GW-Detection

The long baseline Interferometry of LISA

Guido Mueller

Dept. of Physics - University of Florida

GWADW

Ft Lauderdale

May 2009

G0900657-v1

2

LISA Technology

- 3 spacecraft constellation
- S/C separated by 5x10⁶km
- Two Drag-free proof masses inside each S/C (Drag-free in sensitive direction)
- Earth-trailing solar orbit
- 5 year operational lifetime

G0900657-v1

LISA

Limiting Noise sources:

Below 3mHz:
acceleration noise 3x10⁻¹⁵m/s²/rtHz
>1/f² displacement noise of 12pm/rtHz @3mHz

Above 3mHz:

- Limited by shot noise based on 40pW received light
 - 40cm telescope

Goal: Measure changes in the distance between proof masses

Staged approach:

- Interferometry between PM and optical bench (OB)
- Interferometry between OBs on different S/C
- Measure differential laser phase noise on each S/C (create a beam splitter)

Note:

- 10pm/rtHz ~ 10⁻⁵cycl./rtHz for $\lambda = 1 \mu m$
- relative S/C motion +/- 10m/s Doppler shifts of +/-10MHz

Note:

- 10pm ~ 10⁻⁵cycl. for λ = 1µm
- relative S/C motion +/- 10m/s
 Doppler shifts of +/-10MHz

OB

SC,

 T_{13}

SC₃

 T_{12}

 T_{21}

OB

 T_{32}

 OB_{21}

 B_{23}

SC₂

T₂₃

OB₃₁

 T_{31}

LISA Signals:

- Phase evolution in laser beat signals
- Beat frequencies betw. 2-20MHz

Interferometer measure a phase difference:

- Length changes $k\delta L$
- Frequency changes $2\pi \delta v \Delta L/c = > (\phi(\omega) (e^{-i\omega L1/c} e^{-i\omega L2/c}))$

Time Domain: $\phi(t-L_1/c) - \phi(t-L_2/c)$

LIGO: $\Delta L \sim 0$ Intrinsic Common mode rejection of δv

LISA: $\Delta L \sim 50\,000\,\text{km}$ would require $\delta v < 60 \mu \text{Hz/rtHz}$

Need to subtract phase noise in postprocessing
 G0900657-v1

Measuring a LISA arm

- Beat Signal on SC₂:
- PM Signal on SC₂:
- PLL condition:
- Beat Signal on SC₁:
- PM Signal on SC₁:

$$A\sin\left[2\pi v_{12}t + \phi_{1}(t - L/c) - \phi_{2}(t)\right]$$
$$S_{21}(t) = \phi_{1}(t - L/c) - \phi_{2}(t)$$
$$\phi_{2}(t) = \phi_{1}(t - L/c)$$
$$A\sin\left[2\pi v_{12}t + \phi_{1}(t) - \phi_{2}(t - L/c)\right]$$
$$S_{12}(t) = \phi_{1}(t) - \phi_{2}(t - L/c)$$
$$= \phi_{1}(t) - \phi_{1}(t - 2L/c)$$

8

G0900657-v1

- Identical measurement in 2nd arm
- SC₂ and SC₃ act as transponders

$$S_{12}(t) = \phi_1(t) - \phi_1(t - \tau_{12} - \tau_{21})$$
$$S_{13}(t) = \phi_1(t) - \phi_1(t - \tau_{13} - \tau_{31})$$

Time-Delay Interferometry

$$X(t) = S_{12}(t) - S_{13}(t) - S_{12}(t - \tau_{13} - \tau_{31}) + S_{13}(t - \tau_{12} - \tau_{21})$$

– All $\phi(t)$, $\phi(t-\tau)$, ... - terms show up twice with opposite sign and cancel

- First-order insensitive to laser phase noise G0900657-v1

What do we need to make this work?

• Do we have to have low noise transponders (mirrors) at the far ends?

What do we need to make this work?

- Do we have to have low noise transponders (mirrors) at the far ends?
 - No, we only have to measure \u00f6(t) at the far ends and then subtract them.

Measuring a LISA arm

- Beat Signal on SC₂:
- PM Signal on SC₂:
- PLL condition:
- Beat Signal on SC₁:
- PM Signal on SC₁:

$$A\sin[2\pi v_{12}t + \phi_{1}(t - L/c) - \phi_{2}(t)]$$

$$S_{21}(t) = \phi_{1}(t - L/c) - \phi_{2}(t)$$

$$\phi_{2}(t) = \phi_{1}(t - L/c) + \delta\phi(t)$$

$$A\sin[2\pi v_{12}t + \phi_{1}(t) - \phi_{2}(t - L/c)]$$

$$S_{12}(t) = \phi_{1}(t) - \phi_{2}(t - L/c) - \delta\phi(t - L/c)$$

$$= \phi_{1}(t) - \phi_{1}(t - 2L/c) - 12$$

G0900657-v1

What do we need to make this work?

- Do we have to have perfect transponders (mirrors) at the far ends?
 - No, we only have to measure \u00f6(t) at the far ends and then subtract them.
- Do we have to have the same phase noise enter in both arms? (Beamsplitter)

What do we need to make this work?

- Do we have to have perfect transponders (mirrors) at the far ends?
 - No, we only have to measure φ(t) at the far ends and then subtract them.
- Do we have to have the same phase noise enter in both arms? (Beamsplitter)
 - No, we only have to measure the differential phase noise and subtract that as well.

- Repeat measurement in two arms
- SC₂ and SC₃ act as transponders

$$S_{12}(t) = \phi_1 (t) - \phi_1 (t - \tau_{12} - \tau_{21})$$

$$S_{13}(t) = \phi_1 (t) - \phi_1 (t - \tau_{13} - \tau_{31})$$

$$+ \Delta \phi_{12}(t) - \Delta \phi_{12} (t - \tau_{13} - \tau_{31})$$

• Time-Delay Interferometry

$$X(t) = S_{12}(t) - S_{13}(t) - S_{12}(t - \tau_{13} - \tau_{31}) + S_{13}(t - \tau_{12} - \tau_{21})$$
$$-\Delta \phi_{12}(t) + \Delta \phi_{12}(t - \tau_{13} - \tau_{31})$$

What do we need to make this work?

• We need to be able to measure $\phi(t)$ in each signal with the necessary accuracy

Phasemeter

Phasemeter

Phasemeter:

- Digital
- PLL with NCO

Numerical Controlled Oscillator Phase Reconstruction

Measures the phase against the on board clock: \succ Clock noise: $\delta \tau < 5 \times 10^{-14} \text{s/rtHz}$ for 20 MHz beat Requires clock stabilization between S/C G0900657-v1

Courters for Daniel Shaddock (JPL)

Status of Phasemeter:

Analog Parts

- Photodiodes and Amplifiers
- Cables
- ADC timing

Ongoing R&D at JPL, AEI, GSFC, UF, ...

JPL-Testbed

- Sagnac Configuration
- Laser Transponders
- Multiple Photo detectors

Critical areas:

- Dispersion in PDs
- Timing noise in ADCs
 - Pilot tone (JPL)
 - Adding the pilot tone

UF-Testbed with:

- Laser Transponders
- Signal travel times
- Doppler shifts
- UF-Phasemeter

UF-Test with:

- Laser Transponders
- Signal travel times
- Doppler shifts
- UF-Phasemeter

Component test w/o clock noise but larger input noise

What do we need to make this work?

• We need to be able to measure $\phi(t)$ in each signal with the necessary accuracy

Phasemeter

- The time stamps on each $\phi(t)$ have to be accurate.
 - > Ranging: $\Delta L/c = \Delta \tau$
 - Laser frequency stabilization δν
 (to reduce the required ranging accuracy)
 - **>** Requirement: $\delta v \Delta L/c = \delta v \Delta \tau < 10^{-6}$ cycl./rtHz

LISA Ranging

 $\Delta \tau$: Uncertainty in Signal Travel time ~ Ranging

• Modulate Laser field with PRN code

One "Chip" of N clock cycl.

• Current Best Estimate: $\Delta L < 1m$

Accuracy < Clock cycle using interpolation

AEI-Results

G0900657-v1

LIGO: $\Delta L \sim 50\,000\,km\,$ would require $\delta v < 60 \mu Hz/rtHz$

- Phasemeter
- Timing System for Constellation

Requirement from $2\pi \delta v \Delta L/c = 2\pi \delta v \Delta \tau$

- $\Delta L = 1m \implies \delta v = 300 Hz/rtHz above 3mHz$
- Goal: $\delta v = 30 \text{Hz/rtHz} (1 + (2.8 \text{mHz/f})^4)^{1/2}$

<u>Multiple Options:</u>

- Local stabilization on fixed cavity or iodine line
- Stabilization on LISA arms (~LIGO-like)
- Or a combination of both

Fixed:

- Pound Drever Hall technique
- Heterodyne Interferometer (LTP-style IFO)

Tunable (to combine with Arm locking):

- PZT-cavity
- Offset phase lock
- Sideband locking

- Lasers might be pre-locked to mechanical (cavity or Mach-Zehnder) or spectroscopic reference (iodine)
- Use the arms as a stable frequency reference

- Single-arm locking error signal: $\phi(t) \phi(t \tau_{RT})$
- Insensitive to noise at frequencies: $f_n = n/\tau_{RT}$

G0900657-v1

General closed-loop stability

$$T_{CL}(s) = \frac{1}{1 + T_{OL}(s)}$$

• Laplace-domain arm-locking error signal

$$1 - \exp(-s\tau_{RT})$$

- nulls at $n/\tau_{\rm RT}$
- phase change from –90° to +90° at n/τ_{RT}

- Im Frequency actuator acts as integrator $\frac{1}{s} [1 - \exp(-s\tau_{RT})]$ System enters noise enhancement Re region Increased gain brings increased noise enhancement System is marginally stable, any phase loss (latency) could cause instability
 - Note: Frequency actuator as integrator can be avoided when we use frequency meter instead of phasemeter (phasemeter contains one integrator as last stage)

• Controller with *s^p* slope rotates system away from (-1,0)

 $s^{p-1}[1-\exp(-s\tau_{RT})]$

- Gain can be increased below $1/\tau_{_{\rm RT}}$
- Noise enhancement at n/τ_{RT} will remain finite

Use other arms to get phase noise information at nulls

dual arm-locking

- first null between 1-3 Hz
- No peaks in LISA band
- Increased noise suppression

Sensor: $S = T(f)_{com}S_{com} + T(f)_{Diff}S_{Diff}$ $S_{com} = S_1 + S_2$ $= > \phi(\omega) (2 - e^{-i\omega L1/c} - e^{-i\omega L2/c})$ $S_{Diff} = S_1 - S_2$

$$=> \phi(\omega) \left(e^{-i\omega L1/c}-e^{-i\omega L2/c}\right)$$

 S_{diff} has 1^{st} zero at $1/\Delta \tau = 1-3Hz$

- allows to increase gain earlier
- Bad SNR at low frequencies (Problems with Clock noise, Shot Noise and S/C motion)

G0900657-v1

Sensor: $S = T(f)_{com}S_{com} + T(f)_{Diff}S_{Diff}$

Modified Dual Arm-locking sensor:

- Common arm sensor dominates below 30mHz \succ Increase gain with multiple integrators
- Differential arm sensor modifies sensor between 30mHz and 1Hz
 - \succ Adds signal at the sensor nulls
- Common arm signal dominates above 1Hz
 ➢ Roll down with 1/sqrt(f)
 ➢ Differential sensor signal is unstable above 1Hz

G0900657-v1

37

Dual Arm-Locking Performance w/o prestabilization

Kirk McKenzie

Maximum arm length mismatch: $\Delta tau = 0.255s$, $\Delta L = 75,000$ km.

Gain limited, noise sources negligible. (Still_{GU900657-v1}capability)

Minimum arm length mismatch that meets TDI capability: $\Delta tau = 40 \mu s$, $\Delta L = 12 \text{ km}$.

Noise limited for ∆L<12km. (only see this if an interspacecraft link fails)

Problem:

- Dopper shift introduces offset
 - AC-coupled sensor (corner freq.: ~μHz)
 or estimate Doppler shift well enough
- Offset with be integrated up linear ramp in laser frequency

Time Domain: ϕ (t)- ϕ (t-L₂/c)+ $\Delta \omega$ t $\Delta \omega = \omega_{\text{Doppler}} - \omega_{\text{PM}}$

with prestabilization:

- PZT Cavity
- Sideband locking
- heterodyne IFO on MZ

PZT-Cavity: Alix Preston (UF)

Sideband locking: GSFC results

Summary

Long baseline IFO:

- Laser frequency noise canceled in post-processing (TDI)
- Laser ranging and clock synchronization with PRN codes with <1m accuracy
- Clock noise measurements using GHz modulation tones
- Multiple options for Laser frequency stabilization:
 - Cavity
 - with heterodyne IFO (simplest)
 - PDH (most heritage)
 - Arm Locking (most elegant)
 - modified dual arm locking (MDAL)
 - Arm Locking with pre-stabilization
 - MDAL with Sideband locking
 - MDAL with PZT
 - MDAL with LTP-style Mach Zehnder