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Overview
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Binary Systems

Two compact,
massive objects
(black holes, neutron
stars) orbit one
another.

System radiates
energy as
gravitational waves,
objects spiral inwards
(inspiral).

Orbital frequency
increases as system
loses energy.
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Orientation of Orbital Plane

Orientation defined by two
angles:

1 Polarization angle ψ

2 Inclination angle ι
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Propagating Gravitational Waves

GW from single, distant source can be treated as a plane
wave.

Propagation direction defined by unit vector ~k, pointing from
source to observer.

Wave has metric perturbation tensor

h = h+e+ + h×e×

Matrices ~e+ and ~e× form a polarization basis.
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Interferometer Response
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Laser interferometer measures
strain h, given by

h =
L~u − L~v

L0
= habd

ab,

in terms of metric perturbation h
and detector response tensor d.
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Interferometer Response

Rewriting in terms of polarization basis,

h = (h+e+ab + h×e×ab)d
ab

= h+F+ + h×F×

With antenna pattern factors

F+ ≡ F+(ψ, ι, sky position,detector) = e+abd
ab

F× ≡ F×(ψ, ι, sky position,detector) = e×abd
ab
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LIGO
The Laser Interferometric Gravtational Wave Observatory

Detectors in two locations:

Livingston, Louisiana Hanford, Washington
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Equatorial Coordinates: Earth-Fixed and Inertial

Earth-fixed, latitude λ,
longitude β, correspond to
{~e1∗, ~e2∗, ~e3∗} (Cartesian,
rotates with Earth).

Intertial declination δ, right
ascention α, correspond to
{~e1, ~e2, ~e3} (Stationary).
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Equatorial Coordinates: Earth-Fixed and Inertial

Greenwich sidereal time
(GST, γ) measures angle
between meridian at
Greenwich, England (~e1

∗),
and vernal equinox (~e1).

Local hour angle (LHA)
measures angle from source
meridian (~eq) to observer
meridian (Not shown in
figure).
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Threshold Distance

For binary source at distance d, GW signal depends on sky
position and orbital plane orientation.

Source at distance d produces same signal as optimally
located/oriented source at effective distance deff.

d

deff
=

√
F 2
+

(1 + cos2 ι)2

4
+ F 2

× cos2 ι

gives threshold at which detector can see optimally
located/oriented sources.
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Threshold Distance vs. Source Declination
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Threshold Distance vs. Source Declination
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Cross-section of Surface d/deff for LIGO Hanford
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Cross-section of Surface d/deff for LIGO Hanford
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Cross-section of Surface d/deff for LIGO Hanford
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Summary and Outlook

Summary

Binary inspiral a GW source

GW signal seen at detector depends on location, orientation
of binary

Signal from source at distance d same as optimal source at
distance deff

Outlook

Calculate and plot other parameterizations of d/deff

3D plots of surface d/deff
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Polarization Bases

~̀ chosen such that ~̀⊥ ~k,
and ~m = ~k × ~̀.
Polarization basis can be
written in terms of ~̀, ~m:

e+ab = `a`b −mamb

e×ab = `amb −ma`b

Reference basis of ~i, ~j, and
~k, convenient for analysis.
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Polarization Bases

In terms of~i and ~j, reference
polarization basis written

ε+ab = iaib − jajb

ε×ab = iajb − iajb
Since ~i,~j ⊥ ~k,
~i,~j coplanar with ~̀, ~m.
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Polarization Bases

Related to source basis by
polarization angle ψ:

e+ab = ε+ab cos 2ψ + ε×ab sin 2ψ

e×ab = −ε+ab sin 2ψ + ε×ab cos 2ψ
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Definition of Response Tensor
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h =
L~u − L~v

L0

Arm lengths given by

L~u = L0(1 +
1

2
uahabu

b),

L~v = L0(1 +
1

2
vahabv

b),

where hab are components of
perturbation tensor.
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Definition of Response Tensor
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Detector response tensor
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