
R

LogiCORE™
FIFO Generator v3.1

User Guide
UG175 July 13, 2006

FIFO Generator v3.1 User Guide www.xilinx.com
UG175 July 13, 2006

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs
to operate on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced,
distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use
of the Design may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and
statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under
its patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or
implementation of the Design. Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the
sole discretion of Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if
such be made. Xilinx will not assume any liability for the accuracy or correctness of any engineering or technical support or
assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND
IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR
WRITTEN INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES
NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF
THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE
DESIGN, EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE
LIABILITY OF XILINX IN CONNECTION WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR
OTHERWISE, WILL IN NO EVENT EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF
THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS
AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF
LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments
requiring fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic
control, life support, or weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied
warranties of fitness for such High-Risk Applications. You represent that use of the Design in such High-Risk Applications is fully
at your risk.

© 2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of
Xilinx, Inc. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

R

Date Version Revision

04/28/05 1.1 Initial Xilinx release.

8/31/05 2.0 Updated guide for release v2.2, added SP3 to ISEv7.1i, incorporated edits from
engineering specific for this release, including FWFT, and Built-in FIFO flags, etc.

1/11/06 3.0 Updated for v2.3 release, ISE v8.1i.

7/13/06 4.0 Added Virtex-5 support, reorganized Chapter 5, added ISE v8.2i, version to 3.1

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 3
UG175 July 13, 2006

 Preface: About This Guide
Guide Contents . 11
Additional Resources . 12
Conventions . 12

Typographical . 12
Online Document . 13

Chapter 1: Introduction
About the Core . 15
Recommended Design Experience . 15
Technical Support. 15
Feedback. 16

FIFO Generator . 16
Document . 16

Chapter 2: Installing the Core
System Requirements . 17
Before you Begin . 17
Installing the Core . 17

Using the CORE Generator Software Update Installer . 18
Manually . 18

Verifying your Installation . 18

Chapter 3: Core Overview
System Overview . 21

Clock Implementation Operation . 21
Built-in FIFO Support in Virtex-5 . 21
Built-in FIFO Support in Virtex-4 . 21
First-Word Fall-Through . 21
Memory Types . 22
Non-Symmetric Aspect Ratio . 22

Core Configuration and Implementation . 22
Independent Clocks: Block RAM and Distributed RAM . 23
Independent Clocks: Virtex-5 and Virtex-4 Built-in FIFO . 23
Common Clock: Block RAM, Distributed RAM, Shift Register 23
Common Clock: Virtex-5 and Virtex-4 Built-in FIFO . 23

FIFO Generator Features . 24
FIFO Interfaces. 25

Interface Signals: FIFOs With Independent Clocks . 25
Interface Signals: FIFOs with Common Clock . 28

Table of Contents

http://www.xilinx.com

4 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

R

Chapter 4: Generating the Core
CORE Generator Graphical User Interface . 31
FIFO Implementation . 32

Component Name . 32
FIFO Implementation . 32

Common Clock (CLK), Block RAM . 32
Common Clock (CLK), Distributed RAM. 32
Common Clock (CLK), Shift Register . 33
Common Clock (CLK), Built-in FIFO . 33
Independent Clocks (RD_CLK, WR_CLK), Block RAM . 33
Independent Clocks (RD_CLK, WR_CLK), Distributed RAM . 33
Independent Clocks (RD_CLK, WR_CLK), Built-in FIFO. 33

Performance Options and Data Port Parameters. 34
Performance Options . 34

Standard FIFO. 34
First-word Fall-through FIFO . 34

Data Port Parameters . 34
Input Data Width . 34
Input Depth . 35
Output Data Width. 35
Output Depth . 35
Built-in FIFO Options . 35

Optional Flags, Handshaking, and Initialization . 35
Optional Flags. 36

Almost Full Flag . 36
Almost Empty Flag . 36

Write Port Handshaking . 36
Write Acknowledge . 36
Overflow (Write Error) . 36

Read Port Handshaking . 36
Valid (Read Acknowledge) . 36
Underflow (Read Error) . 36

Initialization . 36
Reset Pin . 36

Programmable Flags. 37
Programmable Flags . 37

Programmable Full Type . 37
Programmable Empty Type . 38

Data Count and Reset . 38
Data Count and Reset Options. 39

Data Count . 39
Resets . 39

Summary . 39

Chapter 5: Designing with the Core
General Design Guidelines . 41

Know the Degree of Difficulty . 41
Understand Signal Pipelining and Synchronization . 41

Synchronization Considerations . 41
Initializing the FIFO Generator. 42

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 5
UG175 July 13, 2006

R

FIFO Implementations . 43
Independent Clocks: Block RAM and Distributed RAM . 43
Independent Clocks: Built-in FIFO . 45
Common Clock: Built-in FIFO . 46
Common Clock FIFO: Block RAM and Distributed RAM . 46
Common Clock FIFO: Shift Registers . 47

FIFO Usage and Control . 47
Write Operation . 47

ALMOST_FULL and FULL Flags . 47
Example Operation . 48

Read Operation . 48
ALMOST_EMPTY and EMPTY Flags . 48
Modes of Read Operation . 49

Handshaking Flags . 51
Write Acknowledge . 51
Valid . 51
Example Operation . 52
Underflow. 53
Overflow. 53
Example Operation . 53

Programmable Flags . 54
Programmable Full . 54
Programmable Empty. 56

Data Counts . 57
Read Data Count. 58
Write Data Count . 58
First-Word Fall-Through Data Count . 59
Example Operation . 59

Non-symmetric Aspect Ratios . 60
Reset Behavior . 62

Chapter 6: Special Design Considerations
Resetting the FIFO . 65
Continuous Clocks . 65
Pessimistic Full and Empty . 65
Programmable Full and Empty . 66
Write Data Count and Read Data Count . 66
Setup and Hold Time Violations . 66

Chapter 7: Simulating Your Design
Simulation Models . 67

Appendix A: Performance Information
Resource Utilization and Performance . 69

Appendix B: Core Parameters
FIFO Parameters . 73

http://www.xilinx.com

6 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

R

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 7
UG175 July 13, 2006

Schedule of Figures . 7

Preface: About This Guide

Chapter 1: Introduction

Chapter 2: Installing the Core
Figure 2-1: CORE Generator Window . 19

Chapter 3: Core Overview
Figure 3-1: FIFO with Independent Clocks: Interface Signals . 25

Chapter 4: Generating the Core
Figure 4-1: Main FIFO Generator Screen . 32
Figure 4-2: Performance Options and Data Port Parameters Screen 34
Figure 4-3: Optional Flags, Handshaking and Initialization Options Screen 35
Figure 4-4: Programmable Flags Screen . 37
Figure 4-5: Data Count and Reset Screen. 38
Figure 4-6: Summary Screen. 40

Chapter 5: Designing with the Core
Figure 5-1: FIFO with Independent Clocks: Write and Read Clock Domains 42
Figure 5-2: Functional Implementation of a FIFO with Independent Clock Domains . 44
Figure 5-3: Functional Implementation of Built-in FIFO . 45
Figure 5-4: Functional Implementation of a Common Clock FIFO using Block RAM or

Distributed RAM . 46
Figure 5-5: Functional Implementation of a Common Clock FIFO using Shift Registers 47
Figure 5-6: Write Operation for a FIFO with Independent Clocks. 48
Figure 5-7: Standard Read Operation for a FIFO with Independent Clocks 50
Figure 5-8: FWFT Read Operation for a FIFO with Independent Clocks 50
Figure 5-9: Write and Read Operation for a FIFO with Common Clocks 51
Figure 5-10: Handshaking Signals for a FIFO with Independent Clocks 52
Figure 5-11: Handshaking Signals for a FIFO with Common Clocks 53
Figure 5-12: Programmable Full Single Threshold: Threshold Set to 7. 55
Figure 5-13: Programmable Full with Assert and Negate Thresholds: Assert Set to 10

and Negate Set to 7 . 55
Figure 5-14: Programmable Empty with Single Threshold: Threshold Set to 4 56
Figure 5-15: Programmable Empty with Assert and Negate Thresholds: Assert Set to 7 and

Negate Set to 10 . 57

Schedule of Figures

http://www.xilinx.com

8 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

R

Figure 5-16: Write and Read Data Counts for FIFO with Independent Clocks 59
Figure 5-17: 1:4 Aspect Ratio: Data Ordering . 60
Figure 5-18: 1:4 Aspect Ratio: Status Flag Behavior . 61
Figure 5-19: 4:1 Aspect Ratio: Data Ordering . 61
Figure 5-20: 4:1 Aspect Ratio: Status Flag Behavior . 62
Figure 5-21: Reset Behavior for FIFO with Independent Clocks . 62

Chapter 6: Special Design Considerations

Chapter 7: Simulating Your Design

Appendix A: Performance Information

Appendix B: Core Parameters

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 9
UG175 July 13, 2006

Schedule of Tables . 9

Preface: About This Guide

Chapter 1: Introduction

Chapter 2: Installing the Core

Chapter 3: Core Overview
Table 3-1: Memory Configuration Benefits . 22
Table 3-2: FIFO Configurations . 22
Table 3-3: FIFO Configurations Summary. 24
Table 3-4: Reset Signal for FIFOs with Independent Clocks . 25
Table 3-5: Write Interface Signals for FIFOs with Independent Clocks 26
Table 3-6: Read Interface Signals for FIFOs with Independent Clocks. 27
Table 3-7: Interface Signals for FIFOs with a Common Clock . 28

Chapter 4: Generating the Core

Chapter 5: Designing with the Core
Table 5-1: FIFO Configurations Summary. 43
Table 5-2: Interface Signals and Corresponding Clock Domains . 44
Table 5-3: Interface Signals and Corresponding Clock Domains . 45
Table 5-4: Implementation-Specific Support for First-Word Fall-Through 49
Table 5-5: Implementation-specific Support for Data Counts. 58
Table 5-6: Implementation-specific Support for Non-symmetric Aspect Ratios 60
Table 5-7: FIFO Reset Values . 63

Chapter 6: Special Design Considerations

Chapter 7: Simulating Your Design

Appendix A: Performance Information
Table A-1: Benchmarks: FIFO Configured without Optional Features 69
Table A-2: Benchmarks: FIFO Configured with Multiple Programmable Thresholds . 70
Table A-3: Benchmarks: FIFO Configured with Virtex-5 FIFO36 Resources. 71
Table A-4: Benchmarks: FIFO Configured with Virtex-4 FIFO16 Patch 72

Schedule of Tables

http://www.xilinx.com

10 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

R

Appendix B: Core Parameters
Table B-1: FIFO Parameter Table . 73

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 11
UG175 July 13, 2006

R

Preface

About This Guide

The LogicCORE™ FIFO Generator User Guide v3.1 describes the function and operation of
the FIFO Generator, and contains information about designing, customizing, and
implementing the core.

Guide Contents
The following chapters are included:

• “Preface, About this Guide” describes how the user guide is organized, the
conventions used in the guide, and provides information about additional resources.

• Chapter 1, “Introduction,” describes the core and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

• Chapter 2, “Installing the Core,” provides information about installing the core.

• Chapter 3, “Core Overview,” describes the core configuration options and their
interfaces.

• Chapter 4, “Generating the Core,” describes how to generate the core using the Xilinx
CORE Generator GUI.

• Chapter 5, “Designing with the Core,” discusses how to use the core in a user
application.

• Chapter 6, “Special Design Considerations,” discusses specific design features that
must be considered when using with the core.

• Chapter 7, “Simulating Your Design,” provides instructions for simulating the design
with either behavioral or structural simulation models.

• Appendix A, “Performance Information,” provides a summary of the core’s
performance data.

• Appendix B, “Core Parameters,” provides a comprehensive list of the parameters set
by in the CORE Generator GUI for the FIFO Generator.

http://www.xilinx.com

12 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter : About This Guide
R

Additional Resources
For additional information, go to www.xilinx.com/support. The following table lists some
of the resources you can access from this website or by using the provided URLs.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

www.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

www.xilinx.com/xlnx/xil_ans_browser.jsp

Data Sheets Device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

www.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

www.xilinx.com/xlnx/xil_tt_home.jsp

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays and signal names

speed grade: - 100

Courier bold
Literal commands you enter in
a syntactical statement ngdbuild design_name

Italic font

Variables in a syntax
statement for which you must
supply values

See the Development System
Reference Guide for more
information.

References to other manuals See the User Guide for details.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Dark Shading Items that are not supported
or reserved This feature is not supported

http://www.xilinx.com/support
http://www.xilinx.com/support/techsup/tutorials/index.htm
http://www.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.xilinx.com/xlnx/xil_tt_home.jsp
http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 13
UG175 July 13, 2006

Conventions
R

Online Document
The following linking conventions are used in this document:

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Omitted repetitive material allow block block_name
loc1 loc2 ... locn;

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address
0x00112975 returned
45524943h.

An ‘_n’ means the signal is
active low usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

14 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter : About This Guide
R

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 15
UG175 July 13, 2006

R

Chapter 1

Introduction

The Xilinx LogiCORE FIFO Generator, a fully verified first-in first-out memory queue for
use in any application requiring in-order storage and retrieval, enables high-performance
and area-optimized designs. This core can be customized using the Xilinx CORE
Generator™ system as a complete solution with control logic already implemented,
including management of the read and write pointers and the generation of status flags.

This chapter introduces the FIFO Generator and provides related information, including
recommended design experience, additional resources, technical support, and submitting
feedback to Xilinx.

About the Core
The FIFO Generator is a Xilinx CORE Generator™ IP core, included in the latest IP Update
on the Xilinx IP Center. For detailed information about the core, see
www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=FIFO_Generator.

For information about system requirements and installation, see Chapter 2, “Installing the
Core.”

Recommended Design Experience
The FIFO Generator is a fully verified solution, and can be used by all levels of design
engineers.

Important! When implementing a FIFO with independent write and read clocks, special care
must be taken to ensure the FIFO Generator is correctly used. Chapter 5, “Designing with the
Core,” in this guide—specifically the section “Synchronization Considerations,” page 41—has
important information to to help you ensure correct design configuration.

Similarly, asynchronous designs should also be aware that the Behavioral models are not cycle
accurate across clock domains. See Chapter 7, “Simulating Your Design,” for details.

Technical Support
For technical support, visit www.support.xilinx.com/. Questions are routed to a team of
engineers with FIFO Generator expertise.

Xilinx will provide technical support for use of this product as described in the LogiCORE
FIFO Generator User Guide. Xilinx cannot guarantee timing, functionality, or support of this
product for designs that do not follow these guidelines.

http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=FIFO_Generator
http://www.xilinx.com
http://support.xilinx.com/

16 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 1: Introduction
R

Feedback
Xilinx welcomes comments and suggestions about the FIFO Generator and the
documentation supplied with the core.

FIFO Generator
For comments or suggestions about the FIFO Generator, please submit a WebCase from
www.support.xilinx.com/. Be sure to include the following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about this document, please submit a WebCase from
www.support.xilinx.com/. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
http://support.xilinx.com/

FIFO Generator v3.1 User Guide www.xilinx.com 17
UG175 July 13, 2006

R

Chapter 2

Installing the Core

This chapter provides instructions for installing the FIFO Generator. The FIFO Generator is
provided under the terms of the Xilinx LogiCORE Site License Agreement, which
conforms to the terms of the SignOnce IP License standard defined by the Common
License Consortium.

System Requirements

Windows

• Windows® 2000 Professional with Service Pack 2-4

• Windows XP Professional with Service Pack 1

Solaris/Linux

• Sun Solaris® 8/9

• Red Hat® Enterprise Linux 3.0 (32-bit and 64-bit)

Software

• ISE™ 8.2i with applicable Service Pack

Check the release notes for the required Service Pack; ISE Service Packs can be downloaded
from www.xilinx.com/xlnx/xil_sw_updates_home.jsp?update=sp.

Before you Begin
Before installing the core, you must have a Xilinx.com account and the ISE 8.2i software
installed on your system. If you have already completed these steps, go to “Installing the
Core.”

1. Click Login at the top of the Xilinx home page; then follow the onscreen instructions to
create a support account.

2. Install the ISE 8.2i software and the applicable Service Pack software.

Installing the Core
You can install the core in two ways—using the CORE Generator IP Software Update
option to select from a list of updates, or by performing a manual installation after
downloading the core from the web.

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com
http://www.xilinx.com/ipcenter/signonce.htm
http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp?update=sp
www.xilinx.com

18 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 2: Installing the Core
R

Using the CORE Generator Software Update Installer
Note: To use this installation method behind a firewall, you must know your proxy
settings. Contact your administrator to determine the proxy host address and port number
before you begin, if necessary.

1. Start the CORE Generator; then open an existing project or create a new one.

2. From the main CORE Generator window, choose Tools > Software Update. The
WebUpdate screen appears.

3. If you are behind a firewall, click Set Proxy to either verify or set your proxy host and
port settings.

4. Click Check for Updates. The Software Update installer appears.

5. Select the ISE 8.2I P Update 1 option; then click Install Selected. Informational
messages may appear indicating that additional installations are required.

6. Click OK to accept any messages and continue. The User Login dialog box appears.

7. Enter your login name and password; then click OK. The selected update products are
downloaded and installed.

8. To confirm the installation, check the following file:
C:\Xilinx\coregen\install\install_history.
Note that this step assumes your Xilinx software is installed in C:\Xilinx.

Manually
1. Close the CORE Generator if it is running.

2. Download the IP Update ZIP file from the following location and save it to a
temporary directory: www.xilinx.com/support/download.htm.

3. Unpack the ZIP files using either WinZip (Windows) or Unzip (UNIX).

4. Extract the ise_82i_ip_update1.zip archive to the root directory of your Xilinx software
installation. (Allow the extractor utility you use to overwrite all existing files and
maintain the directory structure defined in the archive.)

5. If you do not have a zip utility, do one of the following:

♦ Windows. From a command window, type the following:

%XILINX%/bin/nt/unzip -d %XILINX% ise_82i_ip_update1.zip

♦ Linux. From a UNIX shell, type the following:

$XILINX/bin/lin/unzip -d $XILINX ise_82i_ip_update1.zip

♦ Solaris. From a UNIX shell, type the following:

$XILINX/bin/sol/unzip -d $XILINX ise_82i_ip_update1.zip

6. To verify the root directory of your Xilinx installation, do one of the following:

♦ Windows. Type echo %XILINX% from a DOS prompt.

♦ UNIX. If you have already installed the Xilinx ISE software, the Xilinx variable
defined by your set-up script identifies the location of the Xilinx installation
directory. After sourcing the Xilinx set-up script, type echo $XILINX to determine
the location of the Xilinx installation.

Verifying your Installation
1. Start the CORE Generator.

www.xilinx.com/support/download.htm
http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 19
UG175 July 13, 2006

Verifying your Installation
R

2. After creating a new project or opening an existing one, the IP core functional
categories appear at the left side of the window.

3. Click to expand or collapse the view of individual functional categories, or click the
View by Name tab at the bottom of the list to see an alphabetical list of all cores in all
categories.

4. To view specific versions of the cores, choose an option from the Show drop-down list
at the top of the window:

♦ Latest Versions. Display the latest versions of all cores.

♦ All Versions. Display all versions of cores, including new cores and new versions
of cores.

♦ All Versions including Obsolete. Display all cores, including those scheduled to
become obsolete.

5. To determine that the installation is successful, be sure that the new core or cores
appear in the CORE Generator GUI.

For additional assistance installing the IP Update, contact www.xilinx.com/support.

Figure 2-1: CORE Generator Window

Functional
Categories

Viewing Options

View by Name

www.xilinx.com/support

http://www.xilinx.com

20 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 2: Installing the Core
R

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 21
UG175 July 13, 2006

R

Chapter 3

Core Overview

This chapter provides an overview of the FIFO Generator configuration options and their
interfaces.

System Overview

Clock Implementation Operation
The FIFO Generator enables FIFOs to be configured with either independent or common
clock domains for write and read operations. The independent clock configuration of the
FIFO Generator enables the user to implement unique clock domains on the write and read
ports. The FIFO Generator handles the synchronization between clock domains, placing no
requirements on phase and frequency relationships between clocks. A common clock
domain implementation optimizes the core for data buffering within a single clock
domain.

Built-in FIFO Support in Virtex-5
The FIFO Generator supports the VirtexTM-5 built-in FIFO modules, enabling large FIFOs
to be created by cascading the built-in FIFOs in both width and depth. The core expands
the capabilities of the built-in FIFOs by utilizing the FPGA fabric to create optional status
flags not implemented in the built-in FIFO macro.

Built-in FIFO Support in Virtex-4
The FIFO Generator supports a single instantiation of the Virtex-4 built-in FIFO module.
The core adds the required patch based upon estimated clock frequencies. This patch is
implemented in fabric. See Appendix A, “Performance Information” for resource
utilization estimates.

First-Word Fall-Through
The first-word fall-through (FWFT) feature provides the ability to look ahead to the next
word available from the FIFO without having to issue a read operation. The FIFO
accomplishes this by using output registers which are automatically loaded with data,
when data appears in the FIFO. This causes the first word written to the FIFO to
automatically appear on the data out bus (DOUT). Subsequent user read operations cause
the output data to update with the next word, as long as data is available in the FIFO. The
use of registers on the FIFO DOUT bus improves clock-to-output timing, and the FWFT
functionality provides low-latency access to data. This is ideal for applications that require
throttling, based on the contents of the data that are read.

http://www.xilinx.com

22 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 3: Core Overview
R

See Table 3-2 for FWFT availability. The use of this feature impacts the behavior of many
other features, such as:

• Read operations (see “First-Word Fall-Through FIFO Read Operation,” page 50).

• Programmable empty (see “Programmable Empty for First-Word Fall-Through,” page
57).

• Data counts (see “First-Word Fall-Through Data Count,” page 59).

Memory Types
The FIFO Generator implements FIFOs built from block RAM, distributed RAM, shift
registers, or the Virtex-4 and Virtex-5 built-in FIFOs. The core combines memory
primitives in an optimal configuration based on the selected width and depth of the FIFO.
Table 3-1 provides best-use recommendations for specific design requirements.

Non-Symmetric Aspect Ratio
The core supports generating FIFOs whose write and read ports have different widths,
enabling automatic width conversion of the data width. Non-symmetric aspect ratios
ranging from 1:8 to 8:1 are supported for the write and read port widths. This feature is
available for FIFOs implemented with block RAM that are configured to have independent
write and read clocks.

Core Configuration and Implementation
Table 3-2 provides a summary of the supported memory and clock configurations.

Table 3-1: Memory Configuration Benefits

Independent
Clocks

Common
Clock

Small
Buffering

Medium-
Large

Buffering

High
Performance

Minimal
Resources

Built-in
FIFO

✔ ✔ ✔ ✔ ✔

Block RAM ✔ ✔ ✔ ✔ ✔

Shift
Register

✔ ✔ ✔

Distributed
RAM

✔ ✔ ✔ ✔

Table 3-2: FIFO Configurations

Clock Domain Memory Type
Supported

Configuration
Non-symmetric
Aspect Ratios

First-Word
Fall-Through

Common Block RAM ✔

Common Distributed RAM ✔

Common Shift Register ✔

Common Built-in FIFO 1 ✔ ✔2

Independent Block RAM ✔ 4 ✔

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 23
UG175 July 13, 2006

Core Configuration and Implementation
R

Independent Clocks: Block RAM and Distributed RAM
This implementation category allows the user to select block RAM or distributed RAM and
supports independent clock domains for write and read data accesses. Operations in the
read domain are synchronous to the read clock and operations in the write domain are
synchronous to the write clock.

The feature set supported for this type of FIFO includes non-symmetric aspect ratios
(different write and read port widths), status flags (full, almost full, empty, and almost
empty), as well as programmable full and empty flags generated with user-defined
thresholds. Optional read data count and write data count indicators provide the number
of words in the FIFO relative to their respective clock domains. In addition, optional
handshaking and error flags are available (write acknowledge, overflow, valid, and
underflow).

Independent Clocks: Virtex-5 and Virtex-4 Built-in FIFO
This implementation category allows you to select the built-in FIFO that is available in the
Virtex-5 and Virtex-4 architectures. Operations in the read domain are synchronous to the
read clock and operations in the write domain are synchronous to the write clock.

The feature set supported for this configuration includes status flags (full and empty) and
programmable full and empty flags generated with user-defined thresholds. In addition,
optional handshaking and error flags are available (write acknowledge, overflow, valid,
and underflow).

Common Clock: Block RAM, Distributed RAM, Shift Register
This implementation category allows the user to select block RAM, distributed RAM, or
shift register and supports a common clock for write and read data accesses.

The feature set supported for this configuration includes status flags (full, almost full,
empty, and almost empty) and programmable empty and full flags generated with user-
defined thresholds. In addition, optional handshaking and error flags are supported (write
acknowledge, overflow, valid, and underflow), and an optional data count provides the
number of words in the FIFO.

Common Clock: Virtex-5 and Virtex-4 Built-in FIFO
This implementation category allows you to select the built-in FIFO that is available in the
Virtex-5 and Virtex-4 architectures, and supports a common clock for write and read data
accesses.

The feature set supported for this configuration includes status flags (full and empty) and
optional programmable full and empty flags with user-defined thresholds. In addition,

Independent Distributed RAM ✔ ✔

Independent Built-in FIFO1 ✔ ✔2

1. The built-in FIFO primitive is only available in Virtex-5 and Virtex-4 architectures.
2. Only valid in Virtex-5 built-in FIFO primitives.

Table 3-2: FIFO Configurations

Clock Domain Memory Type
Supported

Configuration
Non-symmetric
Aspect Ratios

First-Word
Fall-Through

http://www.xilinx.com

24 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 3: Core Overview
R

optional handshaking and error flags are available (write acknowledge, overflow, valid,
and underflow).

FIFO Generator Features
Table 3-3 summarizes the FIFO Generator features supported for each clock configuration
and memory type.

Table 3-3: FIFO Configurations Summary

FIFO Feature

Independent Clocks Common Clock

Block
RAM

Distributed
RAM

 Built-in
FIFO

Block
RAM

Distributed
RAM, Shift
Register

 Built-in
FIFO

Non-
symmetric
Aspect Ratios1

1. For applications with a single clock that require non-symmetric ports, use the independent clock
configuration and connect the write and read clocks to the same source. A dedicated solution for
common clocks will be available in a future release. Contact your Xilinx representative for more details.

✔

Symmetric
Aspect Ratios

✔ ✔ ✔ ✔ ✔ ✔

Almost Full ✔ ✔ ✔ ✔

Almost Empty ✔ ✔ ✔ ✔

Handshaking ✔ ✔ ✔ ✔ ✔ ✔

Data Count ✔ ✔ ✔ ✔

Programmable
Empty/Full
Thresholds

✔ ✔ ✔ ✔ ✔ ✔

First-Word
Fall-Through

✔ ✔ ✔2

2. Only supported for Virtex-5 built-in FIFOs.

✔2

DOUT Reset
Value

✔3

3. All architectures except for Virtex, Virtex-E, SpartanTM-II, and Spartan-IIE.

✔ ✔3 ✔

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 25
UG175 July 13, 2006

FIFO Interfaces
R

FIFO Interfaces
The following two sections provide definitions for the FIFO interface signals. Figure 3-1
illustrates these signals (both the standard and optional ports) for a FIFO core that sup-
ports independent write and read clocks.

Interface Signals: FIFOs With Independent Clocks
The signal (RST) causes a reset of the entire core logic (both write and read clock domains)
and is defined in Table 3-4. It is an asynchronous input which is synchronized internally in
the core before being used. The initial hardware reset should be generated by the user.
When the core is configured to have independent clocks, the reset signal should be High
for at least three read clock and write clock cycles to ensure all internal states are reset to
the correct values.

Figure 3-1: FIFO with Independent Clocks: Interface Signals

Note: Optional Ports are in italics

DOUT[M:0]

EMPTY

RST

RD_EN

RD_CLK

PROG_FULL_THRESH_ASSERT

PROG_FULL_THRESH_NEGATE

PROG_FULL_THRESH

Write Clock
Domain

Read Clock
Domain

FULL

WR_EN

DIN[N:0]

WR_CLK

ALMOST_FULL

PROG_FULL

WR_ACK

OVERFLOW

ALMOST_EMPTY

PROG_EMPTY

VALID

UNDERFLOW

PROG_EMPTY_THRESH_ASSERT

PROG_EMPTY_THRESH_NEGATE

PROG_EMPTY_THRESH

Table 3-4: Reset Signal for FIFOs with Independent Clocks

Name Direction Description

RST Input Reset: This signal is an asynchronous reset that initializes all internal
pointers and output registers.

http://www.xilinx.com

26 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 3: Core Overview
R

Table 3-5 defines the signals for the write interface for FIFOs with independent clocks. The
write interface signals are divided into required and optional signals and all signals are
synchronous to the write clock (WR_CLK).

Table 3-5: Write Interface Signals for FIFOs with Independent Clocks

Name Direction Description

Required

WR_CLK Input Write Clock: All signals on the write domain are synchronous to this clock.

DIN[N:0] Input Data Input: The input data bus used when writing the FIFO.

WR_EN Input Write Enable: If the FIFO is not full, asserting this signal causes data (on
DIN) to be written to the FIFO.

FULL Output Full Flag: When asserted, this signal indicates that the FIFO is full. Write
requests are ignored when the FIFO is full, initiating a write when the
FIFO is full is non-destructive to the contents of the FIFO.

Optional

ALMOST_FULL Output Almost Full: When asserted, this signal indicates that only one more write
can be performed before the FIFO is full.

PROG_FULL Output Programmable Full: This signal is asserted when the number of words in
the FIFO is greater than or equal to the assert threshold. It is deasserted
when the number of words in the FIFO is less than the negate threshold.

WR_DATA_COUNT [D:0] Output Write Data Count: This bus indicates the number of words stored in the
FIFO. The count is guaranteed to never under-report the number of words
in the FIFO, to ensure the user never overflows the FIFO.

WR_ACK Output Write Acknowledge: This signal indicates that a write request (WR_EN)
during the prior clock cycle succeeded.

OVERFLOW Output Overflow: This signal indicates that a write request (WR_EN) during the
prior clock cycle was rejected, because the FIFO is full. Overflowing the
FIFO is non-destructive to the contents of the FIFO.

PROG_FULL_THRESH Input Programmable Full Threshold: This signal is used to input the threshold
value for the assertion and deassertion of the programmable full
(PROG_FULL) flag. The threshold can be dynamically set in-circuit
during reset.

The user can either choose to set the assert and negate threshold to the
same value (using PROG_FULL_THRESH), or the user can control these
values independently (using PROG_FULL_THRESH_ASSERT and
PROG_FULL_THRESH_NEGATE).

PROG_FULL_THRESH_ASSERT Input Programmable Full Threshold Assert: This signal is used to set the upper
threshold value for the programmable full flag, which defines when the
signal is asserted. The threshold can be dynamically set in-circuit during
reset.

PROG_FULL_THRESH_NEGATE Input Programmable Full Threshold Negate: This signal is used to set the lower
threshold value for the programmable full flag, which defines when the
signal is deasserted. The threshold can be dynamically set in-circuit
during reset.

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 27
UG175 July 13, 2006

FIFO Interfaces
R

Table 3-6 defines the signals on the read interface of a FIFO with independent clocks. The
read interface signals are divided into required signals and optional signals, and all signals
are synchronous to the read clock (RD_CLK).

Table 3-6: Read Interface Signals for FIFOs with Independent Clocks

Name
Directi

on
Description

Required

RD_CLK Input Read Clock: All signals on the read domain are synchronous to this clock.

DOUT[M:0] Output Data Output: The output data bus is driven when reading the FIFO.

RD_EN Input Read Enable: If the FIFO is not empty, asserting this signal causes data to
be read from the FIFO (output on DOUT).

EMPTY Output Empty Flag: When asserted, this signal indicates that the FIFO is empty.
Read requests are ignored when the FIFO is empty, initiating a read while
empty is non-destructive to the FIFO.

Optional

ALMOST_EMPTY Output Almost Empty Flag: When asserted, this signal indicates that the FIFO is
almost empty and one word remains in the FIFO.

PROG_EMPTY Output Programmable Empty: This signal is asserted when the number of words
in the FIFO is less than or equal to the programmable threshold. It is
deasserted when the number of words in the FIFO exceeds the
programmable threshold.

RD_DATA_COUNT [C:0] Output Read Data Count: This bus indicates the number of words available for
reading in the FIFO. The count is guaranteed to never over-report the
number of words available for reading, to ensure that the user does not
underflow the FIFO.

VALID Output Valid: This signal indicates that valid data is available on the output bus
(DOUT).

UNDERFLOW Output Underflow: Indicates that the read request (RD_EN) during the previous
clock cycle was rejected because the FIFO is empty. Underflowing the
FIFO is not destructive to the FIFO.

PROG_EMPTY_THRESH Input Programmable Empty Threshold: This signal is used to input the
threshold value for the assertion and deassertion of the programmable
empty (PROG_EMPTY) flag. The threshold can be dynamically set in-
circuit during reset.

The user can either choose to set the assert and negate threshold to the
same value (using PROG_EMPTY_THRESH), or the user can control these
values independently (using PROG_EMPTY_THRESH_ASSERT and
PROG_EMPTY_THRESH_NEGATE).

PROG_EMPTY_THRESH_ASSERT Input Programmable Empty Threshold Assert: This signal is used to set the
lower threshold value for the programmable empty flag, which defines
when the signal is asserted. The threshold can be dynamically set in-circuit
during reset.

PROG_EMPTY_THRESH_NEGATE Input Programmable Empty Threshold Negate: This signal is used to set the
upper threshold value for the programmable empty flag, which defines
when the signal is deasserted. The threshold can be dynamically set in-
circuit during reset.

http://www.xilinx.com

28 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 3: Core Overview
R

Interface Signals: FIFOs with Common Clock
Table 3-7 defines the interface signals of a FIFO with a common write and read clock. The
table is divided into standard and optional interface signals, and all signals (except reset)
are synchronous to the common clock (CLK).

Table 3-7: Interface Signals for FIFOs with a Common Clock

Name Direction Description

Required

RST Input Reset: This signal is an asynchronous reset that initializes all
internal pointers and output registers.

CLK Input Clock: All signals on the write and read domains are
synchronous to this clock.

DIN[N:0] Input Data Input: The input data bus used when writing the FIFO.

WR_EN Input Write Enable: If the FIFO is not full, asserting this signal causes
data (on DIN) to be written to the FIFO.

FULL Output Full Flag: When asserted, this signal indicates that the FIFO is
full. Write requests are ignored when the FIFO is full, initiating
a write when the FIFO is full is non-destructive to the contents
of the FIFO.

DOUT[M:0] Output Data Output: The output data bus driven when reading the
FIFO.

RD_EN Input Read Enable: If the FIFO is not empty, asserting this signal
causes data to be read from the FIFO (output on DOUT).

EMPTY Output Empty Flag: When asserted, this signal indicates that the FIFO
is empty. Read requests are ignored when the FIFO is empty,
initiating a read while empty is non-destructive to the FIFO.

Optional

DATA_COUNT [C:0] Output Data Count: This bus indicates the number of words stored in
the FIFO.

ALMOST_FULL Output Almost Full: When asserted, this signal indicates that only one
more write can be performed before the FIFO is full.

PROG_FULL Output Programmable Full: This signal is asserted when the number of
words in the FIFO is greater than or equal to the assert
threshold. It is deasserted when the number of words in the
FIFO is less than the negate threshold.

WR_ACK Output Write Acknowledge: This signal indicates that a write request
(WR_EN) during the prior clock cycle succeeded.

OVERFLOW Output Overflow: This signal indicates that a write request (WR_EN)
during the prior clock cycle was rejected, because the FIFO is
full. Overflowing the FIFO is non-destructive to the contents of
the FIFO.

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 29
UG175 July 13, 2006

FIFO Interfaces
R

PROG_FULL_THRESH Input Programmable Full Threshold: This signal is used to set the
threshold value for the assertion and deassertion of the
programmable full flag (PROG_FULL). The threshold can be
dynamically set in-circuit during reset.

The user can either choose to set the assert and negate threshold
to the same value (using PROG_FULL_THRESH), or the user
can control these values independently (using
PROG_FULL_THRESH_ASSERT and
PROG_FULL_THRESH_NEGATE).

PROG_FULL_THRESH_ASSERT Input Programmable Full Threshold Assert: This signal is used to set
the upper threshold value for the programmable full flag,
which defines when the signal is asserted. The threshold can be
dynamically set in-circuit during reset.

PROG_FULL_THRESH_NEGATE Input Programmable Full Threshold Negate: This signal is used to set
the lower threshold value for the programmable full flag, which
defines when the signal is deasserted. The threshold can be
dynamically set in-circuit during reset.

ALMOST_EMPTY Output Almost Empty Flag: When asserted, this signal indicates that
the FIFO is almost empty and one word remains in the FIFO.

PROG_EMPTY Output Programmable Empty: This signal is asserted after the number
of words in the FIFO is less than or equal to the programmable
threshold. It is deasserted when the number of words in the
FIFO exceeds the programmable threshold.

VALID Output Valid: This signal indicates that valid data is available on the
output bus (DOUT).

UNDERFLOW Output Underflow: Indicates that read request (RD_EN) during the
previous clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.

PROG_EMPTY_THRESH Input Programmable Empty Threshold: This signal is used to set the
threshold value for the assertion and deassertion of the
programmable empty flag (PROG_EMPTY). The threshold can
be dynamically set in-circuit during reset.

The user can either choose to set the assert and negate threshold
to the same value (using PROG_EMPTY_THRESH), or the user
can control these values independently (using
PROG_EMPTY_THRESH_ASSERT and
PROG_EMPTY_THRESH_NEGATE).

Table 3-7: Interface Signals for FIFOs with a Common Clock (Continued)

Name Direction Description

http://www.xilinx.com

30 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 3: Core Overview
R

PROG_EMPTY_THRESH_ASSERT Input Programmable Empty Threshold Assert: This signal is used to
set the lower threshold value for the programmable empty flag,
which defines when the signal is asserted. The threshold can be
dynamically set in-circuit during reset.

PROG_EMPTY_THRESH_NEGATE Input Programmable Empty Threshold Negate: This signal is used to
set the upper threshold value for the programmable empty flag,
which defines when the signal is deasserted. The threshold can
be dynamically set in-circuit during reset.

Table 3-7: Interface Signals for FIFOs with a Common Clock (Continued)

Name Direction Description

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 31
UG175 July 13, 2006

R

Chapter 4

Generating the Core

This chapter contains information and instructions for using the Xilinx CORE Generator
system to customize the FIFO Generator.

CORE Generator Graphical User Interface
The FIFO Generator graphical user interface (GUI) contains the following six configuration
screens.

• FIFO Implementation

• Performance Options and Data Port Parameters

• Optional Flags and Handshaking Options

• Programmable Flags

• Data Count and Reset

• Summary

http://www.xilinx.com

32 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 4: Generating the Core
R

FIFO Implementation
The main FIFO Generator screen is used to define the component name and provides
configuration options for the core.

Component Name
Base name of the output files generated for this core. The name must begin with a letter
and be composed of the following characters: a to z, 0 to 9, and “_”.

FIFO Implementation
This section of the GUI allows the user to select from a set of available FIFO
implementations and supported features. The key supported features that are only
available for certain implementations are highlighted by checks in the right-margin. The
available options are listed below, with cross-references to additional information.

Common Clock (CLK), Block RAM

For details, see “Common Clock FIFO: Block RAM and Distributed RAM,” page 46.

Common Clock (CLK), Distributed RAM

For details, see “Common Clock FIFO: Block RAM and Distributed RAM,” page 46.

Figure 4-1: Main FIFO Generator Screen

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 33
UG175 July 13, 2006

FIFO Implementation
R

Common Clock (CLK), Shift Register

For details, see “Common Clock FIFO: Shift Registers,” page 47. This implementation is
only available in Virtex-II and newer architectures.

Common Clock (CLK), Built-in FIFO

For details, see “Common Clock: Built-in FIFO,” page 46. This implementation is only
available when using the Virtex-5 or Virtex-4 architectures. This implementation
optionally supports first-word fall-through (selectable in the second GUI screen, shown in
Figure 4-2).

Independent Clocks (RD_CLK, WR_CLK), Block RAM

For details, see “Independent Clocks: Block RAM and Distributed RAM,” page 43. This
implementation optionally supports asymmetric read/write ports and first-word fall-
through (selectable in the second GUI screen, shown in Figure 4-2).

Independent Clocks (RD_CLK, WR_CLK), Distributed RAM

For more information, see “Independent Clocks: Block RAM and Distributed RAM,” page
43. This implementation optionally supports first-word fall-through (selectable in the
second GUI screen, shown in Figure 4-2).

Independent Clocks (RD_CLK, WR_CLK), Built-in FIFO

For more information, see “Independent Clocks: Built-in FIFO,” page 45. This
implementation is only available when using the Virtex-5 or Viretex-4 architectures. This
implementation optionally supports first-word fall-through (selectable in the second GUI
screen, shown in Figure 4-2).

http://www.xilinx.com

34 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 4: Generating the Core
R

Performance Options and Data Port Parameters
This screen provides performance options and data port parameters for the core.

Performance Options
Only available when Virtex-5 built-in FIFO or independent clock FIFO with block RAM or
distributed RAM FIFOs is selected. For more information, see “Read Operation,” page 48.

Standard FIFO

Implements a FIFO with standard latencies, and without using output registers.

First-word Fall-through FIFO

Implements a FIFO with registered outputs. For more information about FWFT
functionality, see “First-Word Fall-Through FIFO Read Operation,” page 50.

Data Port Parameters

Input Data Width

Valid range is 1 to 256.

Input Depth

Valid range is 16 to 4194394. Only depths with powers of 2 are allowed.

Figure 4-2: Performance Options and Data Port Parameters Screen

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 35
UG175 July 13, 2006

Optional Flags, Handshaking, and Initialization
R

Output Data Width

Available if independent clocks configuration with block RAM is selected. Valid range
must comply with asymmetric port rules. See “Non-symmetric Aspect Ratios,” page 60.

Output Depth

Automatically calculated based on Input Data Width, Input Depth, and Output Data
Width.

Built-in FIFO Options

The Read Clock Frequency and Write Clock Frequency fields can be any integer from 1 to
999. They are used, respectively, to set the frequency of the Read Clock and Write Clock in
MHz. This option is only available for built-in FIFOs with independent clocks. If the
desired frequency is not within the allowable range, scale the read and write clock
frequencies so that they fit within the valid range, while maintaining their ratio
relationship.

Optional Flags, Handshaking, and Initialization
This screen allows you to select the optional status flags and set the handshaking options.

Figure 4-3: Optional Flags, Handshaking and Initialization Options Screen

http://www.xilinx.com

36 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 4: Generating the Core
R

Optional Flags

Almost Full Flag

Available in all FIFO implementations except those using Virtex-5 or Virtex-4 built-in
FIFOs. Generates an output port that indicates the FIFO is almost full (only one more word
can be written).

Almost Empty Flag

Available in all FIFO implementations except in those using Virtex-5 or Virtex-4 built-in
FIFOs. Generates an output port that indicates the FIFO is almost empty (only one more
word can be read).

Write Port Handshaking

Write Acknowledge

Generates write acknowledge flag which reports the status of a write operation. This signal
can be configured to be active high or low (default active high).

Overflow (Write Error)

Generates overflow flag which indicates when the previous write operation was not
successful. This signal can be configured to be active high or low (default active high).

Read Port Handshaking

Valid (Read Acknowledge)

Generates valid flag which indicates when the data on the output bus is valid. This signal
can be configured to be active high or low (default active high).

Underflow (Read Error)

Generates underflow flag to indicate that the previous read request was not successful.
This signal can be configured to be active high or low (default active high).

Initialization

Reset Pin

For FIFOs implemented with block RAM or distributed RAM, a reset pin is not required,
and the input pin is optional.

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 37
UG175 July 13, 2006

Programmable Flags
R

Programmable Flags
Use this screen to select the programmable flag type when generating a specific FIFO
Generator configuration.

Programmable Flags

Programmable Full Type

Select a programmable full threshold type from the drop-down menu. The valid range for
each threshold is displayed, and will vary, depending on options selected elsewhere in the
GUI.

Full Threshold Assert Value

Available when Programmable Full with Single or Multiple Threshold Constants is
selected. Enter a user-defined value, or select a preset value from the drop-down menu.
The valid range for this threshold is provided in the GUI. When using a single threshold
constant, only the assert threshold value is used.

Full Threshold Negate Value

Available when Programmable Full with Multiple Threshold Constants is selected. Enter a
user-defined value, or select a preset value from the drop-down menu. The valid range for
this threshold is provided in the GUI.

Figure 4-4: Programmable Flags Screen

http://www.xilinx.com

38 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 4: Generating the Core
R

Programmable Empty Type

Select a programmable empty threshold type from the drop-down menu. The valid range
for each threshold is displayed, and will vary depending on options selected elsewhere in
the GUI.

Empty Threshold Assert Value

Available when Programmable Empty with Single or Multiple Threshold Constants is
selected. Enter a user-defined value, or select a preset value from the drop-down menu.
The valid range for this threshold is provided in the GUI. When using a single threshold
constant, only the assert value is used.

Empty Threshold Negate Value

Available when Programmable Empty with Multiple Threshold Constants is selected.
Enter a user-defined value, or select a preset value from the drop-down menu. The valid
range for this threshold is provided in the GUI.

Data Count and Reset
Use this screen to set data count and reset parameters.

Figure 4-5: Data Count and Reset Screen

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 39
UG175 July 13, 2006

Summary
R

Data Count and Reset Options

Data Count

Use Extra Logic For More Accurate Data Counts

Only available for independent clocks FIFO with block RAM or distributed RAM, and
when using first-word fall-through. This option uses additional external logic to generate
a more accurate data count. See “First-Word Fall-Through Data Count,” page 59 for details.

Write Data Count

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected. Valid range is from 1 to log2 (write depth).

Read Data Count

Available when an independent clocks FIFO with block RAM or distributed RAM is
selected. Valid range is from 1 to log2 (read depth).

Data Count

Available when a common clock FIFO with block RAM, distributed RAM or shift registers
is selected. Valid range is from 1 to log2 of input depth.

Resets

Dout Reset Value

Available in Virtex-II and newer architectures for all implementations using block RAM,
distributed RAM, or shift register memory. This text box indicates the hexidecimal value
which is asserted on the output of the FIFO when RST is asserted.

Summary
This screen summarizes the FIFO type, dimensions, and any additional features selected.
In the Additional Features section, most features display either Not Selected (if the feature is
not used), or Selected (if the feature is used).

Note: Write depth and read depth provide the actual FIFO depths for the selected configuration.
These depths may differ slightly from the depth selected on page 2 of the FIFO GUI.

http://www.xilinx.com

40 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 4: Generating the Core
R

Figure 4-6: Summary Screen

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 41
UG175 July 13, 2006

R

Chapter 5

Designing with the Core

This chapter describes the steps required to turn a FIFO Generator core into a fully-
functioning design integrated with the user application logic. It is important to note that
depending on the configuration of the FIFO core, only a subset of the implementation
details provided are applicable. For successful use of a FIFO core, the design guidelines
discussed in this chapter must be observed.

General Design Guidelines

Know the Degree of Difficulty
A fully-compliant and feature-rich FIFO design is challenging to implement in any
technology. For this reason, it is important to understand that the degree of difficulty can
be significantly influenced by:

• Maximum system clock frequency.

• Targeted device architecture.

• Specific user application.

Ensure that design techniques are used to facilitate implementation, including pipelining
and use of constraints (timing constraints, and placement and/or area constraints).

Understand Signal Pipelining and Synchronization
To understand the nature of FIFO designs, it is important to understand how pipelining is
used to maximize performance and implement synchronization logic for clock-domain
crossing. Data written into the write interface may take multiple clock cycles before it can
be accessed on the read interface.

Synchronization Considerations

FIFOs with independent write and read clocks require that interface signals be used only in
their respective clock domains. The independent clocks FIFO handles all synchronization
requirements, enabling the user to cross between two clock domains that have no
relationship in frequency or phase.

Important! FIFO Full and Empty flags must be used to guarantee proper behavior.

Figure 5-1 shows the signals with respect to their clock domains. All signals are
synchronous to a specific clock, with the exception of RST, which performs an
asynchronous reset of the entire FIFO.

http://www.xilinx.com

42 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

.

For write operations, the write enable signal (WR_EN) and data input (DIN) are
synchronous to WR_CLK. For read operations, the read enable (RD_EN) and data output
(DOUT) are synchronous to RD_CLK. All status outputs are synchronous to their respective
clock domains and can only be used in that clock domain. The performance of the FIFO can
be measured by independently constraining the clock period for the WR_CLK and RD_CLK
input signals.

The interface signals are evaluated on their rising clock edge (WR_CLK and RD_CLK). They
can be made falling-edge active (relative to the clock source) by inserting an inverter
between the clock source and the FIFO clock inputs. This inverter is absorbed into the
internal FIFO control logic and does not cause a decrease in performance or increase in
logic utilization.

Initializing the FIFO Generator
When designing with the built-in FIFO or common clock shift register FIFO, the FIFO must
be reset after the FPGA is configured and before operation begins. A reset pin (RST) is
provided, and is an asynchronous reset that clears the internal counters and output
registers. For FIFOs implemented with block RAM or distributed RAM, a reset is not
required, and the input pin is optional. When a reset is implemented, it is synchronized to
the clock domain in which it is used to ensure that the FIFO initializes to a known state.
This synchronization logic allows for proper reset timing of the core logic, avoiding
glitches and metastable behavior. The synchronization process mandates a 3-cycle delay
post-reset prior to writing to the FIFO.

Figure 5-1: FIFO with Independent Clocks: Write and Read Clock Domains

Note: Optional Ports are in italics

DOUT[M:0]

EMPTY

RST

RD_EN

RD_CLK

ROG_FULL_THRESH_ASSERT

ROG_FULL_THRESH_NEGATE

ROG_FULL_THRESH

Write Clock
Domain

Read Clock
Domain

FULL

WR_EN

DIN[N:0]

WR_CLK

ALMOST_FULL

PROG_FULL

WR_ACK

OVERFLOW

ALMOST_EMPTY

PROG_EMPTY

VALID

UNDERFLOW

PROG_EMPTY_THRESH_ASSERT

PROG_EMPTY_THRESH_NEGATE

PROG_EMPTY_THRESH

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 43
UG175 July 13, 2006

FIFO Implementations
R

FIFO Implementations
Each FIFO configuration has a set of allowable features, as described in Table 5-1.

Independent Clocks: Block RAM and Distributed RAM
Figure 5-2 illustrates the functional implementation of a FIFO configured with
independent clocks. This implementation uses block RAM or distributed RAM for
memory, counters for write and read pointers, conversions between binary and Gray code
for synchronization across clock domains, and logic for calculating the status flags.

Table 5-1: FIFO Configurations Summary

FIFO Feature

Independent Clocks Common Clock

Block
RAM

Distributed
RAM

 Built-in
FIFO

Block
RAM

Distributed
RAM, Shift
Register

 Built-in
FIFO

Non-
symmetric
Aspect Ratios1

1. For applications with a single clock that require non-symmetric ports, use the independent clock
configuration and connect the write and read clocks to the same source. A dedicated solution for
common clocks will be available in a future release. Contact your Xilinx representative for more details.

✔

Symmetric
Aspect Ratios

✔ ✔ ✔ ✔ ✔ ✔

Almost Full ✔ ✔ ✔ ✔

Almost Empty ✔ ✔ ✔ ✔

Handshaking ✔ ✔ ✔ ✔ ✔ ✔

Data Count ✔ ✔ ✔ ✔

Programmable
Empty/Full
Thresholds

✔ ✔ ✔ ✔ ✔ ✔

First-Word
Fall-Through

✔ ✔ ✔2

2. Only supported for Virtex-5 built-in FIFOs.

✔2

DOUT Reset
Value

✔3

3. All architectures except for Virtex, Virtex-E, SpartanTM-II, and Spartan-IIE.

✔ ✔3 ✔

http://www.xilinx.com

44 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

This FIFO is designed to support an independent read clock (RD_CLK) and write clock
(WR_CLK); in other words, there is no required relationship between RD_CLK and
WR_CLK with regard to frequency or phase. The FIFO interface signals are only valid in
their respective clock domains and are summarize in Table 5-2.

Figure Top x-ref 1

Figure 5-2: Functional Implementation of a FIFO with Independent Clock Domains

Table 5-2: Interface Signals and Corresponding Clock Domains

WR_CLK RD_CLK

DIN DOUT

WR_EN RD_EN

FULL EMPTY

ALMOST_FULL ALMOST_EMPTY

PROG_FULL PROG_EMPTY

Write Flag
Logic

Read Counter

Gray to Binary
Converters

Read Flag
Logic

Binary to Gray
Converters

OPTIONAL:
First Word Fall
Through Logic

Write Counter

Binary to Gray
Converter

Gray to Binary
Converter

WR_EN

DIN

DOUT

RD_EN

FULL

ALMOST_FULL

PROG_FULL

WR_DATA_COUNT

WRITE CLOCK DOMAIN READ CLOCK DOMAIN

WRITE PORT READ PORT

ADDRB

DOUTADDRA

DIN

WE

MEMORY

RD_DATA_COUNT

PROG_EMPTY

ALMOST_EMPTY

EMPTY

Write Counter

Read Counter

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 45
UG175 July 13, 2006

FIFO Implementations
R

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of EMPTY is
determined by the phase and frequency relationship between the write and read clocks.
For additional information refer to the “Synchronization Considerations,” page 41.

Independent Clocks: Built-in FIFO
Figure 5-3 illustrates the functional implementation of FIFO configured with independent
clocks using the Virtex-5 built-in FIFO primitive. This design implementation consists of
cascaded built-in FIFO primitives and handshaking logic. The number of built-in
primitives depends on the FIFO width and depth requested.

The Virtex-4 built-in FIFO implementation allows generation of a single primitive. The
generated core includes the FIFO patch as defined in Answer Record 22462.

This FIFO is designed to support an independent read clock (RD_CLK) and write clock
(WR_CLK); in other words, there is no required relationship between RD_CLK and WR_CLK
with regard to frequency or phase. The FIFO interface signals are only valid in their
respective clock domains, and are summarized in Table 5-3.

WR_ACK VALID

OVERFLOW UNDERFLOW

WR_DATA_COUNT RD_DATA_COUNT

Table 5-2: Interface Signals and Corresponding Clock Domains (Continued)

Figure 5-3: Functional Implementation of Built-in FIFO

Table 5-3: Interface Signals and Corresponding Clock Domains

WR_CLK RD_CLK

DIN DOUT

WR_EN RD_EN

FULL EMPTY

WRITE DOMAIN READ DOMAIN

DOUT

Cascaded Built-in FIFO Primitives

Logic For
Optional Flags:
Write Domain

DIN

WE RE
WR_EN

DIN

WR_ACK

OVERFLOW

FULL

Logic For
Optional Flags:
Read Domain

EMPTY

RD_EN

DOUT
Built-In
FIFO

UNDERFLOW

VALID

PROG_FULL PROG_EMPTY

http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=22462
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=22462
http://www.xilinx.com

46 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of EMPTY is
determined by the phase and frequency relationship between the write and read clocks.
For additional information refer to the “Synchronization Considerations,” page 41.

Common Clock: Built-in FIFO
The FIFO Generator supports FIFO cores using the built-in FIFO primitive with a common
clock. This provides users the ability to use the built-in FIFO, while requiring only a single
clock interface. The behavior of the common clock configuration with built-in FIFO is
identical to the independent clock configuration with built-in FIFO, except all operations
are in relation to the common clock (CLK). See “Independent Clocks: Built-in FIFO,” page
45, for more information.

Common Clock FIFO: Block RAM and Distributed RAM
Figure 5-4 illustrates the functional implementation of a FIFO configured with a common
clock using block RAM or distributed RAM for memory. All signals are synchronous to a
single clock input (CLK). This design implements counters for write and read pointers and
logic for calculating the status flags.

PROG_FULL PROG_EMPTY

WR_ACK VALID

OVERFLOW UNDERFLOW

Table 5-3: Interface Signals and Corresponding Clock Domains (Continued)

Figure 5-4: Functional Implementation of a Common Clock FIFO using Block RAM or
Distributed RAM

Flag
Logic

MEMORY

WRITE PORT READ PORT

ADDRA

DIN

WE

ADDRB

DOUT

Write
Counter

DIN

WR_EN

Read
Counter

DOUT

RD_EN

EMPTY

ALMOST_EMPTY

PROG_EMPTY

DATA_COUNT

FULL

ALMOST_FULL

PROG_FULL

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 47
UG175 July 13, 2006

FIFO Usage and Control
R

Common Clock FIFO: Shift Registers
Figure 5-5 illustrates the functional implementation of a FIFO configured with a common
clock using shift registers for memory. All operations are synchronous to the same clock
input (CLK). This design implements a single up/down counter for both the write and
read pointers and logic for calculating the status flags.

FIFO Usage and Control

Write Operation
This section describes the behavior of a FIFO write operation and the associated status
flags. When write enable is asserted and the FIFO is not full, data is added to the FIFO from
the input bus (DIN) and write acknowledge (WR_ACK) is asserted. If the FIFO is
continuously written to without being read, it fills with data. Write operations are only
successful when the FIFO is not full. When the FIFO is full and a write is initiated, the
request is ignored, the overflow flag is asserted and there is no change in the state of the
FIFO (overflowing the FIFO is non-destructive).

ALMOST_FULL and FULL Flags

Note: The Virtex-5 and Virtex-4 built-in FIFO does not support the ALMOST_FULL flag.

The almost full flag (ALMOST_FULL) indicates that only one more write can be performed
before FULL is asserted. This flag is active high and synchronous to the write clock
(WR_CLK).

The full flag (FULL) indicates that the FIFO is full and no more writes can be performed
until data is read out. This flag is active high and synchronous to the write clock (WR_CLK).

Figure 5-5: Functional Implementation of a Common Clock FIFO using Shift Registers

WRITE PORT READ PORT

Pointer
Counter

MEMORY

ADDR

Flag
Logic

DIN

WE RE

DOUT
DIN

WR_EN

DOUT

RD_EN

EMPTY

ALMOST_EMPTY

PROG_EMPTY

DATA_COUNT

FULL

ALMOST_FULL

PROG_FULL

http://www.xilinx.com

48 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

If a write is initiated when FULL is asserted, the write request is ignored and OVERFLOW is
asserted.

Important! For the Virtex-4 built-in FIFO implementation, the Full signal has an extra cycle of
latency. User Write Acknowledge to verify success or Programmable Full for an earlier indication.

Example Operation

Figure 5-6 shows a typical write operation. The user asserts WR_EN, causing a write
operation to occur on the next rising edge of the WR_CLK. Since the FIFO is not full,
WR_ACK is asserted, acknowledging a successful write operation. When only one
additional word can be written into the FIFO, the FIFO asserts the ALMOST_FULL flag.
When ALMOST_FULL is asserted, one additional write causes the FIFO to assert FULL.
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOW is
asserted, indicating an overflow condition. Once the user performs one or more read
operations, the FIFO deasserts FULL, and data can successfully be written to the FIFO, as is
indicated by the assertion of WR_ACK and deassertion of OVERFLOW.

Note: The Virtex-4 built-in FIFO implementation will show an extra cycle of latency on the FULL flag.

Read Operation
This section describes the behavior of a FIFO read operation and the associated status
flags. When read enable is asserted and the FIFO is not empty, data is read from the FIFO
on the output bus (DOUT), and the valid flag (VALID) is asserted. If the FIFO is
continuously read without being written, the FIFO empties. Read operations are successful
when the FIFO is not empty. When the FIFO is empty and a read is requested, the read
operation is ignored, the underflow flag is asserted and there is no change in the state of
the FIFO (underflowing the FIFO is non-destructive).

ALMOST_EMPTY and EMPTY Flags

Note: The Virtex-5 and Virtex-4 built-in FIFO does not support the ALMOST_EMPTY flag.

The almost empty flag (ALMOST_EMPTY) indicates that the FIFO will be empty after one
more read operation. This flag is active high and synchronous to RD_CLK. This flag is
asserted when the FIFO has one remaining word that can be read.

The empty flag (EMPTY) indicates that the FIFO is empty and no more reads can be
performed until data is written into the FIFO. This flag is active high and synchronous to
the read clock (RD_CLK). If a read is initiated when EMPTY is asserted, the request is
ignored and UNDERFLOW is asserted.

Figure 5-6: Write Operation for a FIFO with Independent Clocks

WR_CLK

WR_EN

FULL

ALMOST_FULL

WR_ACK

OVERFLOW

DIN D1 D2 D3 D4 D5 D12 D13

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 49
UG175 July 13, 2006

FIFO Usage and Control
R

Common Clock Note

When write and read operations occur simultaneously while EMPTY is asserted, the write
operation is accepted and the read operation is ignored. On the next clock cycle, EMPTY is
deasserted and UNDERFLOW is asserted.

Modes of Read Operation

The FIFO Generator supports two modes of read options, standard read operation and
first-word fall-through (FWFT) read operation. The standard read operation provides the
user data on the cycle after it was requested. The FWFT read operation provides the user
data on the same cycle in which it is requested.

Table 5-4 details the supported implementations for FWFT.

Standard FIFO Read Operation

For a standard FIFO read operation, after read enable is asserted and if the FIFO is not
empty, the next data stored in the FIFO is driven on the output bus (DOUT) and the valid
flag (VALID) is asserted.

Figure 5-7 shows a standard read access. Once the user writes at least one word into the
FIFO, EMPTY is deasserted—indicating data is available to be read. The user asserts
RD_EN, causing a read operation to occur on the next rising edge of RD_CLK. The FIFO
outputs the next available word on DOUT and asserts VALID, indicating a successful read
operation. When the last data word is read from the FIFO, the FIFO asserts EMPTY. If the
user continues to assert RD_EN while EMPTY is asserted, the read request is ignored, VALID
is deasserted, and UNDERFLOW is asserted. Once the user performs a write operation, the

Table 5-4: Implementation-Specific Support for First-Word Fall-Through

FIFO Implementation FWFT Support

Independent Clocks

Block RAM ✔

Distributed RAM ✔

Built-in ✔1

1. Only supported in Virtex-5 built-in FIFO.

Common Clock

Block RAM

Distributed RAM

Shift Register

Built-in ✔1

http://www.xilinx.com

50 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

FIFO deasserts EMPTY, allowing the user to resume valid read operations, as indicated by
the assertion of VALID and deassertion of UNDERFLOW.

First-Word Fall-Through FIFO Read Operation

The first-word fall-through (FWFT) feature provides the ability to look-ahead to the next
word available from the FIFO without issuing a read operation. When data is available in
the FIFO, the first word falls through the FIFO and appears automatically on the output
bus (DOUT). Once the first word appears on DOUT, EMPTY is deasserted indicating one or
more readable words in the FIFO, and VALID is asserted, indicating a valid word is present
on DOUT.

Figure 5-8 shows a FWFT read access. Initially, the FIFO is not empty, the next available
data word is placed on the output bus (DOUT), and VALID is asserted. When the user
asserts RD_EN, the next rising clock edge of RD_CLK places the next data word onto DOUT.
After the last data word has been placed on DOUT, an additional read request by the user
causes the data on DOUT to become invalid, as indicated by the deassertion of VALID and
the assertion of EMPTY. Any further attempts to read from the FIFO results in an underflow
condition.

Common Clock FIFO, Simultaneous Read and Write Operation

Figure 5-9 shows atypical write and read operation. A write is issued to the FIFO, resulting
in the deassertion of the EMPTY flag. A simultaneous write and read is then issued,
resulting in no change in the status flags. Once two or more words are present in the FIFO,
the ALMOST_EMPTY flag is deasserted. Write requests are then issued to the FIFO, resulting
in the assertion of ALMOST_FULL when the FIFO can only accept one more write (without

Figure 5-7: Standard Read Operation for a FIFO with Independent Clocks

Figure 5-8: FWFT Read Operation for a FIFO with Independent Clocks

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D0 D1 D2 D3

ALMOST_EMPTY

RD_CLK

DOUT

VALID

UNDERFLOW

RD_EN

EMPTY

D0 D1 D2 D3

ALMOST_EMPTY

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 51
UG175 July 13, 2006

FIFO Usage and Control
R

a read). A simultaneous write and read is then issued, resulting in no change in the status
flags. Finally one additional write without a read results in the FIFO asserting FULL,
indicating no further data can be written until a read request is issued.

Handshaking Flags
Handshaking flags (valid, underflow, write acknowledge and overflow) are supported to
provide additional information regarding the status of the write and read operations. The
handshaking flags are optional, and can be configured as active high or active low through
the CORE Generator GUI (see Handshaking Options in Chapter 4 for more information).
These flags (configured as active high) are illustrated in Figure 5-10.

Write Acknowledge

The write acknowledge flag (WR_ACK) is asserted at the completion of each successful
write operation and indicates that the data on the DIN port has been stored in the FIFO.
This flag is synchronous to the write clock (WR_CLK).

Valid

The operation of the valid flag (VALID) is dependent on the read mode of the FIFO. This
flag is synchronous to the read clock (RD_CLK).

Standard FIFO Read Operation

For standard read operation, the VALID flag is asserted at the rising edge of RD_CLK for
each successful read operation, and indicates that the data on the DOUT bus is valid. When
a read request is unsuccessful (when the FIFO is empty), VALID is not asserted.

FWFT FIFO Read Operation

For FWFT read operation, the VALID flag indicates the data on the output bus (DOUT) is
valid for the current cycle. A read request does not have to happen for data to be present
and valid, as the first-word fall-through logic automatically places the next data to be read
on the DOUT bus. VALID is asserted if there is one or more words in the FIFO. VALID is
deasserted when there are no more words in the FIFO.

Figure 5-9: Write and Read Operation for a FIFO with Common Clocks

CLK

WR_EN

EMPTY

RD_EN

ALMOST_EMPTY

FULL

ALMOST_FULL

http://www.xilinx.com

52 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

Example Operation

Figure 5-10 illustrates the behavior of the FIFO flags. On the write interface, FULL is not
asserted and writes to the FIFO are successful (as indicated by the assertion of WR_ACK).
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOW is
asserted, indicating an overflow condition. On the read interface, once the FIFO is not
EMPTY, the FIFO accepts read requests. In standard FIFO operation, VALID is asserted and
DOUT is updated on the clock cycle following the read request. In FWFT operation, VALID
is asserted and DOUT is updated prior to a read request being issued. When a read request
is issued while EMPTY is asserted, VALID is deasserted and UNDERFLOW is asserted,
indicating an underflow condition.

Figure 5-10: Handshaking Signals for a FIFO with Independent Clocks

D1 D3D2

Write Interface

WR_EN

DIN

WR_ACK

WR_CLK

FULL

OVERFLOW

D1 D3D2

FWFT Read Interface

RD_CLK

RD_EN

EMPTY

UNDERFLOW

VALID

DOUT

D1 D3D2

Standard Read Interface

VALID

RD_CLK

RD_EN

EMPTY

UNDERFLOW

DOUT

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 53
UG175 July 13, 2006

FIFO Usage and Control
R

Underflow

The underflow flag (UNDERFLOW) is used to indicate that a read operation is unsuccessful.
This occurs when a read is initiated and the FIFO is empty. This flag is synchronous with
the read clock (RD_CLK). Underflowing the FIFO does not change the state of the FIFO (it
is non-destructive).

Overflow

The overflow flag (OVERFLOW) is used to indicate that a write operation is unsuccessful.
This flag is asserted when a write is initiated to the FIFO while FULL is asserted. The
overflow flag is synchronous to the write clock (WR_CLK). Overflowing the FIFO does not
change the state of the FIFO (it is non-destructive).

Example Operation

Figure 5-11 illustrates the Handshaking flags. On the write interface, FULL is deasserted
and therefore writes to the FIFO are successful (indicated by the assertion of WR_ACK).
When a write occurs after FULL is asserted, WR_ACK is deasserted and OVERFLOW is
asserted, indicating an overflow condition. On the read interface, once the FIFO is not
EMPTY, the FIFO accepts read requests. Following a read request, VALID is asserted and
DOUT is updated. When a read request is issued while EMPTY is asserted, VALID is
deasserted and UNDERFLOW is asserted, indicating an underflow condition.

Figure 5-11: Handshaking Signals for a FIFO with Common Clocks

D1

WR_EN

DIN

WR_ACK

VALID

CLK

CLK

RD_EN

FULL

EMPTY

OVERFLOW

UNDERFLOW

D1DOUT D3

D3D2

D2

Write Interface

Read Interface

http://www.xilinx.com

54 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

Programmable Flags
The FIFO supports programmable flags to indicate that the FIFO has reached a user-
defined fill level.

• Programmable full (PROG_FULL) indicates that the FIFO has reached a user-defined
full threshold.

• Programmable empty (PROG_EMPTY) indicates that the FIFO has reached a user-
defined empty threshold.

For these thresholds, the user can set a constant value or choose to have dedicated input
ports, enabling the thresholds to change dynamically in circuit. Hysteresis is also
optionally supported, by providing unique assert and negate values for each flag. Detailed
information about these options are provided below.

Programmable Full

The FIFO Generator supports four ways to define the programmable full threshold:

• Single threshold constant

• Single threshold with dedicated input port

• Assert and negate threshold constants (provides hysteresis)

• Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the CORE Generator GUI and accessed within the
programmable flags window (Figure 4-4).

The programmable full flag (PROG_FULL) is asserted when the number of entries in the
FIFO is greater than or equal to the user-defined assert threshold. When the programmable
full flag is asserted, the FIFO can continue to be written to until the full flag (FULL) is
asserted. If the number of words in the FIFO is less than the negate threshold, the flag is
deasserted.

Note: If a write operation occurs on a rising clock edge that causes the number of words to meet or
exceed the programmable full threshold, then the programmable full flag will assert on the next rising
clock edge. The deassertion of the programmable full flag has a longer delay, and depends on the
relationship between the write and read clocks.

Programmable Full: Single Threshold

This option enables the user to set a single threshold value for the assertion and
deassertion of PROG_FULL. When the number of entries in the FIFO is greater than or
equal to the threshold value, PROG_FULL is asserted. When the number of entries in the
FIFO is less than the threshold value, PROG_FULL is deasserted.

There are two options for implementing this threshold:

• Single threshold constant. User specifies the threshold value through the CORE
Generator GUI. Once the core is generated, this value can only be changed by re-
generating the core. This option consumes fewer resources than the single threshold
with dedicated input port.

• Single threshold with dedicated input port. User specifies the threshold value
through an input port (PROG_FULL_THRESH) on the core. This input can be changed
while the FIFO is in reset, providing the user the flexibility to change the
programmable full threshold in-circuit without re-generating the core.

Note: Refer to the CORE Generator GUI for valid ranges for each threshold.

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 55
UG175 July 13, 2006

FIFO Usage and Control
R

Figure 5-12 shows the programmable full flag with a single threshold. The user writes to
the FIFO until there are seven words in the FIFO. Since the programmable full threshold is
set to seven, the FIFO asserts PROG_FULL once seven words are written into the FIFO.
Note that both write data count (WR_DATA_COUNT) and PROG_FULL have one clock cycle
of delay. Once the FIFO has six or fewer words in the FIFO, PROG_FULL is deasserted.

Programmable Full: Assert and Negate Thresholds

This option enables the user to set separate values for the assertion and deassertion of
PROG_FULL. When the number of entries in the FIFO is greater than or equal to the assert
value, PROG_FULL is asserted. When the number of entries in the FIFO is less than the
negate value, PROG_FULL is deasserted.

There are two options for implementing these thresholds:

• Assert and negate threshold constants: User specifies the threshold values through the
CORE Generator GUI. Once the core is generated, these values can only be changed
by re-generating the core. This option consumes fewer resources than the assert and
negate thresholds with dedicated input ports.

• Assert and negate thresholds with dedicated input ports: User specifies the threshold
values through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing the user the flexibility to change the values of the
programmable full assert (PROG_FULL_THRESH_ASSERT) and negate
(PROG_FULL_THRESH_NEGATE) thresholds in-circuit without re-generating the core.

Note: The full assert value must be larger than the full negate value. Refer to the CORE Generator
GUI for valid ranges for each threshold.

Figure 5-13 shows the programmable full flag with assert and negate thresholds. The user
writes to the FIFO until there are 10 words in the FIFO. Because the assert threshold is set
to 10, the FIFO then asserts PROG_FULL. The negate threshold is set to seven, and the FIFO
deasserts PROG_FULL once six words or fewer are in the FIFO. Both write data count
(WR_DATA_COUNT) and PROG_FULL have one clock cycle of delay.

Figure 5-12: Programmable Full Single Threshold: Threshold Set to 7

Figure 5-13: Programmable Full with Assert and Negate Thresholds: Assert Set to 10
and Negate Set to 7

WR_CLK

WR_DATA_COUNT

WR_ACK

PROG_FULL

WR_EN

5 74 6 8 67

9 98

WR_CLK

WR_DATA_COUNT

WR_ACK

PROG_FULL

WR_EN

7810 6

http://www.xilinx.com

56 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

Programmable Empty

The FIFO Generator supports four ways to define the programmable empty thresholds.

• Single threshold constant

• Single threshold with dedicated input port

• Assert and negate threshold constants (provides hysteresis)

• Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the CORE Generator GUI and accessed within the
programmable flags window (Figure 4-4).

The programmable empty flag (PROG_EMPTY) is asserted when the number of entries in
the FIFO is less than or equal to the user-defined assert threshold. If the number of words
in the FIFO is greater than the negate threshold, the flag is deasserted.

Note: If a read operation occurs on a rising clock edge that causes the number of words in the FIFO
to be equal to or less than the programmable empty threshold, then the programmable empty flag will
assert on the next rising clock edge. The deassertion of the programmable empty flag has a longer
delay, and depends on the read and write clocks.

Programmable Empty: Single Threshold

This option enables the user to set a single threshold value for the assertion and
deassertion of PROG_EMPTY. When the number of entries in the FIFO is less than or equal
to the threshold value, PROG_EMPTY is asserted. When the number of entries in the FIFO is
greater than the threshold value, PROG_EMPTY is deasserted.

There are two options for implementing this threshold.

• Single threshold constant: User specifies the threshold value through the CORE
Generator GUI. Once the core is generated, this value can only be changed by re-
generating the core. This option consumes fewer resources than the single threshold
with dedicated input port.

• Single threshold with dedicated input port: User specifies the threshold value
through an input port (PROG_EMPTY_THRESH) on the core. This input can be changed
while the FIFO is in reset, providing the user the flexibility to change the
programmable empty threshold in-circuit without re-generating the core.

Note: Refer to the CORE Generator GUI for valid ranges for each threshold.

Figure 5-14 shows the programmable empty flag with a single threshold. The user writes
to the FIFO until there are five words in the FIFO. Since the programmable empty
threshold is set to four, PROG_EMPTY is asserted until more than four words are present in
the FIFO. Once five words (or more) are present in the FIFO, PROG_EMPTY is deasserted.
Both read data count (RD_DATA_COUNT) and PROG_EMPTY have one clock cycle of delay.

Figure 5-14: Programmable Empty with Single Threshold: Threshold Set to 4

RD_CLK

RD_DATA_COUNT

VALID

RD_EN

44 5 36 5

PROG_EMPTY

7

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 57
UG175 July 13, 2006

FIFO Usage and Control
R

Programmable Empty: Assert and Negate Thresholds

This option enables the user to set separate values for the assertion and deassertion of
PROG_EMPTY. When the number of entries in the FIFO is less than or equal to the assert
value, PROG_EMPTY is asserted. When the number of entries in the FIFO is greater than the
negate value, PROG_EMPTY is deasserted.

There are two options for implementing the assert and negate thresholds.

• Assert and negate threshold constants. The threshold values are specified through
the CORE Generator GUI. Once the core is generated, these values can only be
changed by re-generating the core. This option consumes fewer resources than the
assert and negate thresholds with dedicated input ports.

• Assert and negate thresholds with dedicated input ports. The threshold values are
specified through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing the user the flexibility to change the values of the
programmable empty assert (PROG_EMPTY_THRESH_ASSERT) and negate
(PROG_EMPTY_THRESH_NEGATE) thresholds in-circuit without regenerating the core.

Note: The empty assert value must be less than the empty negate value. Refer to the CORE
Generator GUI for valid ranges for each threshold.

Figure 5-15 shows the programmable empty flag with assert and negate thresholds. The
user writes to the FIFO until there are eleven words in the FIFO. Since the programmable
empty deassert value is set to ten, PROG_EMPTY is deasserted when there are more than ten
words in the FIFO. Once the FIFO contains less than or equal to the programmable empty
negate value (set to seven), PROG_EMPTY is asserted. Both read data count
(RD_DATA_COUNT) and PROG_EMPTY have one clock cycle of delay.

Programmable Empty for First-Word Fall-Through

For FWFT FIFOs, PROG_EMPTY is guaranteed to be asserted when the number of words in
the FIFO is less than or equal to the programmable empty assert threshold. Under certain
conditions, it is possible for PROG_EMPTY to violate this rule, but only while EMPTY is
asserted. PROG_EMPTY should be assumed to be asserted whenever EMPTY is asserted.

Data Counts
DATA_COUNT tracks the number of words in the FIFO. You can specify the width of the
data count bus with a maximum width of log2 (FIFO depth). If the width specified is
smaller than the maximum allowable width, the bus is truncated by removing the lower

Figure 5-15: Programmable Empty with Assert and Negate Thresholds: Assert Set to 7 and
Negate Set to 10

RD_CLK

RD_DATA_COUNT

PROG_EMPTY

RD_EN

8 9 1010 711 9 8

VALID

http://www.xilinx.com

58 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

bits. These signals are optional outputs of the FIFO Generator, and are enabled through the
CORE Generator GUI. Table 5-5 identifies FWFT support for each FIFO implementation.

Read Data Count

Read data count (RD_DATA_COUNT) pessimistically reports the number of words available
for reading. The count is guaranteed to never over-report the number of words available in
the FIFO (although it may temporarily under-report the number of words available) to
ensure that the user never underflows the FIFO. The user can specify the width of the read
data count bus with a maximum width of log2 (read depth). If the width specified is
smaller than the maximum allowable width, the bus is truncated with the lower bits
removed.

For example, the user can specify to use two bits out of a maximum allowable three bits
(provided a FIFO depth of eight). These two bits indicate the number of words in the FIFO,
with a quarter resolution. This provides a status of the contents of the FIFO for the read
clock domain.

Note: If a read operation occurs on a rising clock edge of RD_CLK, that read is reflected on the
RD_DATA_COUNT signal following the next rising clock edge. A write operation on the WR_CLK
clock domain may take a number of clock cycles before being reflected in the RD_DATA_COUNT.

Write Data Count

Write data count (WR_DATA_COUNT) pessimistically reports the number of words written
into the FIFO. The count is guaranteed to never under-report the number of words in the
FIFO (although it may temporarily over-report the number of words present) to ensure
that the user never overflows the FIFO. The user can specify the width of the write data
count bus with a maximum width of log2 (write depth). If the width specified is smaller
than the maximum allowable width, the bus is truncated with the lower bits removed.

For example, you can only use two bits out of a maximum allowable three bits (provided a
FIFO depth of eight). These two bits indicate the number of words in the FIFO, with a
quarter resolution. This provides a status of the contents of the FIFO for the write clock
domain.

Note: If a write operation occurs on a rising clock edge of WR_CLK, that write will be reflected on
the WR_DATA_COUNT signal following the next rising clock edge. A read operation, which occurs on
the RD_CLK clock domain, may take a number of clock cycles before being reflected in the
WR_DATA_COUNT.

Table 5-5: Implementation-specific Support for Data Counts

FIFO Implementation FWFT Support

Independent Clocks

Block RAM ✔

Distributed RAM ✔

Built-in

Common Clock

Block RAM ✔

Distributed RAM ✔

Shift Register ✔

Built-in

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 59
UG175 July 13, 2006

FIFO Usage and Control
R

First-Word Fall-Through Data Count

By providing the capability to read the next data word before requesting it, FWFT
implementations increase the depth of the FIFO. This depth increase causes the FWFT data
counts to be estimates of the number of words in the FIFO, not exact representations of the
number of words in the FIFO. By selecting “Use extra logic for more accurate Data Counts”
on page 4 of the CORE Generator GUI, an extra bit is added to WR_DATA_COUNT and
RD_DATA_COUNT to allow them to accurately express the full depth of the FIFO. When this
option is selected, RD_DATA_COUNT and WR_DATA_COUNT behave as described in the
sections above. When this option is not selected, the write and read data counts are only
estimates of the contents of the FIFO.

For example, an independent clocks FIFO with a user-selected input and output depth of
eight, has an actual depth (as reported on the summary page of the GUI) of seven. If FWFT
is selected, the additional register stages increase the FIFO’s effective depth to nine. In this
case, selecting “use extra logic for more accurate data counts” will increase the data count
counter sizes to display the full range of the FIFO (zero to nine words).

Note: For FWFT implementations, WR_DATA_COUNT is guaranteed to be accurate when words
are present in the FIFO, but may be incorrect by 2 at or near empty.

Example Operation

Figure 5-16 shows write and read data counts. When WR_EN is asserted and FULL is
deasserted, WR_DATA_COUNT increments. Similarly, when RD_EN is asserted and EMPTY is
deasserted, RD_DATA_COUNT decrements.

Note: In the first part of Figure 5-16, a successful write operation occurs on the third rising clock
edge, and is not reflected on WR_DATA_COUNT until the next full clock cycle is complete. Similarly,
RD_DATA_COUNT transitions one full clock cycle after a successful read operation.

Figure 5-16: Write and Read Data Counts for FIFO with Independent Clocks

WR_CLK

WR_DATA_COUNT

WR_EN

12 1413 15

RD_CLK

RD_DATA_COUNT

RD_EN

3 12 0

FULL

EMPTY

Write Interface

Read Interface

http://www.xilinx.com

60 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

Non-symmetric Aspect Ratios
Table 5-6 identifies the FWFT support for non-symmetric aspect ratios.

This feature is supported for FIFOs configured with independent clocks implemented with
block RAM. Non-symmetric aspect ratios allow the input and output depths of the FIFO to
be different. The following write-to-read aspect ratios are supported: 1:8, 1:4, 1:2, 1:1, 2:1,
4:1, 8:1. This feature is enabled by selecting unique write and read widths when
customizing the FIFO using the CORE Generator. By default, the write and read widths are
set to the same value (providing a 1:1 aspect ratio); but any ratio between 1:8 to 8:1 is
supported, and the output depth of the FIFO is automatically calculated from the input
depth and the write and read widths.

For non-symmetric aspect ratios, the full and empty flags are active only when one
complete word can be written or read. The FIFO does not allow partial words to be
accessed. For example, assuming a full FIFO, if the write width is 8 bits and read width is
2 bits, the user would have to complete four valid read operations before full deasserts and
a write operation accepted. Write data count shows the number of FIFO words according
to the write port ratio, and read data count shows the number of FIFO words according to
the read port ratio.

Note: For non-symmetric aspect ratios where the write width is smaller than the read width (1:8, 1:4,
1:2), the most significant bits are read first (refer to Figure 5-17 and Figure 5-18).

Figure 5-17 is an example of a FIFO with a 1:4 aspect ratio (write width = 2, read width = 8).
In this figure, four consecutive write operations are performed before a read operation can
be performed. The first write operation is “10”, followed by “11”, “00”, and finally “01.”
The memory is filling up from the right to the left (LSB to MSB). When a read operation is
performed, the received data is “01_00_11_10.”

Table 5-6: Implementation-specific Support for Non-symmetric Aspect Ratios

FIFO Implementation FWFT Support

Independent Clocks

Block RAM ✔

Distributed RAM

Built-in

Common Clock

Block RAM

Distributed RAM

Shift Register

Built-in

Figure 5-17: 1:4 Aspect Ratio: Data Ordering

Read
Operation

110001

0001

01

MSB LSB

01 00 11 1001

00

11

10

Time

Write
Operation

10110001

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 61
UG175 July 13, 2006

FIFO Usage and Control
R

Figure 5-18 shows DIN, DOUT and the handshaking signals for a FIFO with a 1:4 aspect
ratio. After four words are written into the FIFO, EMPTY is deasserted. Then after a single
read operation, EMPTY is asserted again.

Figure 5-19 shows a FIFO with an aspect ratio of 4:1 (write width of 8, read width of 2). In
this example, a single write operation is performed, after which four read operations are
executed. The write operation is “11_00_01_11.” When a read operation is performed, the
data is received left to right (MSB to LSB). As shown, the first read results in data of “11”,
followed by “00”, “01”, and then “11.”

Figure 5-18: 1:4 Aspect Ratio: Status Flag Behavior

Figure 5-19: 4:1 Aspect Ratio: Data Ordering

WR_CLK

DIN[1:0]

WR_EN

231 0

RD_CLK

DOUT[7:0]

RD_EN

EMPTY

4E

Read
Operation

00 01 11

01 11

11

MSB LSB

Write
Operation

11 00 01 11 11

00

01

11

Time

http://www.xilinx.com

62 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

Figure 5-20 shows DIN, DOUT, and the handshaking signals for a FIFO with an aspect ratio
of 4:1. After a single write, the FIFO deasserts EMPTY. Since no other writes occur, the FIFO
reasserts empty after four reads.

Reset Behavior
The FIFO Generator provides a single reset (RST) input that asynchronously resets all
counters, output registers, and memories when asserted. For block RAM or distributed
RAM implementations, resetting the FIFO is not required, and the input pin (RST) can be
disabled in the FIFO. When reset is implemented, it is synchronized internally to the core
with each respective clock domain for setting the internal logic of the FIFO to a known
state. This synchronization logic allows for proper timing of the reset logic within the core
to avoid glitches and metastable behavior. Due to the synchronization logic used, there is a
latency in the deassertion of the FULL, ALMOST_FULL, and PROG_FULL signals.
Figure 5-21 shows the full flags following the release of RST.

Table 5-7 lists the values of the output ports during the reset state. DOUT reset value is sup-
ported for distributed RAM and block RAM implementations (excluding Virtex and Spar-
tan-II). If the user does not specify a DOUT reset value, it defaults to 0. FULL and
ALMOST_FULL flags are asserted during reset to ensure that no write operations occur, and
handshaking signals are deasserted during reset.

The FIFO requires a reset pulse of at least three clock cycles in length. Independent clocks
FIFOs require four cycles post-reset prior to FIFO write availability. This is necessary for

Figure 5-20: 4:1 Aspect Ratio: Status Flag Behavior

WR_CLK

DIN[7:0]

WR_EN

C7

RD_CLK

DOUT[1:0]

RD_EN

EMPTY

3103

Figure 5-21: Reset Behavior for FIFO with Independent Clocks

WR_CLK

RST

FULL

ALMOST_FULL

PROG_FULL

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 63
UG175 July 13, 2006

FIFO Usage and Control
R

proper reset synchronization. Common clock FIFOs are available for transactions the clock
cycle after reset is released.

Table 5-7: FIFO Reset Values

Signal
Block Memory

Distributed Memory
& Shift Register Values

Built-in FIFO Reset
Values

DOUT DOUT Reset Value or 01

1. The ability to set DOUT to a user-defined value is not available for block RAM implementations in
Virtex, Spartan-II and Spartan-IIE. DOUT resets to 0 when this feature is unavailable.

Content of memory
at location 0

FULL 12

2. When reset is asserted, the FULL flags are asserted to prevent writes to the FIFO during reset.

0

ALMOST FULL 12 N/A

ALMOST EMPTY 1 N/A

VALID 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

UNDERFLOW 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

WR_ACK 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

OVERFLOW 0 (active high) or

1 (active low)

0 (active high) or

1 (active low)

PROG_FULL 12 0

PROG_EMPTY 1 1

RD_DATA_COUNT 0 N/A

WR_DATA_COUNT 0 N/A

http://www.xilinx.com

64 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 5: Designing with the Core
R

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 65
UG175 July 13, 2006

R

Chapter 6

Special Design Considerations

This chapter provides additional design considerations for using the FIFO Generator core.

Resetting the FIFO
The FIFO Generator must be reset after the FPGA is configured and before operation
begins. A reset pin (RST) is provided, and is an asynchronous reset that clears the internal
counters and output registers. Internal to the core, RST is synchronized to the clock domain
in which it is used, to ensure that the FIFO initializes to a known state. This
synchronization logic allows for proper reset timing of the core logic, avoiding glitches and
metastable behavior.

The generated FIFO core will be initialized after reset to a known state. For details on the
reset values and behavior, see “Reset Behavior” in Chapter 5 of this guide.

Continuous Clocks
The FIFO Generator is designed to work only with free-running write and read clocks.
Xilinx does not recommend controlling the core by manipulating RD_CLK and WR_CLK. If
this functionality is required to gate FIFO operation, we recommend using the write enable
(WR_EN) and read enable (RD_EN) signals.

Pessimistic Full and Empty
When independent clock domains are selected, the full flag (FULL, ALMOST_FULL) and
empty flag (EMPTY, ALMOST_EMPTY) are pessimistic flags. FULL and ALMOST_FULL are
synchronous to the write clock (WR_CLK) domain, while EMPTY and ALMOST_EMPTY are
synchronous to the read clock (RD_CLK) domain.

The full flags are considered pessimistic flags because they assume that no read operations
have taken place in the read clock domain. ALMOST_FULL is guaranteed to be asserted on
the rising edge of WR_CLK when there is only one available location in the FIFO, and FULL
is guaranteed to be asserted on the rising edge of WR_CLK when the FIFO is full. There may
be a number of clock cycles between a read operation and the deassertion of FULL. The
precise number of clock cycles for FULL to deassert is not predictable due to the crossing of
clock domains and synchronization logic.

The EMPTY flags are considered pessimistic flags because they assume that no write
operations have taken place in the write clock domain. ALMOST_EMPTY is guaranteed to be
asserted on the rising edge of RD_CLK when there is only one more word in the FIFO, and
EMPTY is guaranteed to be asserted on the rising edge of RD_CLK when the FIFO is empty.
There may be a number of clock cycles between a write operation and the deassertion of

http://www.xilinx.com

66 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 6: Special Design Considerations
R

EMPTY. The precise number of clock cycles for EMPTY to deassert is not predictable due to
the crossing of clock domains and synchronization logic.

See Chapter 5, “Designing with the Core,” for detailed information about the latency and
behavior of the full and empty flags.

Programmable Full and Empty
The programmable full (PROG_FULL) and programmable empty (PROG_EMPTY) flags
provide the user flexibility in specifying when the programmable flags assert and deassert.
These flags can be set either by constant value(s) or by input port(s). These signals differ
from the full and empty flags because they assert one (or more) clock cycle after the assert
threshold has been reached. These signals are deasserted some time after the negate
threshold has been passed. In this way, PROG_EMPTY and PROG_FULL are also considered
pessimistic flags. See “Programmable Flags” in Chapter 5 of this guide for more
information about the latency and behavior of the programmable flags.

Write Data Count and Read Data Count
When independent clock domains are selected, write data count (WR_DATA_COUNT) and
read data count (RD_DATA_COUNT) signals are provided as an indication of the number of
words in the FIFO relative to the write or read clock domains, respectively.

Consider the following when using the WR_DATA_COUNT or RD_DATA_COUNT ports.

• The WR_DATA_COUNT and RD_DATA_COUNT outputs are not an instantaneous
representation of the number of words in the FIFO, but can instantaneously provide
an approximation of the number of words in the FIFO.

• WR_DATA_COUNT and RD_DATA_COUNT may skip values from clock cycle to clock
cycle.

• Using non-symmetric aspect ratios, or running clocks which vary dramatically in
frequency, will increase the disparity between the data count outputs and the actual
number of words in the FIFO.

Note: The WR_DATA_COUNT and RD_DATA_COUNT outputs will always be correct after some
period of time where RD_EN=0 and WR_EN=0 (generally, just a few clock cycles after read and write
activity stops).

See “Data Counts” in Chapter 5 of this guide for details about the latency and behavior of
the data count flags.

Setup and Hold Time Violations
When generating a FIFO with independent clock domains, the core internally
synchronizes the write and read clock domains. Setup and hold time violations are
therefore expected on certain registers within the core. In simulation, warning messages
may be issued indicating these violations. If these warning messages are from the FIFO
Generator core, they can be safely ignored. The core is designed to properly handle these
conditions, regardless of the phase or frequency relationship between the write and read
clocks.

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 67
UG175 July 13, 2006

R

Chapter 7

Simulating Your Design

The FIFO Generator is provided as a Xilinx technology-specific netlist, and as a behavioral
or structural simulation model. This chapter provides instructions for simulating the FIFO
Generator in your design.

Simulation Models
The FIFO Generator supports two types of simulation models based on the Xilinx CORE
Generator system project options. The models are available in both VHDL and Verilog.
Both types of models are described in detail in this chapter.

To choose a model, do the following:

1. Open the CORE Generator.

2. Select Options from the Project drop-down list.

3. Click the Generation tab.

4. Choose to generate a behavioral model or a structural model.

Behavioral Models
Important! The behavioral models provided are designed to reproduce the behavior and
functionality of the FIFO Generator, but are not cycle-accurate models (except for the common
clock FIFO with block RAM, distributed RAM, or shift registers). If cycle accurate models are
required (and common clock FIFO with block RAM, distributed RAM or shift registers is not
selected), it is recommended to use the structural model.

The behavioral models are considered to be zero-delay models, as the modeled write-to-
read latency is nearly zero. The behavioral models are functionally correct, and will
represent the behavior of the configured FIFO, although the write-to-read latency and the
behavior of the status flags will differ from the actual implementation of the FIFO design.

To generate behavioral models, select Behavioral and VHDL or Verilog in the Xilinx CORE
Generator project options. Behavioral models are the default project options.

The following considerations apply to the behavioral models.

• Write operations always occur relative to the write clock (WR_CLK) or common clock
(CLK) domain, as do the corresponding handshaking signals.

• Read operations always occur relative to the read clock (RD_CLK) or common clock
(CLK) domain, as do the corresponding handshaking signals.

• The delay through the FIFO (write-to-read latency) will differ between the VHDL
model, the Verilog model, and the core.

• The deassertion of the status flags (full, almost full, programmable full, empty, almost

http://www.xilinx.com

68 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Chapter 7: Simulating Your Design
R

empty, programmable empty) will vary between the VHDL model, the Verilog model,
and the core.

Note: If independent clocks or common clocks with built-in FIFO is selected, it is strongly
recommended to use the structural model, as the behavioral model does not correctly model the
behavior of the status flags (full, programmable full, empty and programmable empty).

Structural Models

The structural models are designed to provide a more accurate model of FIFO behavior at
the cost of simulation time. These models will provide a closer approximation of cycle
accuracy across clock domains for asynchronous FIFOs. No asynchronous FIFO model can
be 100% cycle accurate as physical relationships between the clock domains, including
temperature, process, and frequency relationships, affect the domain crossing
indeterminately.

To generate structural models, select Structural and VHDL or Verilog in the Xilinx CORE
Generator project options.

Note: Simulation performance may be impacted when simulating the structural models compared to
the behavioral models

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 69
UG175 July 13, 2006

R

Appendix A

Performance Information

Resource Utilization and Performance
Performance and resource utilization for a FIFO varies depending on the configuration
and features selected when customizing the core. The tables below provide example FIFO
configurations and the maximum performance and resources required.

Table A-1 provides results for a FIFO configured without optional features. The
benchmarks were performed using Virtex-II 2v3000, Virtex-4 4vlx15 -11, and Virtex-5
5vlx50-2 target devices.

Table A-1: Benchmarks: FIFO Configured without Optional Features

FIFO Type
Depth x
Width

Family
Performance

(MHz)

Resources

LUTs FFs Block RAM
Shift

Register
Distributed

RAM

Synchronous
FIFO

(Block RAM)
512 x 16

Virtex-5 350 MHz 62 45 1 0 0

Virtex-4 200 MHz 64 43 1 0 0

Virtex-II 175 MHz 64 43 1 0 0

Synchronous
FIFO

(Block RAM)
4096 x 16

Virtex-5 350 MHz 84 57 2 0 0

Virtex-4 225 MHz 80 55 4 0 0

Virtex-II 175 MHz 80 55 4 0 0

Synchronous
FIFO
(Distributed
RAM)

64 x 16

Virtex-5 475 MHz 48 61 0 0 32

Virtex-4 250 MHz 89 47 0 0 128

Virtex-II 225 MHz 89 47 0 0 128

Synchronous
FIFO
(Distributed
RAM)

512 x 16

Virtex-5 375 MHz 85 80 0 0 256

Virtex-4 200 MHz 340 59 0 0 1024

Virtex-II 150 MHz 340 59 0 0 1024

Independent
Clocks FIFO
(Block RAM

512x 16

Virtex-5 350 MHz 105 124 1 0 0

Virtex-4 250 MHz 103 105 1 0 0

Virtex-II 200 MHz 103 105 1 0 0

http://www.xilinx.com

70 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Appendix A: Performance Information
R

Table A-2 provides results for FIFOs configured with multiple programmable thresholds.
The benchmarks were performed using Virtex-II 2v3000, Virtex-4 4vlx15 -11, and Virtex-5
5vlx50-2 target devices.

Independent
Clocks FIFO
(Block RAM)

4096 x 16

Virtex-5 350 MHz 147 163 2 0 0

Virtex-4 250 MHz 134 138 4 0 0

Virtex-II 175 MHz 134 138 4 0 0

Independent
Clocks FIFO
(Distributed
RAM

64 x 16

Virtex-5 475 MHz 76 104 0 0 32

Virtex-4 325 MHz 112 100 0 0 128

Virtex-II 225 MHz 112 100 0 0 128

Independent
Clocks FIFO
(Distributed
RAM

512 x 16

Virtex-5 350 MHz 126 148 0 0 256

Virtex-4 225 MHz 382 139 0 0 1024

Virtex-II 150 MHz 382 139 0 0 1024

Shift Register
FIFO 64 x 16

Virtex-5 450 MHz 59 50 0 32 0

Virtex-4 200 MHz 68 43 0 64 0

Virtex-II 150 MHz 68 43 0 64 0

Shift Register
FIFO 512 x 16

Virtex-5 275 MHz 159 67 0 256 0

Virtex-4 200 MHz 312 82 0 512 0

Virtex-II 150 MHz 312 82 0 512 0

Table A-1: Benchmarks: FIFO Configured without Optional Features (Continued)

FIFO Type
Depth x
Width

Family
Performance

(MHz)

Resources

LUTs FFs Block RAM
Shift

Register
Distributed

RAM

Table A-2: Benchmarks: FIFO Configured with Multiple Programmable Thresholds

FIFO Type
Depth x
Width

Family
Performance

(MHz)

Resources

LUTs FFs Block RAM
Shift

Register
Distributed

RAM

Synchronous
FIFO

(Block RAM)
512 x 16

Virtex-5 350 MHz 91 70 1 0 0

Virtex-4 200 MHz 109 68 1 0 0

Virtex-II 175 MHz 109 68 1 0 0

Synchronous
FIFO

(Block RAM)
4096 x 16

Virtex-5 350 MHz 124 88 2 0 0

Virtex-4 225 MHz 135 86 4 0 0

Virtex-II 175 MHz 135 86 4 0 0

Synchronous
FIFO
(Distributed
RAM)

64 x 16

Virtex-5 475 MHz 75 90 0 0 32

Virtex-4 250 MHz 112 66 0 0 128

Virtex-II 225 MHz 112 66 0 0 128

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 71
UG175 July 13, 2006

Resource Utilization and Performance
R

Table A-3 provides results for FIFOs configured to use the Virtex-5 built-in FIFO. The
benchmarks were performed using a Virtex-5 5vlx50-2 target device.

Synchronous
FIFO
(Distributed
RAM)

512 x 16

Virtex-5 375 MHz 115 105 0 0 256

Virtex-4 200 MHz 370 84 0 0 1024

Virtex-II 150 MHz 370 84 0 0 1024

Independent
Clocks FIFO
(Block RAM

512x 16

Virtex-5 350 MHz 132 143 1 0 0

Virtex-4 250 MHz 163 126 1 0 0

Virtex-II 200 MHz 163 126 1 0 0

Independent
Clocks FIFO
(Block RAM)

4096 x 16

Virtex-5 350 MHz 185 186 2 0 0

Virtex-4 250 MHz 214 165 4 0 0

Virtex-II 175 MHz 214 165 4 0 0

Independent
Clocks FIFO
(Distributed
RAM

64 x 16

Virtex-5 475 MHz 96 123 0 0 32

Virtex-4 325 MHz 134 115 0 0 128

Virtex-II 225 MHz 134 115 0 0 128

Independent
Clocks FIFO
(Distributed
RAM

512 x 16

Virtex-5 350 MHz 154 168 0 0 256

Virtex-4 225 MHz 412 160 0 0 1024

Virtex-II 150 MHz 412 160 0 0 1024

Shift Register
FIFO 64 x 16

Virtex-5 450 MHz 68 63 0 32 0

Virtex-4 200 MHz 97 62 0 64 0

Virtex-II 150 MHz 97 62 0 64 0

Shift Register
FIFO 512 x 16

Virtex-5 275 MHz 174 91 0 256 0

Virtex-4 200 MHz 355 106 0 512 0

Virtex-II 150 MHz 355 106 0 512 0

Table A-2: Benchmarks: FIFO Configured with Multiple Programmable Thresholds (Continued)

FIFO Type
Depth x
Width

Family
Performance

(MHz)

Resources

LUTs FFs Block RAM
Shift

Register
Distributed

RAM

Table A-3: Benchmarks: FIFO Configured with Virtex-5 FIFO36 Resources

FIFO Type Depth x Width Read Mode
Performance

(MHz)

Resources

LUTs FFs FIFO36s

Synchronous FIFO36
(basic)

512 x 72
Standard 500 0 2 1

FWFT 400 2 4 1

16k x 8
Standard 350 10 6 4

FWFT 375 13 10 4

http://www.xilinx.com

72 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Appendix A: Performance Information
R

Table A-4 provides results for FIFOs configured to use the Virtex-4 built-in FIFO with
patch. The benchmarks were performed using a Virtex-4 4vlx15 -11 target device

Synchronous FIFO36
(with handshaking)

512 x 72
Standard 500 2 6 1

FWFT 400 4 6 1

16k x 8
Standard 350 12 12 4

FWFT 375 16 13 4

Independent Clocks
FIFO36 (basic)

512 x 72
Standard 500 0 2 1

FWFT 500 0 2 1

16k x 8
Standard 375 6 2 4

FWFT 375 6 2 4

Independent Clocks
FIFO36
(with handshaking)

512 x 72
Standard 500 2 6 1

FWFT 500 2 4 1

16k x 8
Standard 350 8 8 4

FWFT 350 9 5 4

Table A-3: Benchmarks: FIFO Configured with Virtex-5 FIFO36 Resources

FIFO Type Depth x Width Read Mode
Performance

(MHz)

Resources

LUTs FFs FIFO36s

Table A-4: Benchmarks: FIFO Configured with Virtex-4 FIFO16 Patch

FIFO Type
Depth x
Width

Clock Ratios

P
er

fo
rm

an
ce

(M
H

z)

Resources

LUTs FFs
Distributed

RAMs
 FIFO16s

Built-in FIFO (basic) 512 x 36
WR_CLK ≥RD_CLK 375 110 129 72 1

RD_CLK > WR_CLK 400 92 115 72 1

Built-in FIFO
(with handshaking)

512 x 36
WR_CLK ≥ RD_CLK 375 113 134 72 1

RD_CLK> WR_CLK 400 95 120 72 1

http://www.xilinx.com

FIFO Generator v3.1 User Guide www.xilinx.com 73
UG175 July 13, 2006

R

Appendix B

Core Parameters

FIFO Parameters
Table B-1 describes the FIFO core parameters, including the XCO file value and the default
settings.

Table B-1: FIFO Parameter Table

Parameter Name XCO File Values Default GUI Setting

Component_Name instance_name
ASCII text starting with a letter and using the
following character set: a-z, 0-9, and _

fifo_generator_v3_1

FIFO Implementation Common_Clock_Block_RAM
Common_Clock_Distributed_RAM
Common_Clock_Shift_Register
Common_Clock_Builtin_FIFO
Independent_Clocks_Block_RAM
Independent_Clocks_Distributed_RAM
Independent_Clocks_Builtin_FIFO

Common_Clock_Block_RAM

Input Data Width1 Integer in range 1 to 256 16

Output Data Width1 Integer in range 1 to 256 16

Input Depth1 2N where N is an integer 4 to 24 1024

Output Depth1 2M where M is an integer 4 to 24 1024

Data Count Width Integer in range 1 to log2(Output Depth) 2

Read Clock Frequency Integer 1 to 999 (MHz) 1

Write Clock Frequency Integer 1 to 999 (MHz) 1

Almost Full Flag true, false false

Almost Empty Flag true, false false

Programmable Full Type No_Programmable_Full_Threshold

Single_Programmable_Full_Threshold_Constant

Multiple_Programmable_Full_Threshold_Constants

Single_Programmable_Full_Threshold_Input_Port

Multiple_Programmable_Full_Threshold_Input_Ports

No_Programmable_Full_Threshold

Full Threshold Assert Value See range under Programmable Flags. 768

Full Threshold Negate Value See range under “Programmable Flags,” page 54. 768

http://www.xilinx.com

74 www.xilinx.com FIFO Generator v3.1 User Guide
UG175 July 13, 2006

Appendix B: Core Parameters
R

Programmable Empty Type No_Programmable_Empty_Threshold

Sigle_Programmable_Empty_Threshold_Constant

Multiple_Programmable_Empty_Threshold_Constants

Single_Programmable_Empty_Threshold_Input_Port

Multiple_Programmable_Empty_Threshold_Input_Ports

No_Programmable_Empty_Threshold

Empty Threshold Assert Value See range under “Programmable Flags,” page 54. 256

Empty Threshold Negate Value See range under “Programmable Flags,” page 54. 256

Write Acknowledge Flag true, false false

Write Acknowledge Sense Active_High, Active_Low Active_High

Overflow Flag true, false false

Overflow Sense Active_High, Active_Low Active_High

Valid Flag true, false false

Valid Sense Active_High, Active_Low Active_High

Underflow Flag true, false false

Underflow Sense Active_High, Active_Low Active_High

Dout Reset Value Hex value in range of 0 to output data width - 1 0

Primitive Depth 512, 1024, 2048, 4096 1024

Read Data Count true, false false

Read Data Count Width Integer in range 1 to log2(output depth) 2

Write Data Count true, false false

Write Data Count Width Integer in range 1 to log2(input depth) 2

Data Count true, false false

Performance Options First_Word_Fall_Through, Standard_Fifo Standard_Fifo

Read Latency integer range 0 to 1 1

Reset Pin true, false true

1. User customized core should not exceed the number of shift registers, built-in FIFOs, block RAM, or distributed RAM primitives avail-
able in the targeted architecture. It is the user’s responsibility to know the resource availability in the targeted device.

Table B-1: FIFO Parameter Table (Continued)

Parameter Name XCO File Values Default GUI Setting

http://www.xilinx.com

	LogiCORE™ FIFO Generator v3.1
	Table of Contents
	Schedule of Figures
	Schedule of Tables
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction
	About the Core
	Recommended Design Experience
	Technical Support
	Feedback
	FIFO Generator
	Document

	Installing the Core
	System Requirements
	Before you Begin
	Installing the Core
	Using the CORE Generator Software Update Installer
	Manually

	Verifying your Installation

	Core Overview
	System Overview
	Clock Implementation Operation
	Built-in FIFO Support in Virtex-5
	Built-in FIFO Support in Virtex-4
	First-Word Fall-Through
	Memory Types
	Non-Symmetric Aspect Ratio

	Core Configuration and Implementation
	Independent Clocks: Block RAM and Distributed RAM
	Independent Clocks: Virtex-5 and Virtex-4 Built-in FIFO
	Common Clock: Block RAM, Distributed RAM, Shift Register
	Common Clock: Virtex-5 and Virtex-4 Built-in FIFO

	FIFO Generator Features
	FIFO Interfaces
	Interface Signals: FIFOs With Independent Clocks
	Interface Signals: FIFOs with Common Clock

	Generating the Core
	CORE Generator Graphical User Interface
	FIFO Implementation
	Component Name
	FIFO Implementation

	Performance Options and Data Port Parameters
	Performance Options
	Data Port Parameters

	Optional Flags, Handshaking, and Initialization
	Optional Flags
	Write Port Handshaking
	Read Port Handshaking
	Initialization

	Programmable Flags
	Programmable Flags

	Data Count and Reset
	Data Count and Reset Options

	Summary

	Designing with the Core
	General Design Guidelines
	Know the Degree of Difficulty
	Understand Signal Pipelining and Synchronization

	Initializing the FIFO Generator
	FIFO Implementations
	Independent Clocks: Block RAM and Distributed RAM
	Independent Clocks: Built-in FIFO
	Common Clock: Built-in FIFO
	Common Clock FIFO: Block RAM and Distributed RAM
	Common Clock FIFO: Shift Registers

	FIFO Usage and Control
	Write Operation
	Read Operation
	Handshaking Flags
	Programmable Flags
	Data Counts
	Non-symmetric Aspect Ratios
	Reset Behavior

	Special Design Considerations
	Resetting the FIFO
	Continuous Clocks
	Pessimistic Full and Empty
	Programmable Full and Empty
	Write Data Count and Read Data Count
	Setup and Hold Time Violations

	Simulating Your Design
	Simulation Models

	Performance Information
	Resource Utilization and Performance

	Core Parameters
	FIFO Parameters

