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An improved algorithm for computing gravitational wave chirps

B.S. Sathyaprakash
Department of Physics and Astronomy, Cardiff University, Cardiff, UK

Templates used in a search for binary black holes and neutron stars in
gravitational wave interferometer data will have to be computed on-line since
the computational storage and retrieval costs for the template bank are too
expensive. We propose an algorithm, based on post-Newtonian theory, that
is expected to bring about an improvement in computational costs by at least
a factor of 5.

I. THE POST-NEWTONIAN WAVEFORM

Post-Newtonian (PN) theory computes the gravitational wave (GW) flux F'(v) emitted,
and the (dimensionless) relativistic binding energy E(v) of, a compact binary as expansions
in the gauge independent relative velocity v of the two stars. In the case of non-spinning
black hole binaries the flux and energy functions are both known to order v° (2.5 PN) beyond
the quadrupole approximation [1,2]:
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Gravitational waves are dominantly emitted at twice the orbital frequency of the system.
The GW frequency is related to the invariant velocity v via v = (mmfqw)'/?. In the above
expressions m is the total mass of the binary and n = m;my/m? is the symmetric mass
ratio. In the quasi-circular, adiabatic approximation one uses the energy balance between
the flux of gravitational waves lost from the system and the rate of decay of the binding
energy of the system: F(v(t)) = —m(dFE/dt).

The energy balance equation can be used to set up a pair of coupled, non-linear, ordinary
differential equations (ODEs) [3] to compute the orbital phase evolution ¢(t) of the binary
during the adiabatic regime:
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where we have made use of the relation between the orbital freqeuncy and the GW frequen-
cy, viz, forn(t) = ¢(t)/(27) = faw(t)/2 = v*/(27m) and E’(v) denotes the v-derivative of
E : E'(v) = dE/dv. In the restricted PN approximation, where the amplitude of the wave-
form is kept to the lowest PN order, while the phase is expanded to the highest PN order
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known, the GW radiation emitted by a binary at a distance r from Earth and sensed by an
interferometric antenna, is described by the waveform

(t) cos[o(t)]; (1.4)

where ¢(t) = 2¢p(t) is the gravitational wave phase. C is a constant that takes values in the
range [0, 1] depending on the relative orientation of the source and the antenna. It has an
r.m.s (averaged over all orientations and wave polarisations) value of 2/5.

The stationary phase approximation to the Fourier transform of the waveform in Eq.
(1.4) is given by

4
h(t) = 26T 2
T

h(f) = /_ O:o h(t)e2m ity

4077m /OO v2(t) [eiw}_(t) —|—6i¢;(t)] di
T —00 2

2Cnm U.Q(tf) ei[q/,f(tf)—n/q, (1.5)
r faw(ty)

where wf = 2m ft + ¢(t), an overdot denotes a derivative w.r.t. ¢ and ¢; is the stationary
point of the Fourier phase, ¢, (f) when f > 0 and w}L(t) when f < 0, namely Qﬁf(tf) = 0.
Indeed, t; turns out to be the instant when the GW frequency fgw is numerically equal to
the Fourier frequency f : f = ¢(t;)/(27) = fow(ts). One can solve for ¢; by inverting the
PN expansion of faw(?).

On substituting for the stationary point ¢;, and consistently using the available PN ex-
pansions of the flux and energy functions one gets the usual stationary phase approximation
(uSPA) to the inspiral signal
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where v; = v(t;) = (mmf)'/3. Ty is the (nominal) time of coalescence and ¢ is the phase
at t = T, both of which can be set to zero. W(f) can be found by substituting, in the
above equation, for the flux and energy from Egs. (1.1) and (1.2), re-expanding the ratio
E'(v)/F(v) and integrating term-by-term. The resulting Fourier phase can be conveniently
expressed as U(f;m,n) = X5 Ui(f)7%, where ¥, are functions only of the Fourier frequency
and 7 are the so-called (dimensionless) PN chirp times given in terms of the binary mass
parameters
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with vy = (mmfy)'/3, fo is a fiducial frequency (e.g., the lower cutoff of the antenna response)
and the W, are given, in terms of the scaled frequency v = f/ fo, by:
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In the restricted PN approximation the amplitude in (1.5) depends on frequency simply
through a factor f~7/6.

Just as in the time-domain, the frequency-domain phasing is also given, in the SPA, by
a pair of coupled, non-linear, ODEs:
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From the computational point of view, solving the ODE’s above is more efficient than

computing the phase algebraically using Egs.(1.6)-Eq.(1.8).

For most binaries the uSPA is sufficiently accurate. One, therefore, generates the signal
directly in the Fourier domain using Eq.(1.5) or Eq.(1.9). The latter is a quicker way of
generating the waveform than solving the ODEs in Eq. (1.4) and then Fourier transforming.
We shall introduce below a different representation of the signal which should further speed-
up signal generation by an order of magnitude.

=0, (1.9)

II. VELOCITY VARIABLE FOR FREQUENCY-DOMAIN REPRESENTATION
OF THE SIGNAL

The new representation that can speed up signal generation is obtained by working in the
Fourier domain with the post-Newtonian expansion parameter v. Introduce a velocity-like
variable v = (7mmf)'/3. Indeed, v is nothing but the parameter v; in Eq.(1.6). Use v as
the Fourier variable instead of f. On substituting f = v®*/(mm), and setting the instant of
coalescence T and the phase at ¢¢ to zero, we find

U(f) = 24: Orv* 2,
k=0

where the chirp parameters ) are given by

3 5 (743 11
By = ——. 6, =0, 6 =—(— 1 )
0= o8y 2= 96p \336 4"
3 15 /3058673 5429 617
b= 3" o _ ol 2), 2.1
3T T8 T b4y (1016064 * 1008 T 144" (2.1)

The Fourier transform can now be written as
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Note that in this form the phase depends only on the mass ratio n and not on the total mass
m'. One can take advantage of this feature in lowering the computational costs in generating
templates in the following manner: One computes a set of (look-up) tables of ¥(v;7n) vs v for

! Although the amplitude does depend on the total mass but it is irrelevant in template generation.



different values 7. The Fourier phase ¥(f;m,n), for a binary of mass m and mass ratio 7, can
simply be read off from the appropriate look-up table: ¥(f;m,n) = U(v = (7mf)'/3;n).
Moreover, the cost of storing a one-parameter set of tables of ¥(v;n) should be several
orders orders of magnitude lower than the cost of storing a two-parameter family of tables
(f;m,n).

The feature discussed above is true not just up to the PN order discussed but a very
general result as can be seen from Eq.(1.6): Note that as the flux and (dimensionless) energy
functions depend only on the mass ratio, the dependence of the phasing formula on the total
mass comes only through the velocity variable v. If we do not substitute v = (mmf)'/? and
work instead with the velocity Fourier variable, the total mass will not appear in the phasing
of the Fourier domain formula.
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