightarrow typical density small \Rightarrow need large detectors to search for relic Q-balls
- Gravitational waves from the fragmentation of (B+L) flat directions may be observed by LIGO and LISA.
- Gravitational waves detectors can detect echoes of primordial supersymmetry