
 1

Computer Modeling and Simulation in Support of the Stiff-
Suspension Active Seismic Isolation for LIGO II.

Brian Lantz, Wensheng Hua, Sam Richman, Jonathan How, and the Stiff Team

Feb 14, 2000, Version 1.0.1, LIGO-T000016-01

We have developed a very general and versatile approach to model and
predict the behavior of complex isolation systems that are being designed for
LIGO II. The code is currently being validated against the Stanford prototype, it
has already been validated against the GEO 600 code for their triple pendulum,
and we will also be validating it with the Stiff Double-Active Stage prototype
now under construction. As we test the code against the prototypes, we will gain
confidence in its predictions about control and performance. Before April, this
code will be used to model the performance of the entire suspension and
isolation system we are proposing for LIGO II.

1. Description of the modeling tools
The model consists of three fundamental parts: a model constructor, routines

for determining the static equilibrium positions and linearizing the equations of
motion around those equilibrium points, and a Simulink interface for evaluating
the performance of the isolation system. The system is written completely in
Matlab, which has an excellent set of tools for conducting system identification
and controller design. The code models the isolation system as a set of springs,
masses, sensors, and actuators, then creates a linearized model of that system
around the equilibrium condition. Control laws can then be added and the
performance of the design is evaluated.

1.1 Modeling Techniques and the Numerical Perturbation Method

All of the various mechanical systems are treated as mass-spring mechanical
systems in the same way. For example, the GEO triple pendulum is made of
three stages. Each stage has certain mass and moments of inertia. These stages
are connected to each other by some springs. The springs could be extensible
wires or blade springs. There are sensors monitoring the motions of the stages
and actuators applying forces and torques to the stages. Another example is the
double stage active isolation system which comprises two serial active platforms
from which two (or three) quadruple pendulums are suspended. This is a much
more complicated system, but it is still a system made of mass stages, springs,
sensors and actuators.

 2

In the model, each mass stage is allowed to translate and rotate in three
dimensions. Hence, each stage has six degrees of freedom. Thus, the total
number of degrees of freedom of a system is six times the number of stages.

The dynamic model of the system is based on a numerical perturbation
technique. Because all the stages in the isolation system work only in small
ranges around the equilibrium positions, we assume that the reaction forces and
torques are linear to the changes of positions of the stages. To set up the dynamic
model of the system, we need to know the reaction forces and torques on the
stages due to the motions of those stages in all degrees of freedom. We define the
stiffness matrix of a system as the matrix which maps the small changes of
positions of the stages onto the reaction forces and torques on those stages. Such
reaction forces and torques come from both the deformations of the springs and
the changes in the directions of the static force on the springs in the system (e.g.
small changes to the position of a pendulum mass change the direction of the
static forces applied to it, which results in linear restoring forces). A detailed
description of the technique can be found in a document by Wensheng Hua, How

to Construct a Mechanical Model of a Mass-Spring System, available on the stiff team
website.

The stiffness matrices are obtained by linearizing the mass-spring systems
around their equilibrium positions. However, this information is not precisely
known for the real system, but we can calculate the equilibrium positions of the
stage given the physical parameters of the stages and springs. This problem is
solved using iteration. The steps are as follows:

1) First, we assume that the stages are at the design position and calculate the net
static force and torque on each stage. If the net force and torque on each stage

is zero, then the current position is the equilibrium position, and we are done.

2) If we are not in equilibrium, then we linearize the system around the current
position and calculate the stiffness matrix.

3) We use this stiffness matrix to calculate the new positions the stages move to
so that the reaction force and torque balance the net static force and torque on
the stages.

4) In the new position, we recalculate the net forces and torques. If the net force
and torque on each stage is zero, then the current position is the equilibrium

position, and we are done, otherwise, we go back to step 2.

 3

The iterations are continued until the stages are at their equilibrium
positions. Once we have reached static equilibrium, we calculate the final
stiffness matrix. This iteration method is equivalent to Newton’s method for
solving nonlinear equations, and it converges quickly (usually in 3 to 5
iterations).

Once we have the stiffness matrix, we can easily construct a model that
represents all of the mechanical dynamics of the system (called the mechanical
model). For convenience, the mechanical model is written in a state space form.
The states are the positions and velocities of all the stages in all degrees of
freedom. The inputs of this model are the ground motions and the actuator
forces and torques on every degree of freedom of the system. The outputs of this
model are the position of the stages and force on the ground. The ground motion
is left as an input and the force on ground as an output. This step provides a
convenient way to link our model to a dynamic model of the ground (or a
mechanical model of another system) which could be added later.

Next, we make the sensor model and actuator model. The inputs of the
sensor model are the positions of the stages. The outputs are the electrical
outputs of the sensors. For each sensor, we project the motions of the stages into
the sensitive direction of that sensor. We then calculate the output of that sensor
based on the sensor’s transfer function. The whole sensor model is a collection of
all the different sensors in the system, although the modeling tools allow them to
be arranged in arbitrary groups in the control simulations.

We follow similar steps in the construct the actuator model. The inputs of the
actuator model are the electrical inputs to the actuators. The outputs are the force
and torque on the stages.

1.2 Model Connections and Queries

Now we construct the whole model of the isolation and alignment system by
connecting the actuator model, the mechanical model, and the sensor model
using Simulink.

Once the model of the physical system is assembled, we design the control
laws, construct the control model, and close the loop of the whole system. Figure
1 shows the model of the GEO triple pendulum, adapted from the
geo_example.m code distributed by Ken Strain, Calum Torrie, et. al. The
Simulink interface simplifies the interaction between the blocks in the model, so

 4

the user can open and close loops, add sensor banks, change control laws, etc.
with a minimum of difficulty.

Requires the excution of the m-file mkModel

Run tests with the m-file runModel

Wensheng Hua, Brian Lantz Nov 1999

2
Out2

1
Out1

no input2

no input1

no input

Stage positions

Sensor Noise

Sensor Out

global sensor

Term 1

ground position in

ground force in

stage force in

ground force out

ground position out

stage positions

Mechanical Model

ground position

Stage positions

Sensor Noise

Sensor Out

LocalSensor Model

controlModel

Local Control Model

Actuator Input

Actuator Noise

ground force

stage force

Actuators

1
In1

6
6

6
6

6

6

6
6

18

18

1
1

18
18

18

18

6
6

6
6

6

6
6

6

1
1

Figure 1. Simulink diagram of the GEO triple model. The parameters match the

geo_example.m code distributed by GEO 600.

1.3 The Model Constructor

In the LIGO II isolation system research, we need to model many different
systems, such as the GEO pendulums, the various experimental prototypes, and
at least two different LIGO II suspension systems (for the BSCs and for the
HAMs). These different systems have different kinds of mechanical
arrangements, springs, sensors, actuators, and control laws. In order to model
these systems effectively, we designed uniform data structures for all the
different systems. There are five data structures: stages, springs, actuators,
sensors and control laws. These data structures contain all the physical and
geometrical parameters of the system. Examples of these data structures can be
found in the appendix. These data structures are used as the interface between
the system designer and the computer code which constructs the state space
model of the system. The designer can easily change the parameters in these data
structures and study the performance impacts on the system.

 5

2. Description of the model validation
We are currently engaged in several efforts to validate the performance of

the model. The objective is to confirm that the model can be used to accurately
predict the performance of our various prototype systems, since this will greatly
increase the confidence in our ability to accurately predict the performance of the
reference design.

2.1 GEO Triple Pendulum.

We have developed a model of GEO triple pendulum using our model
constructor code. We did this in order to compare it with another model of the
same system written by GEO. These two models were made independently of
each other using different mathematical algorithms. The GEO model has already
been experimentally verified. We compared the two systems’ stiffness matrices
term by term, and the result shows that these two models are exactly the same.
These two models produce same transfer functions as well. Figure 2 shows the
closed loop transfer function of the GEO triple pendulum from horizontal
ground motion to global sensor output.

10
-2

10
-1

10
0

10
1

10
210

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

frequency (Hz)

am
pl

itu
de

Horizontal closed loop transfer function of GEO triple pendulum

Figure 2. Transfer function from horizontal ground motion to horizontal test mass motion of

the GEO triple pendulum as described in the geo_example.m code distribution. This transfer

function was generated with the new modeling tools.

 6

2.2 GEO Quadruple Pendulum.

We are constructing a model of the GEO quad pendulum. The GEO group is
working on the same model at the same time using their own mathematical
algorithms. We are in the process of comparing the models by exchanging the
state space matrices and examining them for differences.

2.3 Stanford Prototype

In order to further test our model construction code against a real isolation
experiment, we made a model of the single layer active platform built at
Stanford. Because it is difficult to measure some of the physical parameters of the
system, such as the center of the mass and moment of inertia tensor, we have had
to adjust those uncertain physical parameters in the model to fit the transfer
function of the model to the experimental results.

1 2 3 4 5 6 8 10 20 30 40 50 60 80 100
10

-1

10
0

10
1

10
2

10
3

The transfer function from front vertical voice coil to front vertical geophone

frequency (Hz)

am
pt

itu
de

Experimental Data
Model

Figure 3. Transfer function of the Stanford single layer active platform and the model, after

the model has been tuned.

 7

The red line in Figure 3 shows the transfer function from the front vertical
voice coil input to front vertical geophone output according to the model. The
blue line shows the same transfer function obtained from the actual system. This
transfer function shows a very good match up to about 100Hz. Some of the cross-
coupling transfer function fits are not as good as the one in figure 3. These errors
in the cross-coupling reflect the sensitivity of the system to slight imperfections
in the mechanical system. We will continue to tune the physical parameters of
the model to match the measured data as well as possible, and then design the
controllers to be robust to any errors in the cross-coupling.
The model validation will continue in the following ways:

1) We will measure all of the necessary transfer functions for the system and
form measurement models by fitting a state space system these transfer
functions (Liu and Miller ’94, Liu et. al. ’94). This model will provide very
accurate estimates of the modal parameters of the prototype structure, which

can be used to further update the physical parameters.

2) These identified models will also be used to design more single-input/single-
output (SISO) and multiple-input/multiple-output (MIMO) controllers for the
isolation platform. These controllers will be evaluated on the actual testbed
and the physical model to determine how accurately we can predict the
closed-loop performance.

3) The physical model will also be used to design SISO/MIMO controllers to
establish its accuracy as a control design model.

The goal is to use this physical model of the system to accurately predict the
behavior of the controlled prototype. Close agreement in the close-loop behavior
and the ultimate limits in the obtainable performance will greatly improve the
confidence of the modeling approach and our ability to develop good control
design models using this approach.

When this sequence is complete, we will add the triple pendula to the model
to predict the performance of complete Stanford prototype. This model will then
be used to evaluate the various control designs and predict the overall
performance. The combined model will then be compared with the measured
response (e.g. testmass motion and/or forced transfer functions) of the actual
system.

 8

2.4 Stiff Double-Active Stage

Preliminary modeling of the two-stage stiff prototype isolation system
was done using an adaptation of the model of the JILA technology demonstrator
(Richman et. al. ’98). This is a state-space representation constructed in Matlab
that models the dynamics of the two stages and their respective seismometers.
The state-space equations were derived from a Lagrangian of the mechanical
system. A controller was developed using single input-single output (SISO)
feedback from the seismometers to nearby forcers. This model was used to guide
the initial mechanical design of the prototype. The natural suspension
frequencies were chosen such that a total isolation factor of 1000 at 10 Hz could
be achieved with a 70 Hz bandwidth for the two stage system. The noise from
the commercial seismometers used in the prototype was introduced into the
model and it was verified that this would not compromise the vibration-limited
performance.

We are currently developing another model of the stiff prototype using
the numerical perturbation tools and model constructor described in this
document. The mechanical model comprises three rigid bodies: the ground and
two isolation stages, all with six degrees of freedom. These three are connected
in series via idealized blade springs with wires. The outputs of the seismometers
and position sensors will be modeled as frequency-dependent combinations of
the states of the stages. There is also be a facility for sensor and actuator noise
inputs. This model should better represent the stiff prototype than did the
preliminary model. Notably, it will include the blending of the low- and high-
frequency sensors, and the relative position sensing between the two isolation
stages.

The schedule for development of the constructor model of the prototype is
slightly advanced with respect to the work on the prototype itself. By February
18 there will be a mechanical model and idealized actuator model in place. This
will let us compute transfer functions from actuators and ground motion to
motion of the stages. By February 25 we will incorporate transfer function
descriptions of the low- and high-frequency seismometers. This will allow for a
comparison of driven transfer functions, which will be the first measurements
performed with the prototype.

By March 3 we will model a feedback system based on local loops, where
the signals from a single position sensor/geophone pair are combined and sent
to a single co-located forcer. The algorithm for blending of signals will be based

 9

on previous work done at Stanford (H. S. Bae, ’99). The next step will be to
construct the model of a feedback system in which a low-frequency seismometer
is also blended into the signal from a position sensor/geophone pair for the
upper stage loops.

By March 10 we will add sensor noise into the model to make a prediction of
the performance limit of the two-stage prototype. Based on results of the
preliminary model, it is not expected that sensor noise will preclude the target
isolation factor of 1000 at 10 Hz. At that point, further work on the model will be
driven by experimental results from the prototype. Possibilities for future work
include modeling MIMO feedback, and feed-forward from the low-frequency
sensors on the upper stage to actuators on the lower stage.

3. Models of the Reference Design
The goal of the modeling effort is to provide tools for designing and

understanding the control and performance of prototypes, so that we can use
these tools to establish a reference design for LIGO II. By April, we will have a
reference design of all the double active stages and quadruple pendula for the
BSC and the HAM. The model will include:

1) Dynamics of the system for all degrees of freedom. This is automatic for this

modeling system.

2) The isolation control loops for the double active stage.

3) The pendulum dynamics of the quadruple pendulum with its local damping,
and the impact of those dynamics on the performance of the system.

4) Couplings of the ground noise, sensor noise, and actuator noise into the

motion of the test mass to show that we meet the noise requirements.

5) Global position feedback and calculations of the rms position of the test mass.
We are currently examining the global model distributed by Ken Strain so that
we can leverage off of those results.

6) Calculations to show that all states of the system are observable and
controllable.

Conclusions
We have developed a powerful tool for analyzing isolation systems. The

numerical perturbation technique allows any assembly of masses and springs to
be converted into a linear state space model. The model constructor allows

 10

simple modification of the physical structure of the system, and allows simple
positioning of sensors and actuators on the system. Since this is done with
Matlab, we have a powerful set of modern control tools available for the
development of the control systems. By assembling the pieces with Simulink, we
have a convenient way of organizing the model connections to simplify the
development process.

We have tested the code against the GEO triple results, and it matches
perfectly. We are currently testing the code against the experimental prototypes,
to further validate the code and gain insight about the control design. This gives
us confidence that the simulations of the reference design will be reasonably
accurate.

References
Hong Sang Bae, Active Vibration Isolation and Alignment Issues for LIGO, Masters

Thesis, Department of Mechanical Engineering, Stanford University, August
1999.

Liu, K. and D. W. Miller, ``Structural System Identification: A Study of Different
Algorithms,'' Proceedings of the AIAA Guidance, Navigation, and Control

Conference, Scottsdale, AZ, 1994, pp. 702--714.

Liu, K., R. Jacques, and D. Miller, ``Frequency Domain Structural System
Identification by Observability Range Space Extraction,'' Proceedings of the

American Control Conference, Baltimore, MD, 1994, pp. 107--111.

S. J. Richman, J. A. Giaime, D. B. Newell, R. T. Stebbins, P. L. Bender, and J. E.
Faller, Rev. Sci. Instrum. 69, 2531 (1998).

Wensheng Hua, How to Construct a Mechanical Model of a Mass-Spring System, this
document is available at the stiff team website.

 11

Appendix – Examples of data files used by the model constructor

Mechanical Model: stages

Here is the model constructor for a single stage of a isolation system, many
of the parameters are defined elsewhere.

% stage.m holds the data structure of stage.

StgSGrd=1;

StgStck=2;

%physical Parameters

stage(StgStck).name=’StgStck’;

stage(StgStck).center=[0 0 -frameMcz]’;

stage(StgStck).axis=eye(3);

stage(StgStck).mass=fmass;

stage(StgStck).Ix=fIx;

stage(StgStck).Iy=fIy;

stage(StgStck).Iz=fIz;

stage(StgStck).inerAxis=Rt;

%derived parameters

stage(StgStck).forceInputAddr=2;

stage(StgStck).posiOutputAddr=2;

%%%

Mechanical Model: springs

This is an excerpt of the file used to define the springs of the single layer
active platform.

% spring.m is the data structure of spring.

SprSGrdStak_1=1;

SprSGrdStak_2=2;

SprSGrdStak_3=3;

SprSGrdStak_4=4;

SprSGrdStak_5=5;

SprSGrdStak_6=6;

% data inform parameters:

 12

spring(SprSGrdStak_1).name=’SprSGrdStak_1’;

% geometry parameters:

spring(SprSGrdStak_1).uStageNum=StgSGrd; % The stage number of the upper stage.

spring(SprSGrdStak_1).uPosition=[fNXOffset -fSprUy -SprUz]’; % The contacting point of
the spring on the upper stage in the upper stages local coodinate.

spring(SprSGrdStak_1).uDirc=cookUnit([0 0 -1]’,[0 1 0]’);

spring(SprSGrdStak_1).lStageNum=StgStck; %The stage number of the lower stage.

spring(SprSGrdStak_1).lPosition=[fNXOffset -fSprLy -SprLz]’; % The contacting point of
the spring on the lower stage in the lower stages local coodinate.

spring(SprSGrdStak_1).lDirc=cookUnit([0 0 1]’, [0 1 0]’);

% physical parameters:

spring(SprSGrdStak_1).type=STypeWire; % The type of the spring enable the model to use
different type of springs.

spring(SprSGrdStak_1).elastic=[sprK sprIniL 0 0]; % some elastic constance, the first one
is the zero-force spri

%constant the other constance can be used for non-linear springs.

%%%

Sensors

Here is the code which defines the first two local sensors of the GEO 600
local control.

%GeoTripleLocalSensors.m

% sensor.m The data structure of sensor.

SenPen1PGrdH=1;

SenPen1PGrdT=2;

SenPen1PGrdV=3;

SenPen1PGrdY=4;

SenPen1PGrdP=5;

SenPen1PGrdR=6;

%%%

sensor(SenPen1PGrdH).name=’SenPen1PGrdH’;

% geometry parameters:

sensor(SenPen1PGrdH).mainStageNum=StgPen1; % The stage number of the main stage, the
stage that holds the sensor.

sensor(SenPen1PGrdH).mainPosition=[0 0 0]’; % The sensor’s position on the main stage in
the main stage’s local coordinate.

sensor(SenPen1PGrdH).mainBaseDirc=[1 0 0;0 0 1]’; % The sensor’s sensitive direction in
the main stage’s local coordinate.

sensor(SenPen1PGrdH).refStageNum=StgPGrd; %The stage number of the sensor’s reference
stage.

sensor(SenPen1PGrdH).refPositionA=[0 0 0]’; % The reference points of the sensor on the
reference stage in the reference stages local coodinate.

sensor(SenPen1PGrdH).refBaseDirc=[-1 0 0;0 0 1]’; % The sensor’s sensitive direction in
the main stage’s local coordinate.

% physical parameters:

 13

sensor(SenPen1PGrdH).type=SenType.IdealRelate; % The type of the sensor enable the model
to use different type of sensors.

sensor(SenPen1PGrdH).gain=[1 0 0 0 0 0]; % The gain the sensor

sensor(SenPen1PGrdH).transFunc=tf([1],[1]); % The transfer function of the sensor

%derived parameters:

% Note: All the dumy settings here will only be used for date struture,but not for real
calculation.

sensor(SenPen1PGrdH).geoFunc=zeros(1,12);

% The sensor’s transfer function from the stages’ position to the senser output.

% .sensFunc is multi-input-single-output.

%%%

sensor(SenPen1PGrdT).name=’SenPen1PGrdT’;

%geometry parameters:

sensor(SenPen1PGrdT).mainStageNum=StgPen1;

sensor(SenPen1PGrdT).mainPosition=[0 0 0]’;

sensor(SenPen1PGrdT).mainBaseDirc=[1 0 0;0 0 1]’;

sensor(SenPen1PGrdT).refStageNum=StgPGrd;

sensor(SenPen1PGrdT).refPositionA=[0 0 0]’;

sensor(SenPen1PGrdT).refBaseDirc=[-1 0 0;0 0 1]’;

% physical parameters:

sensor(SenPen1PGrdT).type=SenType.IdealRelate;

sensor(SenPen1PGrdT).gain=[0 1 0 0 0 0];

sensor(SenPen1PGrdT).transFunc=tf([1],[1]);

%derived parameters:

sensor(SenPen1PGrdT).geoFunc=zeros(1,12);

Actuators

Here is example code to define two actuators. It references several variables
which are defined elsewhere.

% actuator.m this is the data structure defining the actuators.

ActSGrdStckH1=1;

ActSGrdStckH2=2;

ActSGrdStckH3=3;

ActSGrdStckV1=4;

ActSGrdStckV2=5;

ActSGrdStckV3=6;

actuator(ActSGrdStckH1).name=’ActSGrdStckH1’;

% geometry parameters:

actuator(ActSGrdStckH1).mainStageNum=Stg.Stck; % The stage number of the main stage,
the stage that holds the actuator.

actuator(ActSGrdStckH1).mainPosition=[fNXOffset -fHGeoVoiceBy -hGeoVoicez]’; % The
actuator’s position on the main stage in the main stage’s local coordinate.

actuator(ActSGrdStckH1).mainBaseDirc=cookUnit([fNXOffset -fHVoiceTy -hGeoVoicez]’-
[fNXOffset -fHGeoVoiceBy -hGeoVoicez]’ ,[0 0 1]’); % The actuator’s Active direction
in the main stage’s local coordinate.

actuator(ActSGrdStckH1).refStageNum=Stg.SGrd; %The stage number of the actuator’s
reference stage.

 14

actuator(ActSGrdStckH1).refPosition=actuator(ActSGrdStckH1).mainPosition+stage(actuator(A
ctSGrdStckH1).mainStageNum).center; % The reference points of the actuator on the
reference stage in the reference stages local coodinate.

actuator(ActSGrdStckH1).refBaseDirc=actuator(ActSGrdStckH1).mainBaseDirc; % The
actuator’s Active direction in the main stage’s local coordinate.

% physical parameters:

actuator(ActSGrdStckH1).type=ActType.Voice; % The type of the actuator enables the model
to use different type of actuators.

actuator(ActSGrdStckH1).gain=[1 0 0 0 0 0]’; % The gain the actuator

actuator(ActSGrdStckH1).damping=dampLamda; % The damping of the actuator

actuator(ActSGrdStckH1).transFunc=voiceTrans; % The transfer function of the actuator

%%

actuator(ActSGrdStckH2).name=’ActSGrdStckH2’;

% geometry parameters:

actuator(ActSGrdStckH2).mainStageNum=Stg.Stck;

actuator(ActSGrdStckH2).mainPosition=[-osHVoiceBx +osHVoiceBy -hGeoVoicez]’;

actuator(ActSGrdStckH2).mainBaseDirc=cookUnit([-osHVoiceTx +osHVoiceTy -hGeoVoicez]’-[-
osHVoiceBx +osHVoiceBy -hGeoVoicez]’ ,[0 0 1]’);

actuator(ActSGrdStckH2).refStageNum=Stg.SGrd;

actuator(ActSGrdStckH2).refPosition=actuator(ActSGrdStckH2).mainPosition+stage(actuator(A
ctSGrdStckH2).mainStageNum).center;

actuator(ActSGrdStckH2).refBaseDirc=actuator(ActSGrdStckH2).mainBaseDirc;

% physical parameters:

actuator(ActSGrdStckH2).type=ActType.Voice;

actuator(ActSGrdStckH2).gain=[1 0 0 0 0 0]’;

actuator(ActSGrdStckH2).damping=dampLamda;

actuator(ActSGrdStckH2).transFunc=voiceTrans;

%%

