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1 WHAT IS THIS DOCUMENT
This document contains the complete and most up-to-date list of primitive modules of the E
End LIGO simulation program. The physics implemented in each module is described brie
this document, and the details of the physics and formulations are given in separate docu
([1], [2], [3], [4]). The common process is to use alfi, a GUI front end of e2e, to combine th
primitives to define a configuration to be simulated using the physics simulation program, sa
configuration in a file (.box is an extension of the file name), and the simulation program r
this file when it runs. In Ch.6, the syntax of this description file is provided in case you nee
deal with the content of the file directly.

2 USING THE PROGRAM - STEP BY STEP

2.1. A quick overview for E2E-user:

For using the end to end simulation programme, it is not necessary to know about the struc
source codes. However, knowledge of a few basic features may turn out to be useful
following discussion assumes that you have already gone through our other document “G
Started with E2E”).

The End-to-End (popularly called E2E) simulation codes have been written with the ob
oriented approach of C++ language. The code is modular. Each component is almost indep
of others.

In order to set up your own experiment, the first step is to properly place your indivi
instruments and components. E2E provides these: e.g., field_gen (alias laser so
sideband_gen or phase_adder (alias phase-modulator), pd_demod (the detector), mirror2 (2
and 2 outputs) or mirror4 (4 inputs and 4 outputs), lens, power_meter etc. You need to do th
of assembling by creating what we call*.box file using our graphical interface, Alfi, or writing
your description file (see document “Getting Started with E2E”). The next obvious step
connect all these components meaningfully together and bring them to life. In an op
experiment, this is done by laser. However, we intellectuals, prefer to call it “field”.

Our field is a class which, at its heart, contains important information about laser light in the
of a vector of a vector: Each element of the parent vector represents a frequency of light (c
or sideband), whereas each element of the offspring vector represents the complex coeffic
the amplitude of laser in a particular mode of Hermite-Gaussian basis. The basis of these m
also carried by the field class itself in the form of its two important private members: waist-si
beam and distance to waist. As will be explained in sec. 2.1 below, this class also carries
important information about how you wish to perform your experiments.

The basic task of each module is to accept some input field and/or data and provide some
field and/or data. These can interact with each other directly or with the help of another impo
module,“prop” , the propagator (if these are exchanging fields and there is a distance be
them).

We also developed some modules which represent composite representations of some p
modules, e.g., “cav_sum”, a Fabry-Perot cavity or “rec_sum”, a recycled Michelson cavity
course, one can form a FP cavity or Michelson cavity using primitive modules of mirrors
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props. However, inside these composite modules which are just like black-boxes, calculati
many round-trips are performed with the help of ready-made formulas and thus, if we nee
may use them for fast computation.

In next two subsections we describe all modules, their inputs, outputs, other parameters an
various data types that these modules use.

2.2. Data types and existing modules

Table 1: "Data types" summarizes data types used in the multi-mode version of Adlib, defin

settings for modules and passing data between modules. “type name” is the name used
documentation purpose, while “data type” is the name used in the C++ code. The real var
are refered to using “adlib_real” as the data type as much as possible, so that it would be e
switch to different byte sizes. “adlib_complex” and “field” also use adlib_real for the r
variable. The default is double type.

Table 3: "Primitive Modules" is a table of all primitive modules. The details of modules are g
later. The units of quantities used in these modules are as follows.

Table 1: Data types

type name description example data type

complex zeros and poles of digi-
tal filter

adlib_complex

vector_complex array1d<adlib_complex>

integer number of sidebands of
field

int

vector_integer array1d<int>

real reflectance of mirrors adlib_real

vector_real power or phase of
field_gen

array1d<adlib_real>

field input and output of
optics objects

field

string type specification of
data_in

string

boolean freq_flag of
power_meter

bool

clamp data representing position, rotation, force and
torque. Explicit form is defined in adlib_types.h.
Nth bit of clamp.flag is true if Nth data is meaning-
ful, i.e., if (flag&(1<<N) != 0) meaningful.

mirror position and
rotation, connection
between mechanical
modules.

clamp

unknown data type assigned to a port whose data type is
determined by other conditions, like the output
port of data_in which is determined by the “type”
setting.

output of data_in N/A
page 3 of 28
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For many modules, the main input and output are named as “0”. When appropriate, the mea
placed in () following the “0”.

Table 3: Primitive Modules

Table 2: Units

Quantity Unit

length m

time second

Power watts

Frequency either Hz or rad/sec. (see module description)

Field

angle radian

k =

boolean ( in setting ) yes/no or true/false

boolean ( logic unit ) real value is used to represent true or false status. A value rep
resent true if it is larger than “threshold”, false otherwise.

ame Function in out setting

I/O

ata_in used to get data into the
simulation

none “0” variable type "type" string ("real"), "init" output
(???)

ta_out used to get data out of the
simulation (a "probe")

"0" variable type none none

_viewer

c. 4.11.)

Interavively view data "0" variable type none none

Real Function

adder implements z = a*x + b*y "a"(1.0) "x"(0.0)
"b"(1.0) "y"(0.0) real

 "0" real none

sine the sine function

out = amplitude x sin(2π t
+ φ)

"0" (time) "amplitude"
"frequency" "phase"
real

 "0" real none

are_root the square root function

out = sqrt( in )

"0" real  "0" real none

watts

2π λ⁄ m
1–
page 4 of 28
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verse the inverse function

out = 1 / in

"0" real  "0" real none

tal_filter
c. 4.14.)

a digital filter

out = digiatl filter (in)

"0" real  "0" real "zero" "pole" (in rad/sec.) "gain" r

"zeropair" "polepair" complex

“DenominatorPoly” (1) (real vector

“NumeratorPoly” (1) (real vector)

“needPrecision” integer (none)

“sampelTime”(0) real

_sampler
c. 4.14.)

Discritize the input with
the specified sampleTIme.

“0” real “0” real “sampleTime”(0), “integrationTime
real

digitizer digitize the input value
using finite number of bits.

“0” real “0” real “min_val”(0), “max_val”(1) real

“num_bits”(1) integer

miter models a circuit with rails

if in < lower,  out = lower

if in > upper, out = upper

"0" "upper" "lower"
real

"0" real none

elay add one delay explicily. “0” real “0” real none

Logic functions
t "val" is evaluated to be true if val > threshold, otherwise false. Output is true_val if the result is logical true, false_val otherw

and logical AND "a","b"  real "0" real "threshold" (0.9), "true_val" (5),
"false_val" (0.0)  real

or logical OR "a","b"  real "0" real same as above

a>b comparison "a","b"  real "0" real same as above

not negation "0" real "0" real same as above

witch if the input value “bool” is
true, the input value “high”
is returned as the output,
else the input value “low”
is returned.

"bool" "low" "high"
real

"0" real same as above

Data Generation

nd_flat generates random numbers
with a flat distribution

"range" real "0" real none

d_norm generates random numbers
with a normal distribution

"width" real "0" real none

lock generates the time none "0" real none

Unit Conversion

m2k converts wavelength to
wavenumber

out = 2π / in

"0" real "0" real none

ame Function in out setting
page 5 of 28
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f2k converts frequency to
wavenumber

out = 2π in / c

"0" real "0" real none

Type Conversion

complex
c. 4.9.)

converts a field to a
complex number

"0" field, "dk" real,
“m”, “n” integer

"0" complex none

ld2info gives info about the field “0” field “spot_size” real none

plex2reim converts a complex number
to real and imaginary

real = Re(  in * exp(i phi) )

imag = Im( in * exp(i phi) )

"0" complex, "phi" real "real" "imag" real none

plex2aphi converts a complex number
to amplitude and phase

amp = abs( in * exp(i phi))

phi = Arg( in * exp(i phi) )

"0" complex "amp" "phi" real none

mp2xyz convert clamp to indiviual
components and flag

“0” clamp “X”,’Y”,”Z”,”thetaX”,
“thetaY”, “thetaZ”,
“FX”,... real

“flag” integer

none

2clamp Combine individual data to
make a clamp data. flag is
automatically calculated
based on the link.

“X”,...,”thetaX”,... real “0” clamp none

al2vec Convert a real value to a
vector of real with one data

out = in,just type changes

“0” real “0” vector_real none

Field Operation

ld_gen
c. 4.1.)

 generates a field "power" vector_real,
"phase" real (0.0)

"0" field "lambda" real (1.064e-6),
“waist_size_X”, waist_size_Y real(
“distance_waist_X”, “distance_wa
real(0.0), “max_mode_order” integ
“polarization” integer(1),
“compute_option” integer(1) ,
“angle_resolution” real(1e-8) ,
“compute_mismatch_curvature” bo

band_gen
c. 4.12.)

phase and amplitude
modulates a field (uses
sideband approximation)

"0" field,

"k_mod", "gamma",
“gammaAmp” real

"0" field “order” integer

band_filte
r

passes only sidebands with
dk value less than or equal
to dk_max

"0" field,

"dk_max" real

"0" field

ame Function in out setting
page 6 of 28
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odulator
c. 4.16.)

modulatephase&amplitude
of a field directly

out = in * (1+del_amp) *
exp(i*phi)

 "0" field,

"phi" , “del_amp” real

"0" field none

_shifter
c. 4.15.)

shift frequencies of all
subfields by del_k

“0” field

“del_k” real

“0” field none

er_meter
c. 4.2.)

outputs the power of a field  "0" field,
“dk_for_power” real,

 "0" real “freq_flag” boolean; “meter_flag”
“n”, “order_min”, “order_max” integ

_demod
c. 4.13.)

photo diode with shot noise
and demodulator.

 "0" field, "k_demod"
real

"demod" complex,
"power" real

“shape” integer (0), “shotnoise” int
(0), “efficiency” (1.0)

Optics

prop

c. 4.3.)

propagates a field over a
macroscopic distance

"0" field "0" field "length" real (1.0)

"dphi" real (0.0)

“have_delay” bool (yes)

irror2
c. 4.4.)

a 2-input 2-output mirror
(cavity end mirror)

"mech_data” clamp;

"Ain" "Bin" field

"Aout" "Bout" field "r" "t" "R" "T" "L" real (2.0),

"angle"real(0.0), “radius_front”,
“radius_back” real (1e20) ,
“refractive_index(1.0)  real

escope
c. 4.10.)

Simulate a collection of
lenses

“in” field

“length” real

“out” field “waist_X”, “waist_Y”, “dist2waist_X
“dist2waist_Y”,“guoy00_X”,
“guoy00_Y”  real

“lensInfo” vector_complex (real pa
keeps the location and the imagina
keeps the focal length of one mirro

“thicknessInfo” vector_real (thickn
each lens)

“calc_sb_phase” bool (true)

Summation Optics:

ame Function in out setting
page 7 of 28
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3 CONVENTION
The curvature of a optics surface is positive (negative) if the surface looks concave (convex
outside the optics element. Focal length is positive (negative) for converging (diverging) len

_sum [b]

c. 4.6.)

represents a FP cavity “mech_dataA”,
“mech_dataB”,  clamp;

"Ain" "Bin" field,

"Aout" "Bout" "Apick"
field

"length" real (1.0), "dphi" real (0.0)

"dirA" real (1.0), "dirB" real (1.0)

"rA" "tA" "RA" "TA" "LA" real (2.0),

"rB" "tB" "RB" "TB" "LB" real (2.0),

"rC" "tC" "RC" "TC" "LC" real (2.0)
“refractive_indexA”, “refractive_ind
real (1.0),  “radius_frontA”,
“radius_frontB”,real(1e15),
“radius_backA”, “radius_backB”,
real(1e15).

av_sum
ec.2.9)

represents an isosceles  tri-
angular cavity

“mech_dataA”,
“mech_dataB”,
“mech_dataC” clamp;
“Ain”  field,

“Aout”, “Bout”, “Cout”
 field

“length_large” real(1.0), “length_sm
real (0.01), “dphiAB”, “dphiBC”,
“dphiCA”  real (0.0);

“rA” “tA” “RA” “TA” “LA” real (2.0),

“rB” “tB” “RB” “TB” “LB” real (2.0),

“rC” “tC” “RC” “TC” “LC” real (2.0)
“radius_frontC” , real(1e15),
“refractive_indexA”,
“refractive_indexB”, “refractive_ind
real (1.0),

_sum [c]

c. 4.7.)

represents a recycled
MIFO

“mech_dataA”,
“mech_dataB”,
“mech_dataC”,
“mech_dataD”
clamp;

"Ain" "Bin" "Cin"
"Din" field

"Aout" "Bout" "Cout"
"Dout"
"Bpick" "Cpick"
"Dpick"
 field

"lengthA","lengthB","lengthC" real

"dphiA","dphiB","dphiC" real (0.0)

"dirA","dirB","dirC","dirD" real (1.0

"rA" "tA" "RA" "TA" "LA" real (2.0),

"rB" "tB" "RB" "TB" "LB" real (2.0),

"rC" "tC" "RC" "TC" "LC" real (2.0)

"rD" "tD" "RD" "TD" "LD" real (2.0)
“refractive_indexA”,
“refractive_indexB”,
“refractive_indexC”, “refractive_ind
real(1.0), “radius_frontA”,
“radius_frontB”, “radius_frontC”,
“radius_frontD”, real(1e15),
“radius_backA”, “radius_backB”,
“radius_backC”, “radius_backD”,
real(1e15).

ame Function in out setting
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Throughout this document X and Y represent horizontal, and vertical axis respectively. Z
direction of beam-propagation in an unperturbed state of the optical set-up. The mechanic
(longitudinal position z, transverse shifts dx and dy, pitch and yaw) are attributed to a m
(mirror2 or any mirror in a summation cavity) through a port called “mech_data” whose
data_type is “clamp”. The following subsection describes the module which should be used to
mechanical data to mirror(s).

3.1. “xyz2clamp” module:

Inputs of this module (available under item “type_converters” in the pop-up menu of Alfi) are
y, theta_x(pitch), theta_y( yaw) and whose output can be connected to “mech_data” port
optics modules.

“z” : small longitudinal displacement of mirror. The sign is positive if the displacement is in
direction of normal to the coated surface.

“pitch” or “yaw” : “pitch” is rotation around the
horizontal axis and “yaw” is rotation about the vertical
axis. Consider the normal to the front (coated) surface
of a perfectly aligned mirror. Let us call it z-axis. Now
you know the positive x-axis and y-axis in a right-
handed frame (consider x to be the horizontal axis). If
the mirror rotates such that its normal now has a
positive y-component then the “pitch” value is to be
set positive. Similarly, If the mirror rotates such that
its normal now has a positive x-component then the
“yaw” value is to be set positive.

3.2. Definition of length between
optics

The length between mirrors are very important for the simulation of core optics. .

z
x

y

pitch

yaw

Figure 1: Definion of axis and angle
page 9 of 28
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In Figure 2, the distance between the two mirrors, m1 and m2, are calculated using four qu
ties, length, dphi, x1(t) and x2(t). For each mirror, there is a reference place, shown using d
lines in Figure 2, which is time independent. The distance between two reference planes is

by , where N[x] is the nearest integer of x, andλ is the

carrier wavelength of the field1. In other words, value of <macroscopic “length” minus “lguoy00”
the small length corresponding to the guoy phase acquired by the TEM00 mode in traversin
“length”> is rounded up to set equal to an integer multiple of the carrier wavelength, and the
ation from that is accounted for by dphi. With this convention, the numerical accuracy of the v
used for “length” is not so important, and the distance can be set by the operational conditi
like the carrier being resonant. Without this scheme, one needs more than 13 digits to spec
4km arm length in which the carrier field resonates.

The mirror position, which can be time dependent, is defined to be the relative distance be
the mirror surface and the mirror reference plane, using the perpendicular direction pointin
ward from the coated side ( shown by a gray box in Figure 2) of the substrate as the axis. S
Figure 3, x1 is negative while x2 is positive. The effect of the mirror displacement, x1 and x2

1. The wavelength of a field is defined as , using a reference wavelengthλ0. For the car-

rier field, The term dk is 0 for the carrier, and  for the first sidebands when noises are neglected

Strictly speaking,λ in the definition of L0 is the reference wavelength.

x1(t)

m1 m2

x2(t)

Figure 2: Definition of length

x axis

theta1

(length,dphi)

theta2

L0 N
length lguoy00–

λ
------------------------------------------- dphi

2π
-----------+ 

  λ⋅=

2π
λ

------ 2π
λ0
------ δk+=

2π
λRF
---------±
page 10 of 28
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taken into account by the change of the phase. As is shown in Figure 3, the net change of th

length is , and the phase change due to this difference is added to the reflected fie

4 SOME PRIMITIVE MODULES IN OPTICS:
In summation modules (cav_sum, rec_sum, tricav_sum), there are some restrictions whic
should be noted carefully. We decided to keep these restrictions in order to avoid unnec
options which are not really utilised in LIGO-related applications that we know of. It should
noted that any or all of these restrictions can be lifted by a quick modification of our so
programme; In case you need such modifications, please contact us.

4.1. field_gen:

This is basically our laser source but it also carries some important additional information a
how you wish your simulation to be done. Optical simulation without light means nothing
mirror or a cavity is alive only when it receives light. That’s why we decided to put th
additional information inside this module. The field carries these additional information (o
user-specified instructions) everywhere it goes and simulation is performed accord
everywhere in a consistent way. So we explain below the parameters of this module in
catagories:

4.1.1. simulation information:

“max_mode_order”: represents the maximum order (m+n of TEM) upto which the user wish
to perform the computation. As explained above, once specified, this remains to be a
constant throughout the simulation. If you set “max_mode_order = -1” or any other neg
integer, all modules perform operations assuming light as plane wave (no tranverse dimen
Setting “max_mode_order” to zero or other positive integer (upto 3) makes all the mod
perform Gaussian beam calculations using multi-mode computational environment; The

x
d1 d2

θ

Figure 3: Phase change due to displacement

d1 x
θcos

------------=

d2 d1 2θcos⋅=

2x θcos⋅
page 11 of 28
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setting corresponds to just TEM00 mode. Note that the current implementation can study m
upto order m+n = 3, which is sufficient for most of our application purposes.

“compute_option”  : allows the user to select one of the computational methods for the mult
mode calculations. Currently, only one option , 1, the standard modal-model computatio
available. NOTE: if you set “max_mode_order” to any negative integer, which effectively me
that you wish to perform ordinary single-mode operations, obviously, the setting
“compute_option” will not have any significance and will be ignored.

“angle_resolution” : Matrices that are used to study higher order modes generated due to
and yaw are updated only if these quantities (in radian) get changed by at least the set-va
this parameter. Thus, this avoids expensive matrix re-calculations even for negligible chan
alignment angles. Choice of a higher value leads to relatively less (not necessarily unacce
accuracy but faster simulation, and vice versa.

“compute_mismatch_curvature”: This is a boolean flag. If you wish to compute for th
generation of higher order spatial modes due to mismatch in radii of curvature of mirrors an
corresponding phase-fronts, you need to set it to either true or yes. If you set it to false or n
simulation assumes that the phase-front at any mirror exactly matches with the radius of cur
of the corresponding mirror. This has many advantages. For example, when you are at th
stage of designing some configuration, you may not be interested in detailed mism
calculations. Caution: before setting it to no or false, be sure that mismatches are really sm

4.1.2. field information:

“lambda” : laser wave-length.

“polarization” : At present E2E supports field in only one polarization state and does not a
their simultaneous presence (This status will be changed shortly). Set this parameter to eith
(zero) if the field has p-polarization (in the plane of incidence - XZ plane in E2E’s convention
to “1” if the field has s-polarization (perpendicular to the plane of incidence - YZ plane).

“waist_size_X”, “waist_size_Y” : laser beam waist radii : Radial distance in X or Y direction
which the electric field drops to  1/e times the maximum value (at the center).

“distance_waist_X”, “distance_waist_Y” : Distance in z-direction to beam’s waist: To be s
negative (positive) for a converging (diverging) beam.

“power” and“phase”: These in various modes need to be specified as an array of real num
in the following order of TEM_xy basis: 00, 10, 01, 20, 11, 02, 30, 21, 12, 03. Note that
current implementation can study modes upto order m+n = 3, which is sufficient for most o
application purposes.  If it is really necessary, we’ll incorporate m+n > 3 modes in future.

Some examples: if you set max_mode_order = -1 or 0 (single-mode simulation) and power
0.2, 0.1, only TEM00 power will be set to 1.0; the last two values in the array are ignored. If
set max_mode_order = 1 and power = 1.0, 0.2, 0.1, 0.01, the last value in the array is igno
you set max_mode_order = 1 and power = 1.0, 0.2, the TEM01 power is automatically s
zero.
page 12 of 28
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4.2. power_meter:

“dk_for_power”: Difference between the frequency for which you intend to measure power
the carrier frequency. If you set it to zero, that means you intend to measure carrier power. N
you must set“freq_flag”  to yes in order to use this parameter.

“freq_flag” : if you set it to “yes”, the “power_meter” module calculates power in frequen
corresponding to the set value of“dk_for_power” . If you set the same to “no”, it sums up powe
in all frequencies. In both cases, it sums up power in only those modes selected by you by s
“meter_flag”.

“meter_flag” : Setting “meter_flag” to zero, you get summed-up power in all modes. If it is se
1, power_meter sums up power in all modes in between m+n =“order_min” to m+n =
“order_max” ; The settings of“m” and “n” , if you make any, will be neglected. When
“meter_flag” is set to 2, the power_meter gives the power only in mode TEM_mn; In this c
the settings of“order_min” or “order_max” , if any, are neglected. If you are doing somethin
inconsistent (e.g., “order_min” is greater than “order_max”, etc.), you’ll receive warn
messages right at the start of your run of modeler or modeler_freq. So, watch out for those
needed, stop running and change the settings.

An easy question: How to get total power in all frequencies and in all modes? Answer:
“freq_flag” to no and “meter_flag” to 0.

4.3. prop (the propagator):

“length”  and “dphi” : The total length of a propagation path is calculated as follows:

(1)

In the equation, N[x] means the closest integer to x, andλ is the carrier wavelength. When dphi =
0, the propagation path length is an integer times the wave length.

“have_delay” : When “have_delay” is true, prop behaves as a module with delay, i.e., at leas
time step delay is introduced, even if the length is 0. So, maximum time-step of simulati
determined by maximum value of “length” parameters of all the props involved. However, W
“have_delay” is false, prop calculates the output by multiplying proper phases without any
delay. This is intended to simulate a very short cavity and field paths outside of a resonator. U
this latter modus-operandi may speed up the simulation speed without introducing any
inaccuracy.

4.4. mirror2:

Side A (B) referes to the side which is coated (uncoated). E.g., Ain means an input field coming
into the coated side.

Any two of the R, T, L (power reflectance, transmittance and loss),r, t, l (amplitude) can be
specified for a mirror.

L0 N
length

λ
---------------- dphi

2π
-----------+ 

  λ⋅=
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“radius_front”, “radius_back”: Radius of curvature of the coated surface. To be set positiv
negative) if the coated surface looks concave (convex) from outside the mirror.
“refractive_index”: refractive index of substrate

“angle” : The angle between the incident or reflected beam and the normal to the mirror su
When “angle” = 0, the mode-matching between the input beams and the mirror surfa
assumed; Any small difference between “radius_front” and the radius of wavefront of the b
is then computed in a perturbative way (provided you keep“compute_mismatch_curvature” to
yes or true in“field_gen” ). However, when “angle” is not zero, the mirror is treated as a turn
one. Incoming and reflected beams are related by ABCD transformation which uses the
assigned to “radius_front”. Effects of mirror rotation (pitch, yaw) are calculated in a perturba
way.

“mech_data”: see section 3 "Convention"

4.5. lens:

Module removed. Use telescope instead.

This module may be used to effect the change of basis of beam TEM modes by a lens o
mirror with lensing action. To use it for studying the lensing effect of a mirror, please refer to
first paragraph of section 2.4 on mirror2.

“radius_front” and “radius_back” : T o be set positive ( negative) if the lens surface loo
concave (convex) from outside the lens. “radius_front” is on the side of “in” field a
“radius_back” is on the side of “out” field.

4.6. cav_sum:

This is used for fast simulation of a Fabry-Perot cavity.There is one
restriction in this module:The first light should enter the cavity
through mirror A.

The coated sides of mirrors, by default, are inside the cavity. In case
you need to orient one or both of them otherwise, set“dirA” and/or
“dirB”  to (-1).

Lensing effects of the component mirrors have been included in
calculations. So, do not forget to
set“refractive_index” , “radius_front”  and“radius_back”  of mirrors A and B.

Give mechanical data of the mirrors through “mech_dataA” and “mech_dataB” ports (see
section 3 "Convention").

BA

virtual pickoff (C,Apick)
page 14 of 28
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4.7. rec_sum:

This represents the recycling cavity of LIGO interferometer or
just a power-recycled Michelson interferometer.There is one
restriction in this module:The first light should enter the cavity
through mirror A.

This has been developed in order to perform fast simulation of
the whole LIGO interferometer. In a LIGO configuration made
with primitive mirrors and propagators, the maximum value of
time-step of simulation is limited by the smallest value of one of
the lengths (in this case, one of the lengths inside the recycling
cavity). This module enables one to make a LIGO configuration
where “rec_cav” sits in the middle and gets joined by the props to the primitive end mirrors
allows a time-step whose maximum value is limited by the lengths of arm cavities. Of cours
can, on its own, produce simulation results for a Michelson interferometer in a fast way. I
also be used to study dual-recycled michelson interferometer by having non-delay prop
primitive signal recycling mirror at its dark port.

By default, the coated sides of all the mirrors are inside the power-recycled Michelson Cavi
simulate with one or more than one coated sides turned to outside this configuration
corresponding “dir_” variable to (-1). For example, in order to study a power-recycled Miche
cavity, most probably what you would like to simulate is just the default orientation of mirror
“rec_sum”. However, if you wish to study full LIGO configuration using “rec_sum” for th
recycling cavity, you need to setdirB  anddirC  to (-1).

Lensing effects of the component mirrors have been included in calculations. So, donot for
set“refractive_index” , “radius_front”  and“radius_back”  of each mirror.

Give mechanical data of the mirrors through “mech_dataA”, “ mech_dataB”, .... ports (see
section 3 "Convention"). Remember: the longitudinal position, z, of the beam-splitter refe
shift along the normal to its coated surface, just like in any other mirror (and the fact
taken care of by the code).

The output fieldsApick , Bpick, Cpick refer to internal fields at corresponding mirrors and a
directed at the beam-splitter. The fieldDpick is the field at the beam-splitter and is directed
mirror B.

4.8. tricav_sum (isosceles triangular cavity):

This is a summation module representing a triangular cavity like pre-
mode-cleaner or mode-cleaner.Four restrictions on this module: (i) the
triangle should be an isosceles one, (ii) light should enter only one port
(referred to as A port), (iii) the input (A) and output (B) mirrors should be
flat., (iv) the coated sides of all mirrors are always inside the cavity.

“length_large”: Either of lengths BC or CA.

“length_small”: length AB.
“radius_frontC” : radius of curvature of mirror C.
“refractive_indexA”, “refractive_indexB”, “refractive_indexC” : refractive indices of mirrors

BA

D

C

2

A B

C
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“dphiAB”, “dphiBC”, “dphiCA”: small phase offsets in various lengths.

If all dphi_ are zero, the triangular cavity would be resonant with TEM00 of its natural mo
basis in p-polarization. So, if you have set “polarization” to “0” in field-gen module of your .b
file and if all dphi_ are zero, the cavity will automatically be resonant. However, you need t
one of the dphi_ s to Pi to make it resonant if you have set “polarization” to “1” (i.e.
polarization) in field-gen module.

Give mechanical data of the mirrors through “mech_dataA”, “ mech_dataB”, .... ports (see
section 3 "Convention").

4.9. field2complex:

This module allows one to get the complex amplitude of a field (which, by E2E construction
class containing various field information and associated functions) in frequency specifie
“dk” (as usual, the difference between the specified frequency and the carrier frequency) a
particular TEM_mn mode specified by integers“m”  and“n” .

4.10. telescope

Telescope module simulates a set of thin lenses
to change the waist size and position, and the
phase of the field. The lens setting is defined by
its location li and the focal length fi, optionally
with its thickness di, where the focal length is
related to the lens surace curvatures, R1 and R2,
and its refractive index nref, by the following
equation.

The “lensInfo” setup should be defined in the following way to define the lens configuration.

If you want to include the thickness effect, you provide “thicknessInfo” in the following format

When there is a thicknesses assigned, the lens position li is the center between two surfaces. If th
thickness information is not specified for the j’th lens, zero thickness is assumed. The thickn
used only to correct for the calculation of the waist position, and no thick lens effect is inclu

In order to use this module to simulate one lens, set “lensInfo” to (l,f), where “l” is the distance
between the source of the field and the lens, and “f” is the focal length.

0 (l1,f1) (l2,f2) (ln,fn)

d2

l2
length

output field
calculated here1

f
--- nref 1–( ) 1

R1
------ 1

R2
------+ 

 –=

lensInfo l1 f 1,( ) l2 f 2,( ) … ln f n,( ), , ,=

thicknessInfo d1 d2 … dm, , ,=
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The “length” of the telescope can be defined through the input port, and it can vary during
simulation. If “length” is not provided neither as an input to this port, nor by a default value,
last lens location is used as the length of the telescope. If neither of them are provided, the
is set to be zero. The output of the telescope module is the field at the location “length”.

The field is propagated between lenses in the same way as the propagator module does, i.
phases and sideband phases ( (lm - lm-1)*dki ) are applied and the distance to the waist position
advanced accordingly. When the field goes through a lens, the waist size and the distance
waust position is changed.  If the focal length is larger than 1010, it represents a flat lens.

When the sideband phases are included, the definition of the demodulation of the field aft
telescope, in-phase and quad-phase, depends on the length of the telescope. In order to
easy to define the in-phase and quad-phase demodulation, the sideband phases can be
from the telescope calculation. In order to do that, set “calc_sb_phase” to false.

The telescope effect can be specified by the setting parameters “waist_X”, “ waist_Y”,
“dist2waist_X”, “ dist2waist_Y”, “ guoy00_X”, “ guoy00_Y” in stead of specifying the details of
the lens setting. If these parameters are specified, the base of the outgoing field is changed
values and, each mode is multiplied by a phase based on guoy00. In this case, no sideban
are multiplied.

If “ lensInfo” is specified and one or more of these three parameters are specified, these par
settings override the calculation based on the lensInfo specification, i.e., after the calculat
the telescope is finished using the “lensInfo” data, the final waist size, the distance to waist a
total gouy phase changes are replaced by the explicit specification, if there were any.

4.11. Data_Viewer

This is a module to dump out the data. This is equivalent to the following c++ statement.

for ( i = 0; i < counter*step; i++ )

  if ( mod(i,step) == 0 )

    cout << data;

You are prompted for the values of counter and step, and you can stop dumping if you want
data will not go to the standard output file.

4.12. sideband_gen (this one is not quite up-to-date)

This modules amplitude and phase modulates the input field by the following formula.
page 17 of 28
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(2)

where Jn(x) is the Bessel function and In(x) is the modified Bessel function. For the given value
“order” setting parameter n, the following approximation is used:

(3)

4.13. pd_demod

The details of the implementation of the demodulation and shotnoise are given in [1]. Se
“efficiency” is the quantum efficiency, which is multiplied to the input power to get the net po
converted to the photo current.

There are three options for the shot noise simulation. When “shotnoise” is 0, the shot noise is not
simulated. When “shotnoise” is 1, a fast method is used to generate the shot noise. This gene
the shot noise using a gaussian distribution which gives correct values for the average a
variance, when only one pair of sidebands (one upper and one lower) exists. This m
generates the shot noise of the three signals, the inphase demodulated, quadphase dem
and the power, independently. When “shotnoise” is 2, a full simulation is used to generate, an
the simulated fluctuation is no more a simple poission distribution and the correlations amon
three signals are properly generated. But this method is order of magnitude slower than th
method.

The “shape” setting defines the shape of the detector. For the “shape” values 0 to 8, no addi
inputs are needed, and each value corresponds to the shape shown in Figure 4 with infinite

Several box files are provided, “circular_det.box”, “ xhalf_det.box”, “ yhalf_det.box” and
“quad_det.box”. They contains one to four pd_demod modules with proper weights to com
them. complex2reim is included to convert the demodulated output to inphase and quad
demodulated signals. In Figure 5, “+” and “-” signs indicate that they are added together
weights of 1 and -1 respectively.

When you need to simulate any detectors with different shapes, a detecotor map needs
generated using a program “detmap”. [ Contact Hiro Yamamoto of LIGO Lab about the deta
this program ] This program generates a table of values to be used by pd_demod for this de
Then paste this table of numbers, array of real values, into the map_data field of pd_demo

Eout Ein Exp iΓϕ Ωt( )sin( ) Exp Γamp Ωt( )sin( )⋅⋅=

Ein i–( )N i–
J⋅ i Γϕ( ) I N i– Γamp( )⋅

i ∞–=

∞

∑ 
 
 

Exp iNΩt( )⋅
N ∞–=

∞

∑⋅=

Eout Ein i–( )N i–
J⋅ i Γϕ( ) I N i– Γamp( )⋅

i n–=

n

∑ 
 
 

Exp iNΩt( )⋅
N n–=

n

∑⋅≈

[0]
[2] [1]

[3]

[4]

[6] [5]

[7] [8]x

y

Figure 4: “shape” number of detectors
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Using “detmap”, you can define a detector by specifying the following quantities (see Figur

• r_min, r_max : minimum and maximal radius
• phi_begin, phi_end : minimum and maximal angle
• gap : distance between the detector boundary to the geometrical bound defined by

phi_begin adn phi_end
• dx0, dy0 : the offset of the detector center to the beam center

All quantities with length dimention are to be normalized by the spot size.

For example, if you want to define a Bullseye photodiode designed for IOO, you make det
maps of the following 4 detectors with the parameter sets (r_min,r_max,phi_min,phi_max) 

(0,1,0,360), (1.15,2.748, -30,90), (1.15,2.748, 90,210). (1.15,2.748,210,330). The radius
are arbitrary chosen.

4.14. digital_filter

The digital filter module uses the Tustin or bilinear method, and is represented by the follo
form.

(4)

+
- +

+

-

- +

+ -x

y

Figure 5: detector boxes

circular_det.box yhalf_det.boxxhalf_det.box quad_det.box

Figure 6: Specification of a detector

(dx0,dy0)

phi_begin

phi_end

r_max

r_min gap

y axis

x axis

DF s( ) gain
f 1 z( ) f 2 zp( ) f 3 zpo( )⋅⋅

f 1 p( ) f 2 pp( ) f 3 ppo( )⋅⋅
---------------------------------------------------------------⋅=
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(5)

The numerator and the denominator are represented by three forms of polynomials. zer
poles in the form f1 in Eq.(5), complex zero pairs and poles pairs in the form f2 and polynom
in the form of f3. Each one is specified by a real vector (zeros, poles and polynomials) or
complex vector. The coeeficients a’s and b’s are calculated for a given time step using 1
precision. When the new output value is calculated internally in the module, either 64 bit o
bit precisions are used depending on the values of zeros, poles and the time step. This cri
not perfect. If you prefer to use 128 bit calculation for a given module, set “needPrecision” to 1.
If you are sure that 64 bit is enough, set “needPrecision” to 0. If “ needPrecision” is not specified,
it is decided automatically.

I
f

y
o
u

s
p
e
c
i
f
y

a

“sampleTime” larger than the simulation time step (tick time), this module uses this value as
digitization time step. In Figure 7, the dotted line is the output with “sampleTime” = 0. The s
line is produced by placing a A2D_sampler between the source and the digital filter mo
which has the same finite value of sampleTime as the digitial filter. The dot-dashed line is th
output of the same arrangement, source -> A2D_sampler -> digital_filter, but the sampleTi
the digital filter is set to 0.

4.15. freq_shifter

All subfield frequencies are shifted by the same amount. The magnitude of this shift ca
several 100 MHz, it should not be time dependent.

f 1 x( ) s xi–( )∏=

f 2 xp( ) s xpi–( ) s xpi–( )⋅∏=

f 3 xpo( ) xpoi s
i⋅∑=

10.4 10.6 10.8 11 11.2 11.4 11.6

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 7: Digital Filter

source df out

A2D

st=0

st=0
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4.16. fld_modulator

One can do the modulation using this function and demodulate by multiplying a sine fun
without using the sideband approximation. But, in order to do that, the time step should be a
10 times smaller than the modulation field cycle, and usually, this method takes several 1
times slower than the side-band approximation. It is recomended that one tries this m
occationally to validate something. When you set the number of sidebands for the sideband
this is automatically done both in sideband_gen and pd_demod.

4.17. A2D_sampler

For a given discritization time period “sampleTime”τ and an integration time∆, the output
between nτ to (n+1)τ is calculated as

(6)

When∆ is 0, the inpuit value at time nτ is used as the output value during nt to (n+1)t. Wh
digital controllers are implemented, this module should be used together with the digital
with the same “sampleTime”. There is no restriction of the sampleTime, except that it shou
larger than the simulation time step. The numerical integration is done by using parabola fits
two boundaries (area S1 and S2 in Figure 8) using 3 nearest data (three up arrows for S1
down arrows for S2) and by using extended Simpson’s rule in between.

4.18. VAL_digitizer

First, the input value is folded in the range between min_val and max_val. Then the input va
digitized using the following formula.

out
1
∆
--- input t( ) td

nτ ∆–

nτ

∫=

nτ (n+1)τ(n−1)τ ∆

S S/∆
S1

S2

Figure 8: Digitization in Time

digitized output

analog input

simulation points
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where D = (max_val - min_val ) / ( 2num_bits-1 ), and floor(x) gives the largest integer which do
not exceed x.

5 FREQUENTLY ASKED QUESTIONS

5.1. How to use a beam-splitter?

Use a combination of two “mirror2” to represent a beam-splitter. We supply such a ready-
BS.box file which has four inputs and four outputs.

5.2. What is the order of data in the output file?

When an output file named xxx.dat is created, another file named xxx.dhr (xxx matches
data file name, not literally xxx) is automatically created. This file contains names of the out
one name per line, in the order they are placed in the data file. E.g., if the xxx.dhr contain
following lines, the first column in the xxx.dat file is time, second column comes from data
module named amp in box CR_00 in box FP.

time

FP.box.CR_00.amp

FP.box.FF_0_InDemod

5.3. How can I define the order of the output?

When the program creates an output file named xxx.dat, it looks for a file named xxx.dhr. If
is a file named xxx.dhr, it uses the order in that file to arrange the order of the data whose n
match with the names in the given xxx.dhr file. E.g., the content of the existing xxx.dhr
follows.

time

FP.box.CR_00.amp

FP.box.SB_00.amp

FP.box.FF_0_InDemod

FP.box.FF_0_QuDemod

And the names of your data are
time

FP.box.FF_0_QuDemod

FP.box.FF_0_InDemod

FP.box.SB_00.amp

FP.box.CR_00.amp

FP.box.SB_10.amp

FP.box.CR_10.amp

out min_val floor
input min_val–

D
--------------------------------------- 

  D⋅+=
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Then, the order of the columns in the data file is
time

FP.box.CR_00.amp

FP.box.SB_00.amp

FP.box.FF_0_InDemod

FP.box.FF_0_QuDemod

FP.box.SB_10.amp

FP.box.CR_10.amp

The order of the first 5 data are determined by the original xxx.dhr, and the rest of the da
placed in the order they appear in box files involved in the simulation run, which is har
predict. When a new data file is created, the original xxx.dhr file is updated to reflect the the
order. One can change only the order of data coming from data_out, i.e., you cannot chan
placement of time or frequency.

5.4. How can I save my key strokes when I run modeler or
modeler_freq, so that I don’t need to retype again ?

When you start running modeler or modeler_freq, there are three special commands fo
purpose.

@(filename : open a file and start saving key strokes in that file.

@)           : stop recordring key strokes. If you reached the end, you don’t need to wor

@filename  : play back the key strokes stored in the file.

Once stored, you can use it also as the source of the pipe input to modeler / modeler_freq 

modeler < filename

5.5. How can I use this feature in my program?

Use functions implemented in e2ecli.cc and e2ecli.h. FIve top level functions are

doublee2ecli_getDbl( “prompt”, “help”, default_val, min_val, max_val );

int e2ecli_getInt( “prompt”, “help”, default_val, min_val, max_val );

boole2ecli_getBool( “prompt”, “help”); no default value

boole2ecli_getBool( “prompt”, “help”, default_val );

void e2ecli_getStr( “prompt”, “help”, &str ), str may have the default value on entry, o
return it has the new value.

modval andinquire  are functions to let the user change related values together.

When the user types “?” mark, the “help” text is displayed, and when the user simply t
“return” key, the default value is returned if a default value is given.

5.6. How can I implement a phase noise?

All frequencies of subfields, the carrier and sidebands, are constant during the simulation
they cannot be fluctuated. The frequency noise should be implemented as a phase noise
following way:
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(7)

The first term is the constant frequency part, and the second part is the noise. In stead of ch
the frequency, the phase of the subfield is incremented by this amount.

6 DESCRIPTION FILE SYNTAX

6.1. Outline

The syntax of the description file to be supplied for the simulation program is as follows.
faced strings are keywords and should be typed as it is. Italic strings are primitive name
setting names thereof. The name of the instances of primitives can contain alphabets, numb
underscore line. “box” is a kind of primitive, but it behaves differently from the rest of
primitives. Because of that, it is displayed as a keyword for the sake of clarity. When you cre
box, it can be saved with a name following the rule for the naming of primitives. The box file
be included in other box files. In that case, the exisiting (included) box file behaves the sam
other primitives. In the following, name “module” is used to represent “primitive” and “bo
together.

6.2. Syntax

Blank lines can be inserted.

% all the rest after % is treated as comments.

Add_Submodules
{

primitive1userDefinedPrimitive1

...

box userDefinedBox1 {#includebox1 }

...
}

Settings userDefinedPrimitiveN

{
setting1 = valueOfSetting1

...

#include filename1

φ t( ) ω t( ) td

0

t

∫ ω0 t⋅ δω t( )
0

t

∫+= =
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...

}
...

Settings userDefinedBoxN

{
SettingsuserDefinedPrimitiveInThisBox

{
setting1= valueOfSetting1

...

}
SettingsuserDefinedBoxInThisBox

{
...

}
}
...

Add_Connections
{

this inPort1 -> usedDefineModule1inPort1

...
usedDefineModuleNoutPort1 -> usedDefineModuleMinPort1

...

usedDefineModuleLoutPort1 -> this outPort1

...

}
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6.3. Example

Add_Submodules

{

  box DF2box { #include DF2.box }

  digital_filter DFprim

}

Settings DFprim

{

  pole = -1

}

Settings DF2box

{

  Settings DFinDF2

  {

    gain = 1.0

  }

}

Add_Connections

{

  this input -> DF2box in

  DF2box out1 -> DFprim 0

  DFprim 0 -> this output

}

DFprimDF2box

input output

in out1
out2DFinDF2

00in out1
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6.4. Explanation of the syntax

6.4.1. Add_Submodule

Add_Submodulesection surrounded by { and } defines modules, primitives and boxs, inclu
in this description or box file, and assign names to each of the included modules. E.g.,
exmple above, one box, whose file name is DF2.box, is included and is named as DF2box
included in a digital_filter primitive and is named as DFprim.

6.4.2. Settings

Settingssection defines variuos settings of primitives and boxes included. In the example a
DFprim’s pole is set to be -1. The setting is primitived in a box included can be defined
similar way. In the example, gain of the digital_filter DFinDF2 in DF2box is set to be 1. You
create a separate text file and include it in the definition of the setting.

6.4.3. Add_Connections

Add_Connectionssection defines the data connection. A data connection is defined by a p
ports, an output port of a module connected to an input port of another module. Two excep
are “this input” and “this output”. The current box is calledthis so that renaming does not affec
the definition of the connection. They are the input and output ports of the current box, andthis
input” is connected to an iput port of an included module and an output port of an inclu
module is connected to “this output”.

When the time domain simulation goes, the input data are prepared first, then it is passed
input port of other modules, and when a module has all input data set, that module is execu
generate the output.

In the example, the input to this box is passed to the input of the box DF2box, and one o
output of DF2box, out1, is passed to a primitive DFprim, whose input port name is “0”, and
output of this primitive, output port name “0”, is passed to the output of this box, named “outp

6.5. alfi output

alfi output files contain extra information for its use. Those information are stored in a line w
starts with “%*”. Because the simulation program neglects text after %, all information for alfi
just for alfi use. These informations are the sizes of the window, the locations of links on a
linking two ports, etc. If you create a description file, or box file, and later open it using
primitives and boxes will be located at the top left orner of the window, and all links will
arranged using a default (the way the smart link option would generate) rule.

APPENDIX 1 REFERENCE
[1] LIGO-T970194 “Organization of End to End Model”

[2] LIGO-T970196 “Physics of End to End model”
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[3] LIGO-T990081 “Time Domain Modal Model in e2e simulation package”

[4] LIGO-T990106 “Mechanical Simulation Engine : Physics”
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