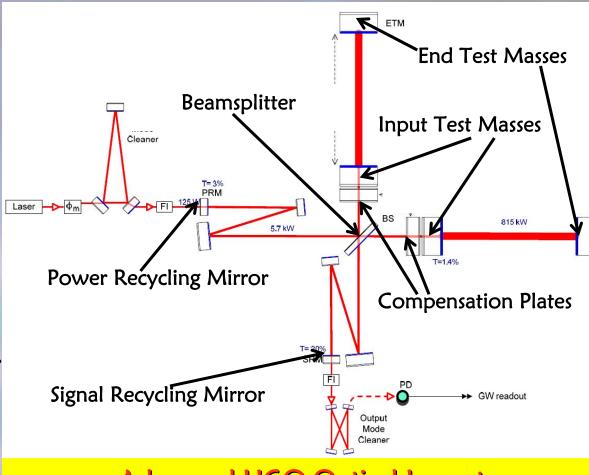
Advanced LIGO Test Masses and Core Optics

Gregory Harry


LIGO Lab / MIT

AIGO Conference Perth Australia February 2010

Optics Overview

Core Optics

- Test Masses
 - -Input and End
 - Define optical cavity
 - -Crucial to sensitivity
- Beamsplitter
- Compensation Plate
 - -Thermal lens control
- Power Recycling Mirror
 - -Increase optical power
- Signal Recycling Mirror
 - -Tune quantum noise

Advanced LIGO Optical Layout

Optics Issues

Thermal Noise

- Substrate
- Coating
 - Material
 - Design
- Spot Size
- Temperature

Thermal Lensing

- Absorption
- Optical Power
- Mitigation

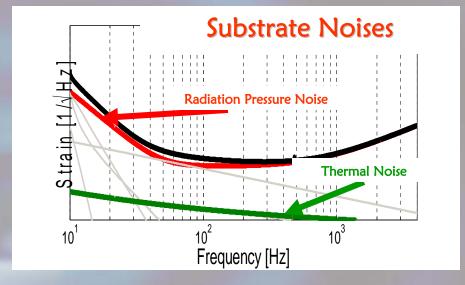
Optical Properties

- Polish and Scatter
- Spot Size and Diffraction
- Transmission Matching

High Power

- Parametric Instabilities
- Damage

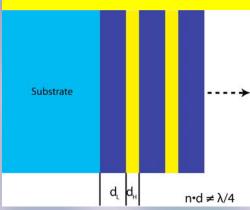
Miscellaneous


- Charging
- Connection to Suspension
- Non-Gaussian Noise

Test Mass Substrate

Silica

- Same as Initial LIGO
- Thermal Noise
 - Technical noise source
- Different types for absorption
 - Very low: ITM, BS, CP
 - Low: Recycling mirrors
 - Average: ETM

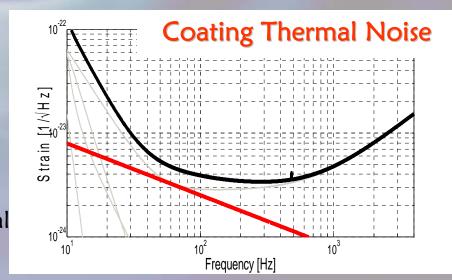


- 40 kg mass
 - Reduce radiation pressure noise
 - 4X as large as Initial LIGO
- 17 cm radius X 20 cm thickness
 - Practical to manufacture /suspend
 - Large beam, diffraction loss <2 ppm
 - Flats on side: suspension attachment

Test Mass Coatings: Thermal Noise

Optimized Coating

High Index Material

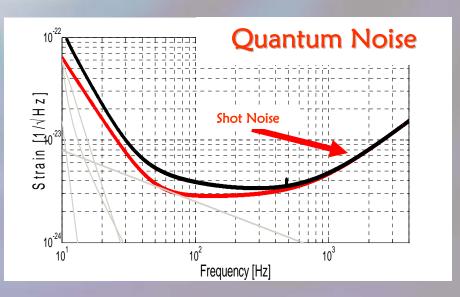

- Titania doped tantala
- Lower ϕ than tantala in initial LIGO
- Same Y, higher n
- dn/dt not problematic
- Low Index Material
 - Silica, same as Initial LIGO
 - Low ϕ , Y well matched to substrate

Laser Spot Size

- 5.5 cm on ITM, 6.2 on ETM
- ~3 cm in Initial LIGO
- Reduces thermal noise

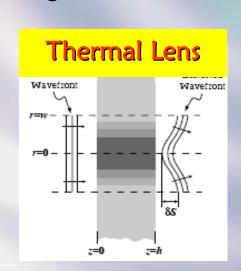
Optimized thickness

- Reduce amount of high index material
- Preserve reflectivity
- Allows for dichroic behavior

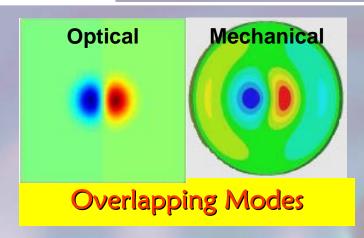


Test Mass Coatings: Optical Properties

- Wavelength: 1.064 μm
 - Same as initial LIGO
 - Some efficacy at 532 nm for lock acquisition interferometer
- Scatter: < 10 ppm
 - 10-70 ppm in initial LIGO, point scatterers
 - Requires microroughness < 0.16 nm RMS
 - Polish done with ion beam
- ETM Transmission: < 6 ppm
 - Initial LIGO 12 ppm
 - Thicker coating than ITM
- ITM Transmission: 1.4 %
 - Initial LIGO 2.7%
 - Match between arms to 0.2%
 - Determines cavity pole frequency


LIGO Test Masses - Thermal Lensing

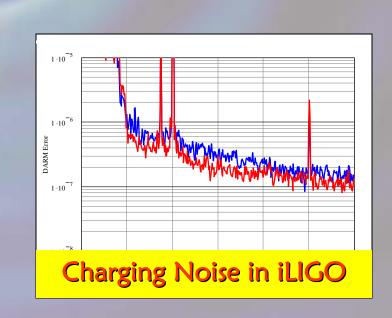
- Coating absorption: <0.5 ppm
 - ~ 1 ppm initial LIGO
- Cavity power: 800 kW
 - Initial LIGO 10 kW
- Substrate absorption: ~ 4 ppm
- Silica *dn/dT* ~ 10⁻⁵
 - Large in Initial and Advanced


Radiative load tailoring Thermal Lensing Mitigation

Thermal Lens Mitigation

- Ring Heaters on Compensation Plate
 - Adds heat to outside rim
- Projected CO₂ laser
 - Similar to Initial LIGO
 - Adds heat where needed
 - Possible to scan laser for more controlled heating

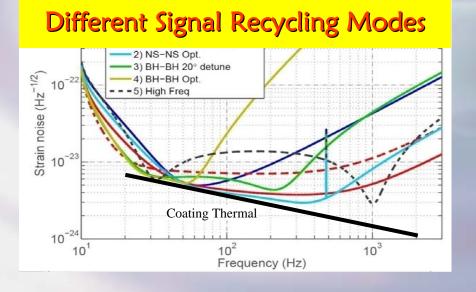
Test Masses – Other Issues



Other Concerns

- Parametric instabilities
 - Control problems/lock loss
- Silicate bonding
 - Connection to suspension
- Damage from high optical power
- Non-Gaussian noise
 - Limiting for iLIGO searches

Charging


- Earthquake stops
 - Silica tipped, viton in iLIGO
- Electrostatic Drive (ESD)
 - Can be used as charge sensor
- Mitigation
 - UV, Ion guns, venting

Other Core Optics

Beamsplitter

- 75 cm diameter X 6 cm thick
- Low absorption silica
- Beamsplitter ratio 50/50
 - Equal power to 1%
- Wire loop suspension
- Tantala/silica coating

Recycling Mirrors

- 30 cm diameter X 16 cm thick
- Power recycling mirror
 - Increases optical power
- Signal recycling mirror
 - Tune optical noise by changes in transmission and position

Advanced LIGO Core Optics Status

- All silica blanks have been received
- Polishing in progress on all core optics
- Coating in progress on test masses
 - ITM coating design approved, coating to start at LMA, Lyon, France
 - ETM coating design in progress at LMA
 - Other core optics to be coated at CSIRO, Sydney, Australia
- Connection to silica suspensions being tested
 - LASTI prototype at MIT
 - Silicate bond and welding
- Metrology to be done at Caltech & coating vendors
- Delivery to sites begins winter 2011

Comparison to Other 2nd Generation Detectors

Advanced Virgo

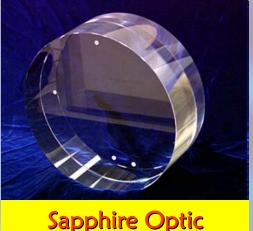
- Similar to Advanced LIGO
- Different silicate bond geometry

Large Cryogenic Gravitational Telescope

- Sapphire masses: 30 kg
- Cryogenic: 20 K
- Tantala/Silica coatings

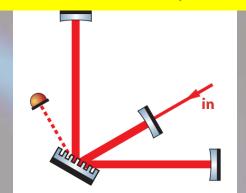

GEO HF

- Focus on high frequency
- 14 kg test masses
- Tantala/Silica coatings
- Small beam (0.8 and 2.5 cm)
- Signal recycling 1st generation


Third Generation Ideas

Thermal noise

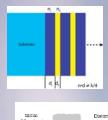
- New substrates
 - Sapphire, silicon
- New coating materials
- Beam shaping
 - Mesa, Gauss-Laguerre
- Khalili cavities
- Change wavelength
 - Thinner coating
- Corner reflectors
- Cryogenics



Gauss-Laguerre Mode

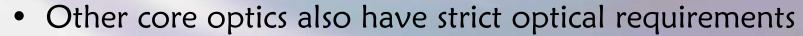
Sapphire Optic

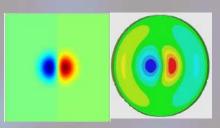
Diffractive Beamsplitter

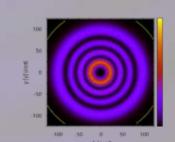

Quantum Noise

- Diffractive optics
 - All reflective
 - Higher optical power
 - Lower shot noise
- Larger substrates
 - Lower Heisenberg uncertainty
 - Lower radiation pressure noise

Conclusions

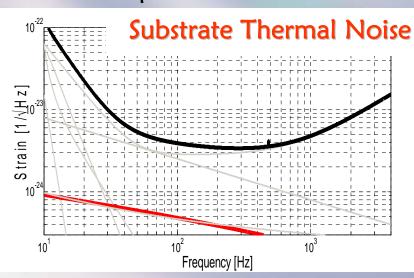

- Advanced LIGO test mass low noise design
 - Larger mass for radiation pressure
 - Low absorption/scatter for shot noise
 - Improved coatings for thermal noise

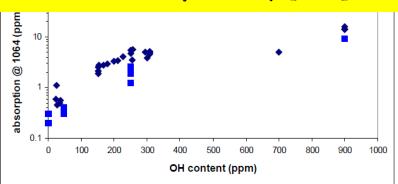




- Concerns for test masses
 - Thermal lensing
 - Charging
 - Parametric instability
 - Non-Gaussian noise, silicate bonding, high power, etc.

- All Advanced LIGO core optics being made
- Other designs in other 2nd generation detectors
- Research in progress for 3rd generation ideas

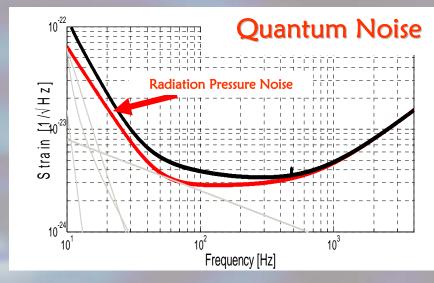



Test Mass Substrate Material

Silica

- Same as Initial LIGO
 - Experience, availability
- Thermal Noise
 - Technical noise source
 - Brownian: Model of mechanical loss
 - Thermoelastic: Depends on well known parameters

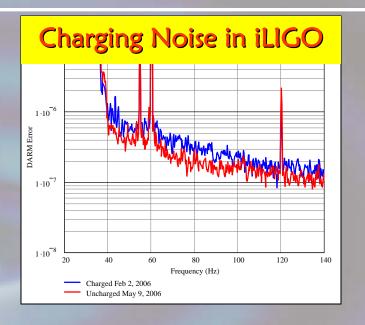
Silica Absorption by [OH]


Types

- Heraeus 3001 Low OH
 - ITM, BS, CP
 - Absorption < 0.2 ppm/cm
- Corning 7980 0C
 - Recycling Mirrors
- Corning 7980 5F/Heraeus 311
 - ETM

Test Mass Geometry

- 40 kg mass
 - Reduce radiation pressure noise
 - Reduce Heisenberg uncertainty
 - 4X as large as Initial LIGO
- 17 cm radius X 20 cm thickness
 - Practical to manufacture /suspend
 - Large beam
 - diffraction loss <2 ppm
 - Flats on side: suspension attachment



- Radius of curvature
 - 2 kilometers
 - 7 km (ITM), 15 km (ETM) in Initial LIGO
- Wedge angle
 - <0.1° on back side</p>
 - Back reflected beam out of optical path
 - Reflected beams used as pickoff

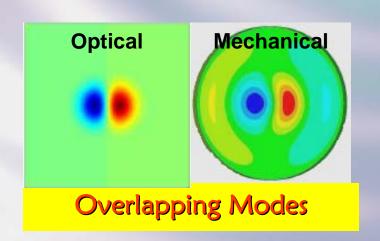
Test Masses - Charging

- Source of low frequency noise
- Earthquake stops
 - Silica tipped
 - Viton in initial LIGO
 - Reduces charge transfer
- Electrostatic Drive (ESD)
 - Can be used as charge sensor
 - Possible interactions with charge

Charge Mitigation

- Nothing in Initial LIGO
- Ultraviolet light
 - Increased coating absorption
- Low energy ion gun
- Venting air, argon, etc

Test Masses – Other Issues


Parametric Instabilities

- Exchange of energy between optical and mechanical modes
 - Overlap of mode shapes
- Control problems /lock loss
- Mitigation being studied

Other Concerns

- Silicate bonding
 - Connection to suspension
 - High ϕ but far from beam
- Damage from high optical power
- Non-Gaussian noise
 - Limiting for iLIGO searches
 - Coating defects, thermal stresses, mechanical stress in bonds, etc.

