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I. INTRODUCTION

The aim of this investigation is to construct the expected upper-limit sensitivity of the stochastic radiometer search in terms of
h0 the gravitational wave strain tensor amplitude commonly used parameter used within the LVC pulsar group. We focus only
on the stochastic radiometer search as applied to the continuous wave targeted search for the low-mass X-ray binary Sco X-1 in
the S4 [1] and S5 analyses. We do not refer to the optimised continuous wave radiometer analysis of [2].

II. THE CONTINUOUS WAVE SIGNAL

We start by defining a continuous wave signal assuming a rapidly rotating tri-axial neutron star as the source. The strain as
measured at a detector can be written as

h(t) = F+(t;α, δ)h+(t;~θ) + F×(t;α, δ)h×(t;~θ) (1)

where the antenna response functions to the “plus” and “cross” polarisations are defined as

F+(τ;α, δ) = a(t;α, δ) cos 2ψ + b(t;α, δ) sin 2ψ, (2)
F×(t;α, δ) = b(t;α, δ) cos 2ψ − a(t;α, δ) sin 2ψ (3)

and ψ is the polarisation angle of the signal. Note that the time and sky-position dependent functions a(t;α, δ) and b(t;α, δ) are
exactly identical to the quantities labelled F+ and F× as used in the stochastic search and defined in [3]. The contributions from
the 2 signal polarisations are

h+(t;~θ) = A+ cos
[
Φ(~θ, t) + φ0

]
(4)

h×(t;~θ) = A× sin
[
Φ(~θ, t) + φ0

]
(5)

with the polarisation amplitudes

A+ =
1
2

h0(1 + cos2 ι) (6)

A× = h0 cos ι (7)

where ι is the inclination angle of the pulsar.
The signal phase Φ(t;~θ) is a function of time t and of a multitude of signal parameters defined by the vector ~θ. This vector of

parameters includes the source phase parameters f0, . . . , f n
0 , the spin epoch tref , the sky position parameters α, δ that define the

phase evolution due to the motion of the detector, the orbital parameters, semi-major axis a, orbital period P, time of periapsis
tp, eccentricity e, argument of periapse ω, plus any number of other quantities.

In the stochastic radiometer analysis (it is my understanding that) the non-monochromatic nature of the target object is ac-
counted for by choosing a frequency resolution that safely contains the signal’s frequency variations in time throughout the
coarse of the total observation. Within a single coherent segment the source is safely assumed to be mono-chromatic.
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III. THE CROSS-CORRELATION STATISTIC FOR A CONTINUOUS GW SIGNAL

The style of notation and description of the data analysis methods used in the stochastic radiometer search seems strongly
rooted in it’s original all-sky, all-frequency isotropic stochastic background analysis (based on [3]). For simplicity we have
attempted to use a far simpler approach to the cross-correlation allowable by the fact that we fix the analysis to a single sky
position and frequency. We also assume that the detector noise is stationary throughout the analysis. In addition we assume
co-located but non-aligned detectors since the process of accounting for the separation of detectors is a trivial time shift which
does not effect the sensitivity of the search when the sky position of the source is known.

We start by defining the cross-correlation statistic between 2 detector data-sets s1(t) and s2(t),

S =

∫ ∞

0
dt s1(t)s2(t)

= 2<
{∫ ∞

0
d f s̃∗1( f )s̃2( f )

}
≡ 2∆ f<

{
s̃∗1( f )s̃2( f )

}
(8)

such that, given our assumptions that the detectors are co-aligned and the signal remains within a single discrete frequency bin
∆ f we arrive at the above simplistic frequency domain result.

The discrete Fourier transform definition we have used is

s̃( fk) = ∆t
N−1∑
j=0

s(t j)e−2πi jk/N . (9)

where k indexes each of the N frequency bins, each of width ∆ f = 1/T where T is the coherent observation time. Henceforth we
will drop the frequency dependence from the data-sets since we assume that we are focused on a single frequency bin of interest.

For the pulsar signal defined in the previous section we obtain the following frequency domain representation if evaluated at
a frequency bin containing the source instantaneous signal frequency,

h̃i =
1
2

Teiφ0
(
A+F+

i − iA×F×i
)
. (10)

Therefore, for a common signal is additive Gaussian noise ñi in each detector we compute the expectation value of the cross-
correlation statistic S as

〈S 〉 = 2∆ f
〈
<

{(
ñ∗1 + h̃∗1

) (
ñ2 + h̃2

)} 〉
= 2∆ f<

{
s̃∗1 s̃2

}
=

1
2

T
[
(A+)2F+

1 F+
2 + (A×)2F×1 F×2

]
. (11)

It seems to be the intention in the stochastic radiometer analysis to normalise their filter function (which we have up to this point
omitted) such that the cross-correlation statistic itself is an estimator of the quantity of interest. My understanding is that the
quantity Y/T is chosen to be proportional to H where Y is equivalent to our S and H is defined as the one-sided spectrum of
strain power.

In our case we notice that both A+ and A× are proportional to h0 and we will therefore chose the following arbitrary choice of
normalisation

S ′ =
2S

T
[
F+

1 F+
2 + F×1 F×2

]
=

4<{s̃1 s̃2}

T 2
[
F+

1 F+
2 + F×1 F×2

] (12)

such that S ′ is proportional to h2
0. Indeed we see that for a circularly polarised signal |A+| = |A×| our new normalised statistic is

equal to h2
0.

So for completeness, we define the expectation value of the new statistic as

〈S ′〉 =

[
(A+)2F+

1 F+
2 + (A×)2F×1 F×2

][
F+

1 F+
2 + F×1 F×2

] (13)
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and its variance as

σ2 = 〈S ′2〉 − 〈S ′〉2

=
16

〈 [
<(ñ∗1 + h̃∗1)<(ñ2 + h̃2) + =(ñ∗1 + h̃∗1)=(ñ2 + h̃2)

]2 〉
T 4

[
F+

1 F+
2 + F×1 F×2

]2 − 〈S ′〉2

=
16

〈 (
<ñ1<ñ2

)2
+

(
=ñ1=ñ2

)2
+

(
<ñ1<h̃2

)2
+

(
<h̃1<ñ2

)2
+

(
=ñ1=h̃2

)2
+

(
=h̃1=ñ2

)2 〉
T 4

[
F+

1 F+
2 + F×1 F×2

]2

=
2P1P2

T 2
[
F+

1 F+
2 + F×1 F×2

]2 +


P2

[(
A+F+

1

)2
+

(
A×F×1

)2
]

+ P1

[(
A+F+

2

)2
+

(
A×F×2

)2
]

T
[
F+

1 F+
2 + F×1 F×2

]2

 (14)

where we have used

〈<ñ2
i 〉 = 〈=ñ2

i 〉 =
1
2

T Pi (15)

where Pi is the single-sided noise power spectral density of the i’th detector estimated at our frequency of interest.
Note that in the weak signal case we can approximate the variance of S ′ by taking only the first term in Eq. 14 which seems

to be an approximation also made in the stochastic radiometer analysis.
It appears that the reason behind dividing up the stochastic radiometer analysis in time is motivated by the requirement of

noise stationarity. This lends itself usefully to the pulsar case where, if the signal frequency variation with time is ignored one
must use broad frequency bins to “catch” the signal. We will therefore compute the cross-correlation statistic for each of M
equal length segments of data and combine them to form a final optimal statistic.

Due to our choice of normalisation we will have M separate estimates of a quantity proportional to the constant h2
0 and a

theoretical estimate of the variance of each of these measurements. For the stochastic radiometer analysis the choice of how to
combine these statistics is one whereby a weighted average of the statistic is computed where each measurement is weighted by
it’s theoretical variance. This is optimal in the maximum likelihood sense under the assumption that each summed statistic is
Gaussian distributed with identical means. In the pulsar single-frequency-bin case this condition is not met.

We continue in the same fashion and generate our final statistic as

S opt =

∑M
j=1 S ′j/σ

2
j∑M

j=1 1/σ2
j

(16)

which, by the central limit theorem, will be distributed according to a Gaussian distribution with mean

〈S opt〉 =

∑M
j=1

[
(A+)2F+

1 jF
+
2 j + (A×)2F×1 jF

×
2 j

] [
F+

1 jF
+
2 j + F×1 jF

×
2 j

]
∑M

j=1

[
F+

1 jF
+
2 j + F×1 jF

×
2 j

]2 (17)

where we note that since the antenna pattern functions are slowly varying and we have been able to approximate them as constant
during a coherent segment length we now index them since they will be different for each segment. The variance of the final
statistic is

σ2
opt =

 M∑
j=1

1/σ2
j


−1

=
2P1P2

T 2 ∑M
j=1

[
F+

1 jF
+
2 j + F×1 jF

×
2 j

]2 . (18)

If we now define the signal-to-noise ratio as

ρ =
〈S opt〉√
σ2

opt

(19)
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we see that in the special case of a circularly polarised signal we can write

ρcirc = h2
0T

√√∑M
j=1

[
F+

1 jF
+
2 j + F×1 jF

×
2 j

]2

2P1P2

≈ h2
0

√√
TTobs

〈 [
F+

1 F+
2 + F×1 F×2

]2 〉
2P1P2

(20)

from which it follows that for a fixed signal-to-noise ratio h0 ∝ (TTobs)1/4 =
√

T M1/4. This is a standard result for an incoherent
search.

IV. UPPER LIMITS ON h0

The methods by which the upper-limits are obtained in the S4 and S5 stochastic radiometer analyses are not explained in
either LSC/LVC results paper. It is mentioned however, that they are obtained using a Bayesian approach and a 90% confidence
threshold is applied.

We will therefore go about applying a Bayesian upper limit on the parameter h0 given a single measurement of the S opt detec-
tion statistic. This statistic is drawn from a Gaussian distribution with mean and variance given by Eqs. 17 and 18 respectively.
The associated likelihood is

L(S opt|h0, cos ι, ψ) =
1√

2πσ2
opt

exp

− 1
2σ2

opt

(
S opt − µ(h0, cos ι, ψ)

)2
 (21)

where we have defined µ(h0, η, ψ) = 〈S opt(h0, η, ψ)〉.
The marginalised posterior probability density of h0 is then

p(h0) ∝
∫ 1

−1
d cos ι

∫ π/4

−π/4
dψ exp

− 1
2σ2

opt

(
S opt − µ(h0, η, ψ)

)2
 (22)

where we choose uniform priors consistent with the physical distributions one would attribute to cos ι and ψ and for simplicity we
adopt a non-physical uniform prior on h0

1. Also note that the variance of the statistic (in the weak signal regime) is independent
of the signal parameters and is only a function of the antenna patterns meaning we can drop it from the posterior normalisation.

To compute an expected upper limit sensitivity for a given frequency bin we assume that we measure a value of S opt consistent
with its distribution in the absence of a signal i.e S opt = µ(h0 = 0) = 0 (this is equivalent to a 50% false alarm rate). We then
solve

0.9 =

∫ h90%
0

0
p(h0) dh0 (23)

after correctly normalising the h0 posterior obtained from Eq. 22.
Note that for the circular polarisation case where cos ι = ±1 the expectation value of the detection statistic µ becomes

independent of ψ and the posterior on h0 is simply

p(h0)circ ∝
1
σopt

exp

−
(
S opt − h2

0

)2

2σ2
opt

. (24)

In [4] equation 3.51 equates a measurement result from the stochastic radiometer analysis to a quantity that is a function of the
pulsar parameters. This quantity is identical to the quantity 〈S opt〉 defined in Eq. 17 and it is stated that this is equal to H( f )d f
which is what I assume (since it is not stated clearly) is what is referred to as “strain” and is therefore the quantity on which an
upper-limit is set.

One can see from Eq. 17 that 〈S opt〉 and hence H( f )d f is exactly equal to h2
0 only for a circularly polarised continuous

gravitational wave. This corresponds to the optimal configuration for a pulsar (spin axis (anti)parallel with the line of sight)
and hence a null detection assuming a circularly polarised source leads to more stringent (lower) upper-limits than for any other
polarisation.

1 This choice of prior is identical to that used in the known pulsar searches i.e. the Crab pulsar search.
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V. CONCLUSIONS

The main point of this investigation is to understand what exactly the radiometer analysis actually sets it’s upper-limit on
and it appears that in terms of quantities familiar to the pulsar working group, it is equivalent to setting an upper limit on h0
assuming a circularly polarised source. This does not mean that it is insensitive to any other polarisations, it simply means
that the upper-limit always assumes circular polarisation and is hence always more stringent (less-conservative) than an angle-
averaged upper-limit (such as those published within the pulsar group) by a sky position dependent factor of 2.43. This is the
ratio in 90% confidence h0 upper-limit values between the unknown nuisance parameter case and the circularly polarised case
assuming that the detection statistic is equal to its expectation value. We find that for long total observation spans (� 1 day) this
ratio is dependent only upon the declination of the source on the sky and varies over the range 2.21–2.61.

In addition, we also note that for Sco X-1 the choice of a 0.25 Hz wide frequency bin leads to a potential loss in sensitivity at
lower frequencies where the orbital Doppler modulation will be far smaller than this value. This orbital Doppler modulation is
known to be

∆ forb = 0.133 ± 0.017 Hz
(

f
500 Hz

)
(25)

which means that for frequencies & 500 Hz the sensitivity of the stochastic radiometer search becomes increasingly weakened.
For example, at the maximum frequency searched f = 1800 Hz a single frequency bin will contain at most 50% of the signal.
The upper-limits at these higher frequencies are therefore significantly under-estimated.
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