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1 ABSTRACT

In the End to End simulation program for LIGO uses the time domain modal model to simulate

the spatial and time evolution of the field in cavities. This note summaries the formulas used in the
e2e package. Also included are explicit calclations of fields in a simple cavity to understand how
the fields with limited number of spatial modes behave, and to demonstrate model validation
methods which are used to validate the e2e code.

2 KEYWORDS
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3 TIME DOMAIN MODAL MODEL

3.1. General Formula

In the time domain modal model, a freely propagating field, E(x,y,z,t), in a vacuum is expressed
using a set of Hermite-Gaussian functions in the following way.

E(x ¥ z 9 = exp(iot) (E(X ¥, 2 (1)

E(x Y, 9 = ) an,[Prop(z 2 U (x Y, 9 2)

Prop(z 2 = exp[-ik {z-2)] Cexpli(m+n+1)(Ngo(2) —Nge(2))] 3
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Figure 1: Time domain Modal Model field definition
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Various field properties are defined in Appendix 1. The base of a Hermite-Gaussian function can
be characterized by the waist sizg),\&nd the waist position. In the expression about, the origine

of the z coordinate is chosen at the waist position, and the direction of the field propagation is
chose to be the positive direction.

Because the Hermite-Gaussian funtions, Eq. (5), provides a complete set in the (x,y) space and the
field expression, Eg. (1), is a solution of the paraxial approximation of the Maxwell's equation,
one can choose any Hermite-Gaussian base, and once chosen, the field is fully described by the
coeffientsa,,, andz.

3.2. Propagation

An initial condition can be specified by a set of amplitudgs,, @f a chosen set of Hermite-
Gauissian functions at a given tinteat a given locatiorz. Then the field propagation can be
calculated by Eq. (3), i.e., when an initial condition is given and the amplitudes of all Hermite-
Gaussian modes are calculated, the propagation of fields, or field amplitudes at location z, can be
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calculated by multipliying the phase due to the normal wave oscillation, &, (and the guoy
phase change, (M+n+}(z)-oo(2))-

The simulation of e2e traces the change of coefficiegts\&hen a field moves, Eq. (3) is applied

to update the coefficients and, when there is any interaction, the coefficient is updated using the
matrix operation explained in the next subsection.

3.3. Operation

A operation on a field, like changing the propagation direction or dispalcing the waist position,
can be represented by a mode decomposition maM;;,ﬁ mn , Which converts one set of
coeffieints g, to another.

Op[E(x ¥ 3], -,

> Oplgy,Prop(z 30U (x ¥, 2], _,
mn

(6)
= Zalmn[umn(x’ Y. 2)
mn
&'\ n = IdxdyUmnEKx, Y, 2 LOp[E(X ¥ 3],-,
= Z am,n,J'dxdyUm,n,EKx, y, 2 COp[Prop(z 20U (X, Y, z)]Z: 2

mn

- Op
Z am:n: D\/Imn’ mnl
mn'

In these equationg,xxx],-, means that the value of z is evaluatedatier the operation is
applied. An example is an operation to rotate the field direction discussed in the following section.

One important point to note is that the mode decomposition matrix is calculated at a given

location. The matrix relates a set of amplitudes calculated at a position to another set of

amplitudes at the same position. Then the propagator defined in Eq. (3) is used to calculate the
field at different locations.

One explicit example will be in order. When the waist position of a field is shiftefiz)yhe new
field can be expressed by using the original field by shifting the z coordinate. A more general
discussion is given below, but the following is an explicit calculation up to the first order effect.

(8)
\
: Az
| —
— - S
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Ug(x, 2+ Az) = exp[iAn] Hag Lug(Xx, 2) +a, LUy (X, 2)]
An =n(z+A4z)-n(2)

a,= ———  a, = -i—expli2n(2)]22 ©
T &
21
(10)
base change
Ve
E02' E02 E00°

/

EOO

Given these two coefficients, the field at other location z can be calculated using Eq. (3).

4  BASIC OPERATIONS

4.1. Rotation Operator

4.1.1. Rotate around (0,0,L) by®

X / //
/ ~
/7 -
7 -
Ve -
- _ - -—-
/ -
-
27, Z
-
s -~
c - L
-
-

Op[E(x ¥ 2] = E(x[kosB —(z- L) [kinB, y, L+ x[LinB + (z- L) (o) (11)

The size off of interest is ~ 1u rad, and the matrix is calculated by expandingi®/coqn),
whereO is the divergence angle which is ~1@ad in LIGO core optics cavities.
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4.1.2. Mode decomposition matrix

MROt = [dxu [ LROY y (x, )]

é
B —|Am| mm'! 2 ~|Am| -
= = DAm“ 0 g(m ni,0)
Am = m—-m
m = min( m m)
( ) 5 E? 22+L2
~ _w(L _ L 0
0= B o) = [t T g = T @
- (1) 2
= ml I '
g(m m,X) m ['Am| Dzorl(m_ r)|(|Am| + r)l
r =
Am = nm—-m
m = min( m m)
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4.1.3. Lower order elements

_ Rot 08
Table 1: Mo excludlngexpD—EE
m\m’ 0 1 2 3
0 : @ @
2 /6
1 A ~2 A2 "
—i8 1-6 0 3.2 0
28 -5p ‘[ée 330
2 éZ éz|:| .2 é4 ~ 5 é4|:
5 _“/é'e%l_ED 1-20"+ = 4[39%1—9 + =1
3 ~3 ~2 ~4 A4 ~B
8 _Pe?3 80| .30 g%+ 80 1 332430 8
IJ@ A/;G%L 30 u/§9%l 07+ 5 130"+ -5
4.1.4.  Sanity check
Rot Rot
Z m1m3( 9) |:Mm?,mZ(e) m1m2 (15)
m
4.1.5. Intuitive meaning of Reflection operator metrix
Simple case reflection copuling from TEMOO mode to TEMO1 and TEM10 mode.
Ref- bac Ref— fron
Ry~ 16 (Byaw = ~12yaw  Roo - 10 (Byaw = 1200, -
Ref— bac _ Ref— fron _
ROO Izepltch) pltch R00 t(epltch) Izepltch
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Figure 3: Reflection byBx or pitch from front and back

The meaning of the reflection matrix -i@is as follows. In the following calculation, the waist
position is assumed to be at the reflection point, and z.<< z

) o X
— 2_
X .01 ﬁx . ]

= CLEXp— |Fl—12=—=2——EXp[ In
il 55> w —PMoolg (17)
B Oxz . 0 x[

= CLExp—= |gl+ 4= -4
L w W

Here, the guoy phased is approximated by,z&and only the linear term 0@ is kept. The power
along the z direction is calculated as follows where only the lowest or@es &Ept.
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2
I:’ref - |Eref|

_ 2 Oxz
= |C|“ [Exp -—}Elhav?

(18)

B 2
_ |C|2 Exp 2x2 + 86x22}
W W

= |C(z)|2 DExp[—%(x - 262)2}
W

So, the reflected field has the power maximum along the lin@zxa2 is naiively expected.

4.2. Shift Operator

4.2.1.  Shift perpendicular to z axis

Op[E(x ¥ 3] = E(x-AXx Y, 2) (19)

4.2.2. Mode decomposition matrix

VR [ x, LShif y (x, L]

~2
A
+ ) J/mm’l 2 ~lAm| ~
= (" AT L e 24" g(m i, &) (20)
Am = m-m
m = min(m m)

page 11 of 28



LIGO-T990081-03

A = VATX (21)
0
4.2.3. Lower order elements
Az
Table 2: Miﬁ;}:{texcludlngexpD L]
m\m 0 1 2 3
0 : 4 B @
J2 NG
1 A 1-A° -0 Ao 3.2
~e-50 | R
2 ~2 2 ~4 ~4
~2 A A2, AT
- - + — — i
7 J2A D 1-2A JéA%L A%+ =T
3 N 3~203 A ~ 2 A'g -2 3p" A°
- et - - + — — = _=
7 J;A JéA%L A +%g | 1-830"+ 2%
4.2.4.  Sanity check
shift shift
mlm3( A) |:MmSmZ(A) m1m2 (22)
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4.3. Base Change

4.3.1. Change of waist size and position

Op[E(x ¥ z W] = E(X ¥ z-Az wy') (23)

4.3.2. Mode decomposition matrix

Keep only 1st order afiy, amgt . Expression valid when

~ A Wq
OWg, 02< |— (24)
20

shift
Mo = J’dxumEKx, z)Basq U, (x, 2)]
B—1_.) 0
H Ze)’p 4'”00 %\’/\V +Ii_6"z|_| m = m+2%
OJm+)(m+2) 0 271 0
0 0 25)
_ 0 L m=m U (
0 o + 16 5
0 Jl_'%“+§%2 0
: a
1 . ~ 1o
O—=exp(—2iNnn) AW, —1=0Z m = m-2
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N WO'
Wo
b2 = 82
20
(26)
— Z[]
Nan = atan=—
00 FEZOD
2z,
kAz = — [Az
Wo
4.3.3.  Sanity check
Base , ¢ ~ Base ,& ¢~ _
ZMm1m3(—5Z’ —OWq) [M113m2(02,0Wg) = Oy (27)
m
Energy conservation is satisfied up to the first order.
|AMpP(00 — 00)? = —%—2
1+=06z
4 (28)

4.4. Reflection by a mirror with non-matching cutvature

4.4.1. Basic
A\ R(L)
=_——
:‘ L |/JRm

This is a special case of the Hermite-Gaussian base change. The reflection by a mirror is given by
Eq. (29) and Eq. (30).

page 14 of 28



LIGO-T990081-03

2R(L
L%L_ R( )E

7 = m (29)
1+ 4= RO _ 40
R,UR, U
. 20
7 = (30)
° s RO

L is the location of the mirror (distance from the waist of the field), andd&Rd R(L) are the
curvatures of the mirror and the incoming field on the mirror. If the mirror curvature matches with
that of the beam, z'=-L ang)z= z,, i.e., the beam is just reflected back.

The curvature of the reflected field, &g is given by Eq. (31). When the mirror curvature matches
with that of the incoming field, R=-R(L), i.e., expanding (shrinking) field changes to shrinking
(expanding) field.

1 1 2

— = = £ 31
R(D R, R (31)

The beam size on the mirror remains the same on reflection.
In the following calculation, the propagation direction of the reflected field is reversed

Op[E(x ¥ 3] = E(X Y ZZy) (32)

There are two possibilities of reflection. One is that the convergence status changes (Figure 4-a)
and another is that the status does not change (Figure 4-b). E.g., when a field is reflected by a
mirror with a curvature matching to the field wave front, a converging field becomes diverging,
and a diverging field becomes converging. On the other hand, when a field is reflected by an
almost flat mirror, a converging field is still converging and a diverging field diverging.

(@) z=Ltoz=-L (b) z=LtoZ’=L
' ‘ 1
. Y
~
: —‘—" _/- S~ - 1
I‘ ---I
———-I
| . --§ s
1 ~ 0 [ |

~
. ’ Ie .
Blue lines are surfaces of reflection, red lines are incoming fields with the waist at black
lines and wave fronts shown by green, and red dashed lines are reflected fields with

respective waist and wave front shown by dashed lines.
Figure 4: Reflection (a) with convergence condition change and (b) without.
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For two special cases, the reflected field can be expressed using the incoming field. One is when
the mirror curvature matches with the wave front of the incoming field, i.e., Rm = R(L). With this
condition, z’=-L and z0’ = z0. The othe case is when the mirror cuavture is infinity, i.e., 1/Rm = 0.
With this condition, z’=L and z0’ = z0.

When the mirror surafce cuevature is different from either of these cases, one needs to use
pertubative expansion. An important point is that one should use one of the two idealistic case as
the mode base of the reflected field.

ER(L) ZLD
L= -1
Z+L _ TR

. (33)
20 20
‘ZL%LER( b _ 15+ R(L)E
Z-L _ R,
. (34)
20 Z4%)

Eq. (33) becomes small and Rm is close to R(L), while Eq. (34) becomes small when Rm
becomes large. l.e., when the mirror curvature is close to the wave front curvature, the new waist
position is located at around -L, while for the reflection by an almost flat mirror, the waist is
located at around L.

In the following section, R(L) means the curvature of the incoming field at L, and Rout(L) is the
curvature of the reflected field of the mode base. In short, Rout(L) = -R(L) for case a) and Rout(L)
= R(L) for case b).

4.4.2. Reflection by a tilted mirror

The derivation here is based on the ABCD matrix for a reflection by a mirror. The ABCD matrix
of the reflection of a field with an arbitrary incident angle is given by

1 0

(35)
—2/ (R, [cog(8; ) 1

so the following formula can be used for an arbitracy incindent field by uisng Eq. (36) in place of
Rm.

R, [cos(8; (36)

|nc)

4.4.3. Effect of a lens

When a field goes through a lens, the base, waist position and size, is affected. The ABCD matrix
for a lens with a focal length f (f > O for converging lens) is

{1 o} -
1/ 1
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which is the same as that for the reflection by a mirror, Eq. (35), when Rm is replaced by 2 f.
From this relation, the matrix for the lens is given by the following formula by replacing Rm by
2*f. The argument for the choice of outgoing beam divergence applies in the same way.

4.4.4. Mode decomposition matrix of the reflection by curvature mis-
matched mirror

Mis

Mo = J'dxumEKx, L)Ref[ y (x L)]

1 2 :

= deH (E)H Q) EXp—€ (1 +ia)]

Jn2m+ Irnm! m'!I " " (38)

2

_kw(l) o1 1 g_ L ! 10

a = - = —R(L)mm—/— — —
4 ERref RoutD 22O ( )[Rref Rout

For the case a), i.e., reflection by a almost curvatured matched noiriogiven by the following
expression by eliminating Rref,

L R(L)O
a=—g-——= (39)
ZO%l Rm -
while for the case b), i.e., reflection by an almost flat mioras, given as follows:
q=_L _Ré L) (40)
20 "m

Eqg. (39) is the Vinet's formula, except the sign of “i” due to the different convention of exp(-ikz).
As is derived in Appendix 3, the curvature mismatch matrix can be written in the following way.

m+ ni ! MNmin Nmax
Mis _ 1+ (-1) (ia) 2n
Mo = > e X Zcm(m mn) [
. 2 n=0
(1+|G) (41)
m m'
_|m=mi _ [§J+[EJ_nmi”

Nmin = 2 ’nmax_ 2

and the explicit form of the function cm(m,m’,n) is given by the following formula.
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_ n | mm' 1
emim mn) = (1) om+ mM(Nin +2n)! *
rmax ax
N (m+m—2r)!r! 1
> D — m > (m—2u)! (M — 2v)IulV! (42)
r=r Emz —r%(r—rmin)!s:o

_ |m—mi _ [, rm
"min = T+2n’ max = [E]‘{E}

where $,5 U and v are functions of m,m’,r and s given as follows.

o= {2} [Z18 v mekl] [2

Osrsr1 Dsmaxzr, u=r, V =r-S (43)
ri<rsry, U S, =Ty Uu=r+s—ry,v=ry-s
Mo <r<ra Snax = Mmax— U = r+s—ry,v=ri—s
The Z,,y(0) by Vinet is related to our formaulation as follows:
Nmax
Z m(-a) = J2m+ Mt (i) ™™ Z cm(m m n) 2" (44)
n=0
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4.45. Lower order elements

m+n+l
Table 3: MM'@ excluding( 1+ia) 2
m\m’ 0 1 2 3 4 5
0 1 0 Lo 0 —ﬁaz 0
J2 8
1 0 0 0
1 N § _ 1_5 2
e .
2 . a 0 2 0 o 0
—— _a an
2 1-3 -iV3ag -7
3 0 0 3 0
. 13 _ 9.2 3.2
—|J;a 1-3a —|J§0(%L——0( g
4 0 2 0 3 0
_ 342 : a’g 1-30°+ 2o
/\/éa —I/\/éa%l—zlj 8
5 0 0 0 15 4
15 2 =
_/\/%a _|£q%|__—q 1- 5(1 + 80
4.5. Another sanity check
X
a) (2) LO
(1)
(4) L z
(3)

(1) Rotate at (0,0) b, with waist at (0,0)
(2) Shift by -8 toward -x direction, with waist at (€,0)

(3) Rotate at (0,L) by®,; with waist at (O,-92/2)
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(4) Move the waist position by8%/2 toward +z direction to move waist to (0,0)

2 .
I\/IBase%ﬁz= %_ Rot(L’ —G)MShlft(—LG)MROt(O, 8) = | (45)

5 NULL TEST

Because the same phenomeca can be calculated using different set of Hermite-Gaussians, there
are several cases which can be used to validate calculating by comparing results using different set
of Hermite-Gaussians. In this section, two cases are studied. One is a field in a flat-curved FP
cavity with the end mirror tilted, and the other is a field whose waist position is slightly shifted
from that of an resonant mode of a FP cavity.

5.1. Tilt

5.2. Waist shift
How many modes are necessary ?

Ein —p» Ecav—pp» —9Pl12—p

MR1 MR?2
-4— P2l -
Ecav = t1 Ein (46)
1-MR1[P21[MR2[P12
in
Ecav _ tl |:EOO (47)
00 (1—r O, Cexp(i () (1 +cl) +c2
With n+m <= 2, c1 ~ real, ®((2), c2 = real, 0034)
With n+m <= 4, c1 ~ real, @), c2 = real, O¢)
2
_ kOM2 g R Az
=3 [R(2) %L RO 2z cos(2n) “9)
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in
t; [Ego 1
) 2 (49)
1=27 (1+cl)+

cav _

Boo = 12

For a high finess cavity, like locked state LIGO arm, F~10k,
4th order mode is necessary.
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6 PHYSICS QUANTITIES

Table 4: Physics parameters of interest

name value comment
LIGO ITM curvature 14.18 km
LIGO ETM curvature 7.4 km
LIGO Recycling curv 14.9 km

LIGO ITM Trans/Loss | 3% /50 ppm

LIGO ETM Trans/ Loss | < 20ppm /50 ppm

LIGO Recycling T/L 3% / 50 ppm
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APPENDIX 1 SUMMARY OF FIELD PROPERTIES
Table 5: field parameters
name expression in COC (4k/2K in PSL/IQO
waist size ) 3.51/3.13cm
Raylay length = niwg _ kEZWS _ \% 3.63/2.89 km

_ ER=DR,~D(R *R,-1)
(R, + R, —2L)°

Distance to L(R,—L) L(R,—L) 1000, 3000 m /
waist Sy T 614, 1386 m
spot size 3.64,4.55¢cm /
P w= w1+ 20 3.20,3.47cm
Et0D size @ITM,ETM
curvature of 2 2
+
phase front R(2 = 275
divergence A W 9.7/10.8 ur
angle O = i 7
0
guoy phase - Zy+iz -15.4,39.6 deg
n(z) = atar%ZOD = anglea 0 -12.0,25.6 deg
zy+iZ n @ITM/ETM
wave number 2 5.91e6~YAG
k = n__2 _ %% 0.513 ~24.5MHz

0.618 ~29.5MHz
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APPENDIX 2 HARMITE GAUSSIAN FUNCTIONS

H(X) is the Hermite polynomial of orden. The following relations are used repeatedly in the
calculations which follow:

}UTm(x, 2) U (x, 2dx = 3, (50)
2xH(X) = H . 1(X) +2mH_ _;(X) (51)
THL(0 = 2mH, () (52)

. Hi(v2x/ wp) 21
T (X, 0) ————— ,0)dx = [—d,; 3
IUm(X )Hk(ﬁX/WO)Uk(X ) X 2kk! mi (5 )

—00

Eqn. Eqg. (50) is the orthonormality condition; egns. Eq. (51) and Eq. (52) are recursion relations
to be used to derive Hermite polynomials of any order, beginningH(th) = 1.

In two dimensions the Hermite-Gaussian modes are given by
U = U (X 29U (Y, z)e_ikZ (54)
The explicit forma of a few low order Hermite polynomials are :
Ho(X) = 1; Hi(X) = 2x; Hy(x) =-2 + 4%; Hay(x) = -12x + 8x; (55)

A few examples of the distribution of the Hermite Gaussians are shown below.

The following formula is used in the modeling of the photo detector with simple shapes.

00

[HA(OH () exp(—x)
0

2l 2 et

_ r+s niml2
=2 ZO(_l) @9 (201 (m-29) (0)

r=0s=

Bﬂf—rzn—_}—r—% 2~ "> for odd n+m

(n+ m—=2r —2s—1)!!

ﬁn+m

JT for even n+m

(N I o |
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Table 6: HH[m, n] = _[Hm(X)Hn(x)exp( )
0 1 > 3 . -
: L o | 1 0 1F
’ Jam 2./3n a5
L 1. A 0 1 0
0 1 1 1F 0 1F
2n | 2 | 2o e
1 0 1F 1 N -
/5 202n | 2| afm
4:/3m 4.2n 2 81 271
0 R B Y S R I TN
T AN 6T 8N 2Tt 2
00
2 i for n=m
IHn(X)Hm(X) exp(—x") = D\/ﬁz n! -
forn#m

2
Hn(0) = Z (_1)r(2r_1)”nC2r2n—an-2r
r=0

n
H(+y) = 3 Hino(002,Cy (58)
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APPENDIX 3  CURVATURE MISMATCH MATRIX
to be filled

APPENDIX 4 STEADY STATE MULTIMODE
FIELDS IN A FABRY-PEROIT CAVITY

A(:av I:)RIZ
— —
Ain
— MRl MR2
mirror 1 PR21 mirror 2
- 5 »

Figure 5: FP cavity schematics

Steady state fields in a Fabry-Peroit cavity can be calculated by solving the following consistency
equation Eqg. (59).

Acay = 11 DA + 1 Lo MRy TPRy IMR, [PR 5 DA, (59)

In this equation, 4, and A.,, are arrays of coefficients,g@ in Eq. (2), of incoming and intra
cavity fields.

A, = |5 (60)

tj and y are amplitude transmittance and reflectance of mirror j; BR propagator from mirror i
to mirror j, corresponding to Eq. (4), and NIi& a mode decomposition matrix disucssed in

Section 4.
The propagator can be explicitly written as follows:
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Expli(m + nl)Anij] 0 0
PR; = Expl—ikL+i4n;] 0 Expli(m, +ny)An;] 0 (61)
0 0

where L is the distance between the two mirrorssmds the difference of the guoy phases,
Anij = I‘](Zj)—r](Zi) (62)

When the field is propagating back from mirror 2 to mirror 1, the z axis direction is revsered, and
the numerical value af\n,, is the same adn,,. HereafterAn is used to denote the change of
gouy phase from mirror 1 to mirror 2.

The solution of this consistency equation is
t1 DAin

A =

(63)

When the Hermite-Gaussian base is the eigenstate of the FP cavity, there is no coupling among
modes on reflection, i.e., MRs diagonal. When the FP cavity is slightly off from this idealistic
case, mode mixing occurs when the field is reflected by mirrors, i.g.isMBt diagonal.

A mode in the cavity, Ay, mn induced by a specific mode of the incoming field, 4 can be
rewriten in the following form. (The mode of the incoming field can be any. Here sufix O is used to
clarify that A, o refers to an amplitude of a certain mode.)

t DAin o

A =
cav mn = T_R__(1-5)

(64)

(65)
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