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1 Summary

We derive the performance equations for an active isolation system. We consider ground
translation, ground tilt, and sensor noise for a system with sensor blending and sensor
correction. We assume a plant and sensor with no cross coupling, except for low-frequency
tilt-horizontal coupling.

We see that, at low frequency, the transmission of ground translation is approximately
equal to the displacement sensor blending filter, for systems with feedback only. When
sensor correction is added, the low-frequency performance becomes the product of the
displacement sensor blend filter and the complement of the high-pass sensor correction
signal.

Noise from the differential vertical GS-13s used to measure tilt is also a major limitation.
This noise can cause erroneous tilt of the table, which causes excess horizontal motion.

2 Ground Translation

We first consider the translation performance of a platform with active feedback and sensor
correction. We describe the platform translation as xp and the relevant platform tilt at tp.
The inputs are the ground motion for translation, gx, and tilt, gt, and noise of the various
sensors: feedback displacement sensors, ndisp,x; feedback geophones, nGS13,x; and ground
based sensor sensor correction STS-2, nSTS,x.

We make a simple model of the system as shown below in figure 1. The controller is
Kx, the plant is P . There are several inputs to the plant, including ground translation,
ground tilt, and commands from the controller. We distinguish the coupling of these to
the translation output by defining Px←gx , Px←gt , and Px←K .

There are three sensors which are relevant, the feedback inertial sensor, SGS13, the
feedback displacement sensor, Sdisp, and the ground-based sensor correction inertial sensor,
SSTS,x. The feedback inertial sensor for the Advanced LIGO HAM, and for stage 2 of the
Advanced LIGO BSC is a GS-13, hence the name. Also, this document was written before
we switched out the STS-2s for the Trillium 240s. The sensor blocks are meant to represent
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the path from the motion input to the sensor through the DAC, hence the units of SGS13

would be counts/meter. In order to include DAC noise in this model, it would need to be
represented in terms of equivalent platform motion.
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Figure 1: Full diagram of the translation control loops

In this analysis we next invert the sensor response with S−1
disp, etc. so that the signals

from the 3 sensors are in matching units, namely meters (this is actually nanometers at the
observatories, so we can see the signals on the dataviewer screens). This allows us to remove
the sensor blocks from the analysis, as shown in figure 2. If the slightly freewheeling nature
of this transform is troubling, one can image that the sensor and sensor inversion blocks are
replaced by a block C with a flat transfer function equal to 1 count per meter. It is useful
to have a full physical picture when one goes to put this into hardware, but it will not be
important in the rest of the performance analysis. The next blocks are the complementary
filter blocks for the inertial and displacement sensor, FGS13,x and Fdisp,x, and the high-pass
filter block for the sensor correction path, FSTS,x. The filters for the feedback sensors are
truly complementary, hence FGS13,x + Fdisp,x = 1. The sensor correction filter, FSTS,x

becomes 1 at high frequency, but does not have a complement in this diagram. Never-the-
less, we will see its complement later in the analysis.

We begin looking at figure 2 and writing the loop gain, Gx, which we will abbreviate as
G for the time being. We can start at the output, and express it in terms of loop elements
and itself.

G = Px←KKx(FGS13,x + Fdisp,x) (1)
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Figure 2: Simplified diagram of the translation control loops

Which immediately simplifies to
G = Px←KKx (2)

because the filters for the inertial sensor and displacement sensor are complementary. It
is important to note that there are no minus signs in the loop, although there are some
where the displacement sensor sees ground motion.

We can work out the coupling of ground translation to platform translation by starting
at xp and working backwards.

xp = Px←gx · gx + Px←K ·Kx ·
(
FGS13 · xp + Fdisp,x · (xp − gx) + Fdisp,x · FSTS,x · gx

)
(3)

We can rewrite this as

xp = Px←gx · gx + G · xp −G · Fdisp,x · gx + G · Fdisp,x · FSTS,x · gx. (4)

Additional algebra yields

xp · (1−G) = Px←gx · gx −G · Fdisp,x · gx + G · Fdisp,x · FSTS,x · gx. (5)

We now write xp in terms of ground translation

xp =
Px←gx

1−G
gx +

−G

1−G
Fdisp,x · gx +

G

1−G
Fdisp,x · FSTS,x · gx. (6)
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At frequencies below 1 Hz we can make a few approximations. The loop gain, G is
large, typically more than 100. The plant transfer function from ground translation to
platform translation is approximately 1. With the damping loops on, it is never larger
than about 3. In this case, the first term, the direct plant coupling, can be ignored, and
G/(1−G) is approximately -1, so equation 6 becomes:

xp ≈ Fdisp,x · gx − Fdisp,x · FSTS,x · gx (7)

If there is no sensor correction running (and no sensor noise), we see that the isolation
performance is simply the displacement sensor blend filter. With the sensor correction, we
get more performance, and we can express equation 7 as

xp ≈ Fdisp,x · (1− FSTS,x) · gx = Fdisp,x · FSTS,x,comp · gx (8)

where FSTS,x,comp is the complementary filter to the high-pass ground based sensor correc-
tion filter. Hua pointed this out in his thesis.

The coupling of all the inputs can be worked out in a similar fashion. However, we just
straight to the conclusion by remembering that the coupling of an input to an output is
the forward path divided by 1−G. For the platform motion, this becomes:

xp =
Px←gx
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(9)

The term for platform tilt, tp, can be quite important. In the next section we derive
the relationship between the platform tilt and ground tilt and sensor noise.
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3 Tilt

The tilt loops are amenable to the same analysis. Figure 3 shows the simplified paths for
the tilt coupling.
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Figure 3: Simplified diagram of the tilt control loops

tp =
Pt←gtilt
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+
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−Gt
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(10)

Again, we see that when the loop gain is large, the tilt of the platform is approximately

tp ≈ − FGS13,t · nGS13,t

− Fdisp,t · ndisp,t

+ Fdisp,t · gtilt

(11)

4 Coupling tilt to translation

It is useful to write the expressions for how all the tilt sources influence the horizontal
motion of the cg. We begin by looking at equation 9 and keeping the sources related to
tilt. We also use Gx for the closed loop gain for the x loop, to distinguish it from Gt.
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xp =
Px←gtilt
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(12)

We expand the platform tilt, tp, from equation 10 to yield

xp =
Px←gtilt
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gtilt

+
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Fdisp,x · FSTS,x ·

g

ω2
· gtilt

+
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1−Gx
FGS13,x ·

g
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1−Gt
· ...(

Pt←gtilt

Gt
gtilt + FGS13,t · nGS13,t + Fdisp,t · ndisp,t − Fdisp,t · gtilt

)
(13)

When the loop gains are large, this becomes

xp ≈ − Fdisp,x · FSTS,x ·
g

ω2
· gtilt

+ FGS13,x ·
g

ω2
·
(

FGS13,t · nGS13,t + Fdisp,t · ndisp,t − Fdisp,t · gtilt

) (14)
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