Experimental progress with the quantum noise limit

Christopher Wipf GWADW 2009

In Advanced Detectors, Quantum Noise Is Everywhere!

Mechanism

In Advanced Detectors, Quantum Noise Is Everywhere! Questions

- Shot noise reduction with squeezed vacuum
 - Crystal squeezing's two decades of development culminate in one **big** question...
- Is this ready to become standard-issue equipment on a GW interferometer?
 The back-action of our measurement has arrived
 - - How do we cope with RP-dominated systems?
 - Can we learn about macroscopic quantum mechanics? • Ponderomotive squeezing and entanglement of the light • Interesting quantum states of the test masses Quantum limits are opportunities in disguise! G0900629-v1

Frequency [Hz]

Squeezing with nonlinear crystals

- Amplitude and phase correlated via Kerr effect (Refractive index $\Delta n \sim \text{intensity } I$)
- Needs a bright frequency-doubled "pump" beam
- Use a cavity to amplify the effect

Time for a squeezing-enhanced LIGO ?

- Successful proof of principle at Caltech 40m IFO
- VLF squeezing (sub-10 Hz!) achieved at AEI
- Possible opportunity to test on H1 after S6
- Meet our sensitivity goals using less laser power
 Fewer headaches from RP instability, thermal lensing

Squeezing enhancement of Advanced LIGO

Coming soon to a detector near you...

- First funds approved
- Laser, AEI SHG now being integrated at MIT
- OPO development ongoing at ANU
- Servo electronics (advLIGO prototypes) in progress at LHO
- No time to lose we must be ready to go by 15 Feb 2011

10

Back-action machine

displacement (nm)

- Extreme optical rigidity
- Stable, self-locked system
- "Cold" optical forces dominate dynamics

$$S_F = 4k_B T \frac{\Gamma_{\text{mech}}}{M} \approx 4k_B T_{\text{eff}} \frac{\Gamma_{\text{opt}}}{M}$$

 $k_B T_{\rm eff}$

 $\hbar\Omega_{
m eff}$

thermal occupation number $N \sim$

Feedback cooling

Feedback forces can be "cold" when sensing noise is low!

1 kHz OS stabilized, damped by feedback $N = 10^5$ constrained by laser frequency noise! (ambient T)/(effective T) = 43 000 Suspension Q = 20 000 1st instance where "cooling factor" > natural Q

Servo spring

- Initial LIGO post-S₅
 - kg-scale masses (10²⁶ atoms)
 - factor 10 above SQL
 - BUT strong radiation pressure forces are not available yet

Feedback cooling and the SQL

The optimal control strategy shifts the mechanical mode to the nearest approach to the SQL, and damps it.

140 Hz EOS formed, damped by feedback N = 234 - limited mainly by shot noise (ambient T)/(effective T) = 2 x 10⁸ Displacement is estimated pessimistically since some noise sources are unknown

Photo finish

NEMS M ~ picogram, Ω/2π ~ MHz Naik et al., Nature (2006)

Micro-toroid cavity $M \sim 10$ nanogram, $\Omega/2\pi \sim 50$ MHz _{G0906666} Geser et al., PRL (2006)

SiN micro-membrane M ~ 10 picogram, $\Omega/2\pi$ ~ 100 kHz Thompson et al., Nature (2008)

Progress toward back-action

We presently operate about a factor of 5 above the back-action goal. Scattering noise looms large in the detuned configuration (where the displacement signal is suppressed by the optical spring).

The mini-mirror suspension thermal noise has been remediated.

12 May 2009 G0900629-v1 GWADW

Suspension upgrades Then Now

6 Hz natural frequency, quality factor ~ 10000 ? Stainless steel, glass, and Vacseal adhesive Commercial optical fiber (cladding scraped off) All glass -- still bonded with Vacseal Custom-tapered fibers (courtesy of advLIGO) Much refinement in fabrication and handling

Point scatterers on ETMs needed cleanup → ongoing vent to drag-wipe mini-mirrors in situ G0900629-v1

Ring, Ring, Ring, Ring...

Entering the quantum RP regime

- First goal: verification of back-action noise
 - Power dependence (a weak signature)
 - Inject a squeezed state to manipulate it
 - 40m squeezer is being reconstituted for this purpose
- Ponderomotively squeezed light
 - amplitude fluctuations drive mirror motion, which then imprints on the phase
 - detuned operation makes
 broadband squeezing
 below the OS frequency

Quadrature entanglement

- Can form robust entanglement between carrier and subcarrier
 - joint squeezing of the two fields
- Exploits advantages of the optical trap configuration
 - high-power stability permits strong coupling via the mirror
 - optical entanglement is not overly sensitive to the mirror state
 - possibility to entangle optical fields of disparate wavelengths
 GWADW

Summary

- Squeezers prepare for a test in LIGO, GEO
 - demonstrate readiness to manipulate quantum noise in advanced detectors
- Back-action regime is nearly upon us
 - rich dynamics stiff optical springs and trapping
 - should yield observations of quantum radiation pressure, squeezing, and entanglement
- Quantum opportunity knocks
 - the SQL opens the door to ground state cooling and very macroscopic quantum objects

GWADW

Closing credits

- Tim Bodiya, Thomas Corbitt, Sheila Dwyer, Daniel Sigg, Nic Smith, Stan Whitcomb, Nergis Mavalvala (LIGO-MIT Quantum Measurement group)
- Rolf Bork, Alex Ivanov, Jay Heefner, Caltech 40m, many other LIGO Lab members
- Yanbei Chen and the MQM discussion group
- Fellow Squeezers at AEI and ANU