LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTUTUTE OF TECHNOLOGY

Document Type

LIGO-E010226-00-C

PMC Servo Amplifier Test Plan

R Karwoski

Serial Number:_____ Test Engineer:_____

1.0 Introduction

The tests included in this document are required to verify correct operation of the PMC Servo D980352 Rev C. The test set up is depicted in Figure 1:

Figure 1 Test Setup Overview

2.0 Required Test Equipment

The following test equipment is necessary:

- A 2- or 4-channel Digital Oscilloscope (150MHz BW minimum)
- A general-purpose function generator capable with sinusoidal capability
- A Network Analyzer (Stanford SR785 or equivalent)
- ± 24 -V, 1-amp min power supply
- 200 volt 100 ma min power supply
- DVM
- Two Low voltage supplies (0-10 volts min) or a precision voltage source (DVC350A or equivalent)

3.0 Board Tests

3.1 Power Supply tests

3.1.1 Supply Current Draw

With ±24 volts and +200 volts applied to the board record the supply currents in Table 31. Currents should be within 20% of nominal for acceptance.

Supply	Nominal Current	Actual	Pass/Fail
+24 volts	100 ma max		
-24 volts	100 ma max		
+200 volts	25 ma max		

Table 3-1Power Supply Readings

3.2 High-voltage Output Test

These test verify proper functionality of the PA85, high-voltage output stage (U9)

3.2.1 DC Test

• Apply -2.1 volts to PMCRAMP (P1-9A). Record the voltages at J6 (FP ACTUATOR DRIVE), J9 (FP4TEST) and the differential voltage RactDr+ – RactDr- (P2-8A/P2-8C) in Table 3-2. Measure the differential voltage between pins 2 and 3 o f J10 (PMCOUT DAQ) and record the results in Table 3-2.

Outputs	Nominal Reading	Actual Reading	Pass/Fail
J6-1) FP ACTUATOR DRIVE)	100 volts±10%		
J9-1 (FP4TEST)	$2 \text{ volts} \pm 10\%$		
P2-8A-to-P2-8C	$2 \text{ volts} \pm 10\%$		
J10-2-to-J10-3 (PMCOUT DAQ)	$2 \text{ volts} \pm 10\%$		
P1-3A (PMCOUT)	$2 \text{ volts} \pm 10\%$		

Table 3-2High-Voltage Amplifier DC Test

3.2.2 High-voltage Amplifier AC Test

- With -2.1V still applied to P1-9A, apply a 2500 Hz sinusoid of 1.0 volts peak to J5 (FP PMC External Ramp Input). Measure the peak voltage at the FP ACTUATOR DRIVE output.
- Connect a high-voltage 1000 pf capacitor across the output and measure the peak voltage. Record the values in Table 3-2 below

Table 3-3High-voltage Amplifier Readings

FP ACTUATOR DRIVE	Nominal Reading	Actual Reading	Pass/Fail
No Capacitor	25 Volts Peak 10%		
Capacitor added	17.7 Volts Peak 10%		

3.3 Signal Path Tests

3.3.1 U2 Signal Path Tests

These tests verify proper operation of U2, U10, U14 and continuity to J10 and P2.

- Apply a 1.5 V peak sinusoid J4 (FP2Test)
- Verify sinewave amplitudes as specified in Table 3-4.

Table 3-4U10 Test Voltages

Test Location	Nominal Value	Reading	Pass/Fail
TP1	1.5 Volts peak $\pm 5\%$		
J8 (FP3TEST)	1.5 Volts peak $\pm 5\%$		
P1-2A (PMCERR)	1.5 Volts peak $\pm 5\%$		
J10-4-to-J10-1	1.5 Volts peak $\pm 5\%$		
([BMxOut+] – [BMxOut-])			
P2-8A-to-P2-8C	1.5 Volts peak $\pm 5\%$		
([BMxOut+] – [BMxOut-])			

3.3.2 Variable Gain Test

This test verifies proper operation of U5, the variable gain stage.

- Ground P1-9A (Blanking) and float P1-7A (PMCSW2).
- With a 1-Vpk, 1000 Hz sinusoid applied to FP2Test, reduce MGAIN until the peak voltage at TP2 is also 1-Vpk. Record the MGAIN2 voltage in Table 3-4. This voltage is referred to as the *unity gain setting*.

Table 3-4MGAIN2 Voltage

Peak voltage @ FP2TEST &TP2	Nominal MGAIN@ Voltage	Actual MGAIN@ Voltage Reading	Pass/Fail
1 Vpk.	-3.125 ±10%		

• Float P1-9A and confirm that the signal at TP2 disappears.

Pass/Fail

3.3.3 Frequency Response Test

This test confirms proper frequency response of the U6 compensator stage.

- With MGAIN2 unaltered (unity gain setting), use the analyzer and apply to J4 a 1 Vpk swept sinusoid from 0.25 Hz to 5 KHz signal.
- Observe the signal at TP4 with the analyzer.
- Verify the relative frequency response per Table 3-5.

Table 3-5U6 Relative Frequency Response

Frequency (Hz)	Nominal Relative Magnitude Response (db)	Nominal Relative Phase (degrees)	Measured Relative Magnitude Response (db)	Measured Relative Phase (degrees)	Pass/Fail
2	17 ±1	-45±10			
482	-27.6 ±2	-45±10			

3.3.4 FP2 test input-to-Output

Verification of FP2-to-Output

- Remove the capacitor from J6. Make sure there is no signal applied to J5.
- Leave MGAIN2 (P1-4A) at its unity gain setting.
- Float PMCSW2
- With -2.1 volts applied to PMCRAMP (J4), inject a 20-Hz, 1.5 V peak sinusoid to J4 (FP2Test).
- Verify no AC signal exists at J6.

Pass/Fail	

- Now ground PMCSW2 (P1-7A)
- On J6, verify the 20 Hz sinusoid amplitude and phase relative to the input as defined in Table 3-6.
- Record the results in the table.

Table 3-6Signal Thru-put

FP ACTUATOR DRIVE	Nominal Value	Reading	Pass/Fail
<i>P1-7A grounded</i> Sinusoid Amplitude Relative Phase	$35.6 \text{ volts} \pm 10\%$ -90° ± 20%		
<i>P1-7A floating</i> Sinusoid Amplitude	0 volts		

3.4 Mixer Functionality and Front-End Tests

3.4.1 Mixer Pre-amp Gain

- With PMCSW2 grounded, apply a 50 mVpk, 1000 Hz sinusoid to J1 (PD INPUT).
- Measure the peak voltage at TP1 and record the value in Table 3-7.

Table 3-7 Pre-amp Gain

Nominal Peak Reading at TP1	TP1 Reading	Pass/Fail
5 volts $\pm 5\%$		

3.4.2 Mixer Offset Tests

Apply 10 dbm, 35.5 MHz sinusoid to the LO INPUT, measure the amplified mixer DC offset at TP1 and record the value in Table 3-8.

Table 3-8Mixer Output

Nominal Reading at TP1	TP1 Reading	Pass/Fail
$\pm 200 \text{ mv max}$		

3.4.3 Front-end Offset Adjustment Test

• Apply a variable voltage to INOFFSET2 and measure the voltage at TP1 according to Table 3-9.

Table 3-9Input Offset Readings

P1-5A Voltage	Nominal Reading at TP1	TP1 Reading	Pass/Fail
0	$0 \text{ mV} \pm 10 \text{ mV}$		
-10	-90 mV ± 20 mV		
+10	$+90 \text{ mV} \pm 20 \text{ mV}$		

3.4.4 Mixer Functionality

- Float PMCSW2 and apply a -8.0 dbm, 35.5 MHz sinusoidal signal to J1 (PD Input), and a +10 dbm 35.55 MHz signal to J2 (Lo Input).
- With the network analyzer measure the amplified IF signal amplitude at TP1 and record the value in Table 3-10. The IF frequency should be 50 KHz.

Table 3-10Mixer Output

Nominal Reading at TP1	TP1 Reading	Pass/Fail
$13 \text{ dbm } \pm 2 \text{ dbm}$		

Note: This test should be done using two RF signal generators connected through four feet of RG58 coax. 50Ω terminations should be applied at the PMC front panel. The input power readings are nominal signal generator readings and are not measured.

3.4.5 LO Detection

• Apply +20 dbm 35.5 MHz signal to J2 (Lo Input). Record the voltage at P1-1A in Table 3-11.

LO Detect Output

Nominal Reading at TP1	P1-1A Reading	Pass/Fail
700 mv ±200 mv		

End of Test Procedure