CALIFORNIA INSTITUTE OF TECHNOLOGY

Laser Interferometer Gravitational Wave Observatory (LIGO) Project

To: Distribution
From: L. Jones

Phone: 2970
Refer to: LIGO-E960105-00-B
Date: July 5, 1996

Subject: Beam Tube Alignment

A meeting will be held in the ECR at 1:00 pm on Wednesday, July 10 to determine significant elements of beam tube alignment. Please plan to attend. The results of this meeting will be communicated to CBI at a meeting at Hanford on July 15. Issues are listed below, with background information and proposed actions.

Issue \#1: determine the optimum height of the beam tube axis:

Now that the slabs have been constructed we should review the possibility of applying a slight bias to the vertical location of the beam tube axis, referenced to nominal. We will have 150 mm total vertical adjustment available at each beam tube support after tube installation, less slab height variations. This can be centered, for equal range, upward and downward (this is our base plan, assuming a perfect slab installation).

Depending upon the as-built height of the beam tube slabs, we may wish to bias the axis height to account for slab installation errors. The initial survey data taken by RSI is attached, along with a plot for visualization. Slab installation height (measured at the slab centerline) was well within tolerances; of $+/-25 \mathrm{~mm}$ allowable, variance ranged from +18 mm to -12 mm , with an average of 4.5 mm on Arm \#1 and 6.5 mm on Arm \#2.

Proposal \#1: We should have the beam tube installed at the currently planned height, relative to nominal. Since the slabs average 5.5 mm above nominal, this will provide (on average) for 5.5 mm additional settlement and 5.5 mm less adjustment for upwards displacement, than previously planned. Putting it another way, our "worst case" adjustments will be limited to 63 mm upward and 57 mm downward. This will not change the grouting plans for the vacuum equipment.

Issue \#2: one GPS measurement vs. two:

An open issue with CBI on their tube alignment procedure has to do with how many GPS readings they should take at each tube support. CBI appeared to be arguing for two measurements of a given hardware setup (for increased confidence) at the $5 / 16$ status meeting. Since then, it was determined that CBI's plan is to install the tube to crude tolerances, take a GPS reading to determine required adjustments, make those adjustments, and take a final GPS "as-built" reading to confirm proper adjustment. This second GPS reading thus serves the purpose of verifying that the tube was adjusted properly.

Proposal \#2: We should approve CBI's plan to take the two GPS readings as described. This will be followed by negotiations to determine the appropriate cost change for the alignment task.

Issue \#3: specifying vs. marking the BT/VE interface locations:

We are contractually required to provide CBI with "Beam tube module termination interface locations on the slab for each module;" At the time of the updated design review, CBI indicated that they planned to use GPS coordinates supplied by LIGO to define and locate the eight interface locations, instead of marks on the slabs, and most of us felt that was preferable. Then PSI submitted their requested tolerances on the interface locations (attached) which are tighter than can be expected from GPS measurements. Assuming the requested tolerances are necessary, means other than GPS would need to be employed to define the interface locations.

Proposal \#3: We should stick with our contractual plans and provide CBI with slab reference marks at each BT/VE interface. The outline of steps for providing these four slab marks per arm at Hanford would be as outlined below (see also LIGO-D950021, attached). These tolerances meet PSI's requested axial tolerance and perpendicularity tolerance but do not meet their requested transverse tolerance, which is believed to be overly constrained. This will be checked prior to the July 10 meeting.

1. Using LIGO-provided coordinates and the reference monument system, establish/confirm alignment points on stakes at the vertex (1) and near the end of each beam tube axis (1).
2. Establish BT/VE interface mark \#2 on the termination foundation (marker details TBD-typical) located $46.000 \mathrm{~m}+/-0.003 \mathrm{~m}$ from the vertex and on the beam tube axis $+/-0.005 \mathrm{~m}$, projected to the foundation surface.
3. Establish BT/VE interface mark \#3 on the termination foundation on the vertex side of the mid station, $1961.500 \mathrm{~m}+/-0.012 \mathrm{~m}$ from mark \#2 and on the beam tube axis $+/-0.005 \mathrm{~m}$, projected to the foundation surface.
4. Establish $\mathrm{BT} / \mathrm{VE}$ interface mark \#4 on the termination foundations on the side away from the vertex of the mid station, $19.500 \mathrm{~m}+/-0.003 \mathrm{~m}$ from mark \#3 and on the beam tube axis $+/-$ 0.005 m , projected to the foundation surface.
5. Establish BT/VE interface mark on the termination foundation at the end station, 1961.500 m $+/-0.012 \mathrm{~m}$ from mark \#4 and on the beam tube axis, $+/-0.005 \mathrm{~m}$, projected to the foundation surface.

These steps will likely call for a combination of GPS and optical/tape measurements to accomplish.

Issue \#4: LIGO's QC checks of CBI's alignment:

What is the best way for LIGO to gain confidence in CBI's alignment of the beam tube?
Proposal \#4: We should follow the following principles:

1. Checks should be made using GPS rather than alternative methods (this will probably be the least expensive means of satisfying our precision requirements).
2. Checks should be made prior to the installation of beam tube enclosure covers (this is the last time a GPS measurement can be efficiently be made directly on the beam tube support).
3. Checks should be made independently of CBI's personnel and equipment (this is a more confident overall check). To effect this, the fixture that positions a GPS antenna on a support will need to be procured.
4. Checks should be made between the time that CBI has finished with a support and the time that enclosure covers are close enough to disturb the reading (this follows from item 2).
5. Checks should be made according to the following schedule, per module:

Tube Section Sequence Number

Sections 001-005
Sections 006-050
Sections 051-100

Alignment Check Schedule

Every tube section

Every fifth tube section
Every tenth tube section
6. Additional measurements: approximately one month after the enclosure covers have been installed, measurements should be taken of the "slab nails," that were installed (and measured) by CBI, at every support. These readings are not quality checks on CBI, but will provide "asbuilt" measurements which will include the effect of initial slab settlement under the weight of the enclosure covers. This measurement will require design and procurement of a special fixture to securely hold the GPS antenna over the slab nail and high enough above the enclosure to eliminate multipath problems.

Issue \#5: GPS training opportunity:

CBI is planning on having the GPS equipment supplier to provide GPS training at Hanford, and has invited LIGO personnel to be included in this training.

Proposal \#5: we should take advantage of this opportunity and have at least one member of the operations staff from each site participate, assuming schedule permits.

Distribution:
Mark Coles
*Otto Matherny
*Rai Weiss

Dennis Coyne	*Cecil Franklin	Albert Lazzarini
Allen Sibley	Bill Tyler	Bill Althouse
*John Worden	*via teleconference; Jones will initiate calls	

cc:
F. Asiri
B. Barish
G. Sanders
G. Stapfer

Chronological File
Document Control Center

PARSONS NFRAGRTCTTVEQ TECHNOLOGY

$$
\begin{aligned}
& \text { TiM hireort } \\
& 3.2 .1 .7
\end{aligned}
$$

SURVEYING DATA FIELD NOTES

PARSON'S INFRASTRUCTURE \& TECHNOLOGY

AS-BUILT TOP OF SLAB - SOUTHWEST ARM LIGO HANFORD PROJECT							
Station	Description	\%	Top of Concrete Elevation		Plan Elevation	\%	Variance
$1+65.5$							
	5'LT		533.78		533.78		0.00
	C/L		533.78		533.78		0.00
	5 ' RT		533.79		533.78		0.01
$5+50$	C/L		533.79		533.77		0.02
$8+96.37$							
	51 LT		533.78		533.78		0.00
	C/L		533.79		533.78		0.01
	5'RT		533.79		533.78	,	0.01
$11+00$	C/L		533.80		533.80	䜌	0.00
$16+76.37$							
	5'LT		533.85		533.86		-0.01
	C/L		533.85		533.86		-0.01
	5'RT		533.85		533.86		-0.01
$23+50$	C/L		533.93		533.93		0.00
$24+56.37$,	
	5 LT		533.94		533.94		0.00
	$C /$		533.95		533.94		0.01
	5' RT		533.94		533.94		0.00
$29+00$	C/L		533.99		533.98		0.01
$32+36.37$							
	5'LT		534.03		534.02		0.01
	C/L		534.03		534.02		0.01
	5 , RT		534.02		534.02		0.00
$38+50$	Ch		534.11		534.12		-0.01
$40+16.37$							
	5 ' LT		534.15		534.15		0.00
	C/L		534.15		534.15		0.00
	5'RT		534.14		534.15		-0.01
$44+00$	Cl		534.24		534.25		-0.01
$47+96.37$							
	5'LT		534.35		534.35		0.00
	C/L		534.35		534.35		0.00
	5' RT		534.35		534.35		0.00

ROGERS SURYEYING, INC.
RSI Project No.: 17096

PARSON'S INFRASTRUCTURE \& TECHNOLOGY

ROGERS SURYEYING，INC．
RSI：－oject No．： 17096

Work Order No：：RSI－007
June 13． 1996

PARSON＇S INFRASTRUCTURE \＆TECHNOLOGY
AS－BUILT TOP OF SALB－SOUTHWEST ARM

LIGO PROJECT							
Station	Description		Top of Concrete Elevation	\％	Plan Elevation	\％\％	Variance
106＋00	C／L		536.48		536.43	8	0.05
107＋83．16				\％			
	5 ＇LT		536.58		536.54		0.04
	C／L		536.59	\％	536.54	3	0.05
	5．RT		536.60		536.54		0.06
$111+00$	C／L		536.72	，	536.70		0.02
$115+63.16$				\％		，	
	5＇LT		536.95	\％	536.95	，	0.00
	C／L		536.96	㡩	536.95	行	0.01
	5 ＇RT		536.96	离	536.95		0.01
$117+50$	C／L		537.07		537.06	\％	0.01
$123+43.16$						荇	
	5 LT		537.41		537.39	㐫	0.02
	C／L		537.41	＂	537.39		0.02
	5＇RT		537.42		537.39		0.03
130＋77．50							
	51 LT		537.88		537.84		0.04
	C／L		537.88		537.84		0.04
	5 RT		537.88		537.84		0.04
	\％		，				

PARSON'S INFRASTRUCTURE \& TECHNOLOGY

AG-BUILT TOP OF SLAB - NORTHWEST ARM LIGO HANFORD PROJECT				
Station	Description	Top of Concrete Elevation		Variance
$130+77.50$				
	5'LT	529.67	529.63	0.04
	C/L	529.68	529.63	0.05
	5, RT	529.67	529.63	0.04
127+00	C/L	529.68	529.64	0.04
$123+40.16$				
	5' LT	529.68	529.65	0.03
	C/L	529.68	529.65	0.03
	5 'RT	529.69	529.65	0.04
$121+00$	C/	529.66	529.66	0.00
$115+60.16$				
	5' LT	529.68	529.70	-0.02
	C/	529.67	529.70	-0.03
	5'RT	529.68	529.70	-0.02
$110+50$	C/L	529.72	529.74	-0.02
107+80.16				
	$5^{\prime} \mathrm{LT}$	529.75	529.77	-0.02
	Cl	529.75	529.77	-0.02
	5, RT	529.75	529.77	-0.02
104+50	Ch	529.78	529.80	-0.02
100+06.16				
	5'LT	529.82	529.87	-0.05
	C/L	529.83	529.87	-0.04
	5'RT	529.84	529.87	-0.03
94+50	C/L	529.97	529.96	0.01
92+20.16				
	$5{ }^{\prime} \mathrm{LT}$	530.03	530.01	0.02
	C/L	530.02	530.01	0.01
	5' RT	530.02	530.01	0.01
$88+50$	C/L	530.10	530.08	0.02
$84+40.16$				
	5, LT	530.17	530.16	0.01
	C/	530.18	530.16	0.02
	5' RT	530.18	530.16	0.02

PARSON'S INFRASTRUCTURE \& TECHNOLOGY

AS-BUILT TOP OF SLAB - NORTHWEST ARM LIGO PROJECT				
Station	Description	Top of Concrete Elevation	Plan Elevation	Variance
76+60.16		\%		\%
	5' LT	530.36	530.36	0.00
	C/L	530.35	530.36	- -0.01
	5'RT	530.35	530.36	W -0.01
$71+50$	C/L	530.51	530.49	0.02
66+57.30				㙰
	5'LT	530.67	530.65	0.02
	C/L	530.67	530.65	Whe. 0.02
	5 'RT	530.69	530.65	缺 0.04
$65+78.20$				\}
	5' LT	530.70	530.66	0.04
	C/L	530.69	530.66	0.03
	5'RT	530.70	530.66	0.04
$59+50$	C / L	530.91	530.87	0.04
$55+73.37$				
	5' LT	531.02	531.01	0.01
	C/L	531.03	531.01	0.02
	5'RT	531.03	531.01	0.02
$54+50$	C/L	531.07	531.05	0.02
47+93.37				
	5 LT	531.34	531.29	0.05
	C / L	531.35	531.29	0.06
	5 RT	531.35	531.29	0.06
$44+00$	C/L	531.49	531.45	0.04
$40+13.37$				
	5' LT	531.67	531.62	0.05
	C / L	531.67	531.62	0.05
	5'RT	531.67	531.62	0.05
$39+00$	C/L	531.71	531.67	0.04
$34+00$	C/L	531.94	531.90	0.04
	,			

PARSON'S INFRASTRUCTURE \& TECHNOLOGY

AS-BUILT TOP OF SLAB - NORTHWEST ARM LIGO PROJECT				
Station	Description	Top of Concrete Elevation	Plan Elevation	Variance
32+33.37				
	5' ${ }^{\text {LT }}$	532.01	531.98	0.03
	C/L	532.01	531.98	0.03
	5'RT	532.02	531.98	0.04
$28+00$	C/L	532.22	532.19	0.03
24+53.37				
	5'LT	532.42	532.37	0.05
	C/	532.42	532.37	0.05
	5, RT	532.42	532.37	0.05
$23+00$	C/L	532.48	532.45	0.03
$18+00$	C/L	532.76	532.72	0.04
$16+73.37$				
	5' LT	532.83	532.81	0.02
	CM	532.83	532.81	0.02
	5 'RT	532.83	532.81	0.02
13+00	C/L	533.05	533.00	0.05
$8+93.37$				
	$5{ }^{\prime} \mathrm{LT}$	533.28	533.23	0.05
	C/L	533.28	533.23	0.05
	5'RT	535.27	533.23	0.04
$6+00$	C/L	533.44	533.41	0.03
1+65.50				
	5' ${ }^{\text {LT }}$	535.70	533.68	0.02
	Cl	533.70	533.68	0.02
	5'RT	533.70	533.68	0.02

PROCESS SYSTEMS INTERNATIONAL, INC.

20 Walkup Drive, Westborough, MA 01581

LIGO PROJECT FAX COVER SHEET

TO: John Worden
c/o Ms. Linda Tumer
M/S 51-33
Fax: (818) 304-9834

SENDING FAX NO.: (508) 858-0322
SENDER: D. MCWilliams
TELEPHONE NO.: (508) 898-0382
DATE: April 19, 1996

SUBJECT: Beam Tube Gate Valves Alignment Criteria

Projact Needs List them V049-NL-LP-49

PSI requires the Beam Tube Gate Valves to be aligned to meet the following criteria. All dimensions refer the gate valve body flange face.

Axial: $\quad+/-1 / 8^{*}$ referenced to the nominal offset from the VEI BT interface.
Transverse: $\quad+/-0.080^{\prime \prime}$ referenced to the Design Optical Axis.
Angularity: $\quad+/ .125$ degrees maximum at the flange bolt circle referenced to the vertical plane along the Design Optical Axis.

Perpendicularity: $+1-0.030^{\circ}$ at the flange bolt circle referenced to the Design Optical Axis
cc: Project File VO49-PL-150 SHT 1 of \qquad
R. Bagley
D. McWilliams

LIGO Project, 51-33 East Bridge Laboratory, Pasadena, California 91125
818-395-2970, Fax 818-304-9834

TO:	Rai Weiss
ORGANIZATION:	LIGO/MIT
FAX NUMBER:	$(617) 253-7014$
VOICE NUMBER:	$(617) 253-3527$
DATE:	$7 / 8 / 96$

FROM:	Larry Jones			
ORGANIZATION:	LIGO Project			
FAX NUMBER:	$(818) 304-9834$			
VOICE NUMBER:	$(818) 395-2970$			
REFER TO:	LIGO-E960105-00-B			
SUBJECT:	missing pages			
NUMBER OF PAGES FAXED INCLUDING THIS COVER SHEET:				4

PROCESS SYSTEMS INTERNATIONAL, INC.

20 Walkup Drive, Westborough, MA 01581

LIGO PROJECT FAX COVER SHEET

TO: John Worden
clo Ms. Linda Tumer
M/S 51-33
Fax: (818) 304-9834

SENDING FAX NO.: (508) 888-0322

SENDER: D.McWilliams
TELEPHONE NO.: (508) 898-0382
DATE:April 19, 1996

SUBJECT: Beam Tube Gate Valves Alignment Criteria

Proiact Needs List item V049-NL-LP- 49

PSI requires the Beam Tube Gate Vaives to be aligned to meet the following criteria. All dimensions refer the gate valve body flange face.

Axial: $\quad+1 / /^{\circ}$ referenced to the nominal offset from the VEI BT interface. . Transverse: $\quad+/-0.080^{\prime \prime}$ referenced to the Design Optical Axis.
Angularity: $\quad+/-.125$ degrees maximum at the flange bolt circle referenced to the vertical plane along the Design Optical Axis.

Perpendicularity: $+1-0.030^{\prime \prime}$ at the flange bolt circle referenced to the Design Optical Axis
cc: Project File V049-PL-150
R. Bagiey
D. McWilliams

SHT 1 of \qquad 1

