

ADAPTER A-16

Thickness Summary

Component Identifier	Material	Diameter (in)	Length (in)	Nominal t	Design t (in)	Total Corrosion (in)	Joint E	Load
Cylinder #1	SA-240 304	60 ID	2	0.25	0.0774	0	0.70	External
Bolted Cover #1	SA-240 304	68.25 OD	1.5	1.5*	0.9798	0	1.00	External

Nominal t: Vessel wall nominal thickness

Design t: Required vessel thickness due to governing loading + corrosion

Joint E: Longitudinal seam joint efficiency

Head minimum thickness after forming

Load

internal: Circumferential stress due to internal pressure governs

external: External pressure governs

Wind: Combined longitudinal stress of pressure + weight + wind governs

Seismic: Combined longitudinal stress of pressure + weight + seismic governs

Bolted Cover #1

ASME Section VIII Division 1, 2007 Edition, A09 Addenda

Component:

Bolted Cover

Material specification:

SA-240 304 (II-D p. 90, In. 4)

Impact test exempt per UHA-51(g)(coincident ratio = 0.02978)

Internal design pressure: P = 1 psi @ 302 °F External design pressure: P = 15 psi @ 302 °F

Static liquid head:

P_{th} = 2.17 psi (SG=1.0000, H_s=60", Horizontal test head)

Corrosion allowance:

Inner C = 0"

Outer C = 0"

Design MDMT = -20 °F Rated MDMT = -320 °F No impact test performed Material is not normalized

Material is not produced to Fine Grain Practice

PWHT is not performed

Radiography:

Category A joints -

Seamless No RT

Estimated weight:

New = 840.6 lb

corr = 840.6 lb

Head diameter, d

= 63.5"

"O-RING" GASKET DIAM.)

Cover thickness, t

Gasket groove depth = 0"

Design thickness, (at 302 °F) UG-34 (c)(2), flange operating

```
t = d^*Sqr(C^*P \ / \ (S^*E) \ + \ 1.9^*W^*h_G \ / \ (S^*E^*d^3)) \ + \ Corrosion
= 63.5*Sqr(0.3*1 / (18,900*1) + 1.9*3,165.32*1.375 / (18,900*1*63.5³)) + 0
= 0.2663 in
```

Design thickness, (at 70 °F) UG-34 (c)(2), gasket seating

```
t = d*Sqr(1.9*W*h_G / (S*E*d^3)) + Corrosion
= 63.5*Sqr(1.9*120,141.6*1.375 / (20,000*1*63.5^3)) + 0
= 0.4971 in
```

Maximum allowable working pressure, (at 302 °F)

```
P = (S*E / C)*((t / d)^2 - (1.9*W*h_G / (S*E*d^3))) - P_s
= (18,900*1/0.3)*((1.5/63.5)^2 - (1.9*100,458.9*1.375/(18,900*1*63.5^3))) - 0
= 31.74 psi
```

Design thickness for external pressure, (at 302 °F) U-2(g)

```
t = d*Sqr(C*P_a / (S*E)) + Corrosion
= 63.5*Sqr(0.3*15 / (18,900*1)) + 0
= 0.9798 in
```

Maximum allowable external pressure, (At 302 °F) U-2(q)

$$P_a = (S*E / C)*(t / d)^2$$

= (18,900*1 / 0.3)*(1.5 / 63.5)²

ASME Section VIII Division 1, 2007 Edition, A09 Addenda

 $t_{w(lower)} = 0.1875 \text{ in}$ $Leg_{41} = 0.25 \text{ in}$

Note: round inside edges per UG-76(c)

Located on: Bolted Cover #1

Liquid static head included: 0 psi

Nozzle material specification: SA-240 304 (II-D p. 90, In. 4)

Nozzle longitudinal joint efficiency: 1 Nozzle orientation: 0° Local vessel minimum thickness: 1.5 in Nozzle inside diameter, new: 44 in Nozzle nominal wall thickness: 0.25 in Nozzle corrosion allowance: 0 in Projection available outside vessel, Lpr: 13.81 in Projection available outside vessel to flange face, Lf: 16.31 in Distance to head center, R: 0 in

Reinforcement Calculations for External Pressure

UG-39 Area Calculation Summary (in²) For Pe = 15 psi @ 302 °F The opening is adequately reinforced								-45 • Wall ness nary •) • ozzle UG-45
A A A A A A A A A A A A A A A A A A A								t _{min}
21.5563	23.1412	<u>22.8875</u>	0.1912			0.0625	0.097	0.25

	UG-41 Weld Failure Path Analysis Summary (lb _f) All failure paths are stronger than the applicable weld loads									
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength						
-20,244.82	4,794.93	391,733.81	18.969.93	345,142.13						

UW-16 Weld Sizing Summary							
Weld description	Required weld size (in)	Actual weld size (in)	Status				
Nozzle to shell fillet (Leg ₄₁)	0.175	0.175	weld size is adequate				
Nozzle to shell groove (Lower)	0.175	0.1875	weld size is adequate				

Calculations for external pressure 15 psi @ 302 °F

Parallel Limits of reinforcement per UG-40

$$L_R$$
 = MAX(d, $R_n + (t_n - C_n) + (t - C))$
= MAX(44, 22 + (0.25 - 0) + (1.5 - 0))
= 44 in

Outer Normal Limits of reinforcement per UG-40

$$\begin{array}{lll} \mathsf{L_H} & = & \mathsf{MIN}(2.5^*(\mathsf{t} - \mathsf{C}), \, 2.5^*(\mathsf{t_n} - \mathsf{C_n}) + \mathsf{t_e}) \\ & = & \mathsf{MIN}(2.5^*(1.5 - 0), \, 2.5^*(0.25 - 0) + 0) \\ & = & 0.625 \ \mathsf{in} \end{array}$$

Nozzle required thickness per UG-28 t_{rn} = 0.097 in

From UG-34 required thickness $t_r = 0.9798$ in

Area required per UG-39

```
Allowable stresses: S_n = 18,900, S_v = 18,900 psi
```

$$f_{r1}$$
 = lesser of 1 or $S_n/S_v = 1$
 f_{r2} = lesser of 1 or $S_n/S_v = 1$

$$A = 0.5*(d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1}))$$

- = 0.5*(44*0.9798*1 + 2*0.25*0.9798*1*(1 1))
- = 21.5563 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following= 22.8875 in²

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

- = 44*(1*1.5 1*0.9798) 2*0.25*(1*1.5 1*0.9798)*(1 1)
- = 22.8875 in²
- $= 2*(t + t_n)*(E_1*t F*t_r) 2*t_n*(E_1*t F*t_r)*(1 f_{r_1})$
- = 2*(1.5 + 0.25)*(1*1.5 1*0.9798) 2*0.25*(1*1.5 1*0.9798)*(1 1)
- = 1.8206 in²

 A_2 = smaller of the following= 0.1912 in²

$$=$$
 5*(t_n - t_{rn})*f_{r2}*t

- = 5*(0.25 0.097)*1*1.5
- = 1.1472 in²
- = 5*(t_n t_{rn})*f_{r2}*t_n
- = 5*(0.25 0.097)*1*0.25
- $= 0.1912 in^2$

$$A_{41} = Leg^{2*}f_{r2}$$

- = 0.25²*1
- $= 0.0625 \text{ in}^2$

Area =
$$A_1 + A_2 + A_{41}$$

- = 22.8875 + 0.1912 + 0.0625
- = 23.1412 in²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

 $\begin{array}{l} t_{\text{min}} = \text{lesser of } 0.75 \text{ or } t_{\text{n}} \text{ or } t = 0.25 \text{ in} \\ t_{1(\text{min})} \text{ or } t_{2(\text{min})} = \text{lesser of } 0.25 \text{ or } 0.7^* t_{\text{min}} = \underline{0.175} \text{ in} \\ t_{1(\text{actual})} = 0.7^* \text{Leg} = 0.7^* 0.25 = 0.175 \text{ in} \\ \text{The weld size } t_{1} \text{ is satisfactory.} \\ t_{2(\text{actual})} = 0.1875 \text{ in} \\ \text{The weld size } t_{2} \text{ is satisfactory.} \end{array}$

$$t_1 + t_2 = 0.3625 >= 1.25 t_{min}$$

The combined weld sizes for t₁ and t₂ are satisfactory.

UG-45 Nozzle Neck Thickness Check (Access Opening)

Wall thickness req'd per UG-45(a): $t_{r1} = 0.097$ in Wall thickness per UG-16(b): $t_{r3} = 0.0625$ in

Available nozzle wall thickness new, $t_n = 0.25$ in

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45(c) and UW-15(c)

Groove weld in tension: 0.74*18,900 = 13,986 psi Nozzle wall in shear: 0.7*18,900 = 13,230 psi Inner fillet weld in shear: 0.49*18,900 = 9,261 psi

Strength of welded joints:

- (1) Inner fillet weld in shear $(\pi/2)$ *Nozzle OD*Leg*S_i = $(\pi/2)$ *44.5*0.25*9,261 = 161,836.98 lb_i
- (3) Nozzle wall in shear $(\pi/2)^*$ Mean nozzle dia* t_n^* S $_n = (\pi/2)^*$ 44.25*0.25*13,230 = 229,896.84 lb $_f$
- (4) Groove weld in tension ($\pi/2$)*Nozzle OD*t_w*S_g = ($\pi/2$)*44.5*0.1875*13,986 = 183,305.16 lb_f

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2^*t_n^*f_{r1}^*(E_1^*t - F^*t_r))^*S_v$$

= (21.5563 - 22.8875 + 2*0.25*1*(1*1.5 - 1*0.9798))*18,900
= $\frac{-20.244.82}{10}$ lb₁

$$W_{1-1} = (A_2 + A_5 + A_{41} + A_{42})^* S_v$$

= (0.1912 + 0 + 0.0625 + 0)*18,900
= 4,794.93 |b₁

$$W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2^*t_n^*t^*f_{r1})^*S_v$$

$$= (0.1912 + 0 + 0.0625 + 0 + 2^*0.25^*1.5^*1)^*18,900$$

$$= 18,969.93 \text{ lb}_t$$

Load for path 1-1 lesser of W or $W_{1-1} = -20244.82 \text{ lb}_1$ Path 1-1 through (1) & (3) = 161,837 + 229,896.8 = $391.733.81 \text{ lb}_1$ Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 2-2 lesser of W or W_{2-2} = -20244.82 lb₁ Path 2-2 through (1), (4) = 161,837 + 183,305.2 = $\underline{345,142.13}$ lb₁

Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

External Pressure, (Corroded & at 302 °F) UG-28(c)

Design thickness for external pressure $P_a = 15 \text{ psi}$

$$t_a = t + Corrosion = 0.097 + 0 = 0.097$$
"

Weight Summary

		Weight (lb) Contributed by Vessel Elements							
Component	Metal New*	Metal Corroded*	Insulation & Supports	Lining	Piping + Liquid	Operating Liquid	Test Liquid	Area ft ²	
Cylinder #1	27.4	27.4	0	0	0	0	247.5	3	
Bolted Cover #1	840.6	840.6	0	0	0	0	926.4	16	
TOTAL:	868	868	0	0	0	0	1,173.9	18	

^{*} Shells with attached nozzles have weight reduced by material cut out for opening.

Component	Weight (lb) Contributed by Attachments									
	Body Flanges		Nozzles & Flanges		Packed Beds	Trays & Supports	Rings & Clips	Vertical Loads	Surface Area	
	New	Corroded	New	Corroded						
Cylinder #1	542.2	542.2	0	0	0	0	0	0	19	
Bolted Cover #1	0	0	667.2	667.2	0	0	0	0	23	
TOTAL:	542.2	542.2	667.2	667.2	0	0	0	0	23	

Vessel operating weight, Corroded: 2,077 lb
Vessel operating weight, New: 2,077 lb
Vessel empty weight, Corroded: 2,077 lb
Vessel empty weight, New: 2,077 lb
Vessel test weight, New: 3,251 lb
Vessel surface area: 42 ft²

Vessel center of gravity location - from datum - lift condition

Vessel Lift Weight, New: 2,077 lb Center of Gravity: -4.1752"

Vessel Capacity

Vessel Capacity** (New): 24 US gal Vessel Capacity** (Corroded): 24 US gal

^{**}The vessel capacity does not include volume of nozzle, piping or other attachments.