
 LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

 -LIGO-

 CALIFORNIA INSTITUTE OF TECHNOLOGY

 Modification and Additions to GRASP:
PEM Characterization and General Analysis Tools

 Publication: #T010009-00-L 2/04/01

 by

 Anthony Rizzi

 Distribution:

 all

 This is a publication of the LIGO Project.

1 PEM Characterization and General Analysis
Tools

These tools consists of modi…cations and additions to previous chapters of
GRASP that:

1. Allow use of stored latest LIGO frames and frames from shared memory
at LHO or LLO with ability to analyze an arbitrary channel.

2. Allow characterization of Physics Environmental Data (PEM). For exam-
ple, these tools can be used to establish “chirpiness” benchmarks. For
de…nition and further explanation of how this is done see section 1.5.

3. Allow creation 1-D and 2-D histograms directly from matched …lter pro-
gram output.

4. Give new scripts and c-programs that allow one to make histograms di-
rectly from output of program multi…lter*.c series. They allow one to
impose parametric tests before binning. A matlab program to display is
also included

5. Allow matched …ltering of ASCII …les. It also allows injection of signal
from ASCII …le into data.

6. Allow software injection of multiple chirps of varied type in banked matched
…lter runs.

7. Scripts have been written to facilitate changes to GRASP structure to
allow easy modi…cation of software for other related uses.

8. Script has been made to facilitate use of GRASP itself.

9. ASCII …les that give trees that breaks out a few of the GRASP functions
by …le and directory location.

10. Function (snapshotF) added for static viewing of a portion of a channel
in a frame.

These tools are described in more detail below. First, general purpose tools
are discussed including setgrasp and ”tree” …les. Next, functions that allow
viewing data are discussed. Third, modi…cations to optimalF.c (the programs
that run frames through a single matched …lter template) are discussed. Then,
modi…cations to multiprocessor (mpi) code that run frames through multiple
…lters (multi…lterF.c) are covered. Following this is a description of the code
that allows histogram making from multi…lter* series output. Then comes a
description of how to make some of the changes found in the new code in un-
changed code. An explanation of benchmarking of PEM channels comes next.
For example, the script make_new_tail is explained. Lastly, a summary of all
modules that must be changed to accomplish changes and additions of the type
found herein.

1

1.1 General purpose tools
We begin with two general purpose …les that facilitate use of GRASP:

² setgrasp

– A script that allows one to set environmental variables by question
driven menu. The script needs to be modi…ed for your directory
choices. Once this is done the process of running GRASP becomes
much easier. I recommend putting the line ”source setgrasp” in the
.cshrc …le of your GRASP login.

² Tree files

– These …les are found in GRASP_HOME/tree and can be searched
in vi or emacs or your favorite editor. One often …nds in reading
a particular GRASP code …le that he does not know what module
a function is de…ned in. Further, one does not usually know where
that module is. For animateF.c, snapshotF.c and optimalF.c, the
…rst problem is solved by using the tree …les below. Simply search
for the desired function, the …le has an arrow that emanates from the
module (c-…le) that contains the function. The second problem can
be solved, among other ways by using GRASP_tree which lists the
directories followed by the …les in that directory.

– The tree current …les are given below:

¤ animateF_tree

¤ snapshotF_tree
¤ optimalF_tree

¤ GRASP_tree contains a list of all directories in GRASP

2

1.2 Frame access tools
The following changed functions (originally in chapter 3 of the GRASP manual)
and one function not in GRASP previously, are functions that allow viewing
data.

² animateF.c

– It now allows use of shared memory frames at either LIGO site. For
more details see optimalF.c below. It is found in GRASP_HOME /
src/ examples/ examples_frame. The execution format is as previ-
ously.

² snapshotF.c

– This function has been added to allow static viewing of some portion
of the data. It is very useful for more closely inspecting a portion of
a frame when one suspects something interesting (e.g. after doing a
matched …lter test). It is found in the same directory as animateF.c.
This function can also view shared memory frames at either LIGO
site. For more details see optimalF.c below. The execution format
is: “snapshotF 0 2 j xmgr -pipe &”. The …rst number is an integer in
seconds indicating when to start and the second number is an integer
in seconds indicating when to end. Next, there follows a pipe to xmgr
so that the results can be displayed.

² calibrateF.c

– This function has been modi…ed in a similar way to optimalF.c below.
It allows use of shared memory frames, arbitrary channel and transfer
function.

3

1.3 Filtering data with a single matched template
The following changes have been made to the program module optimalF.c, chap-
ter 6 of the GRASP manual. The optimalF program takes frames as input and
runs a single matched …lter across the data. If a given segment of data has an
signal to noise ratio (SNR) greater than a given value the segment is then sub ject
to two further tests: gaussianity and a test that returns the probability that the
segments frequency distribution is gaussian noise plus a chirp of the prescribed
type. The optimalF.c module and modules that are derived from it are described
below. Note that the naming convention is that ”F” in optimalF.c means op-
timal …ltering applied to frame …les. Whereas the ”ASCII” in optimalAscii.c
means optimal …ltering applied to an ASCII …le. The ”matlab” nomenclature
below is based on the fact that the ASCII …les used by us were generated by
matlab; one can of course generate the ASCII …les in any manner that respects
the rule that the …le be a column of numbers(cf. the gaussian white noise …le:
GRASP_HOME/ src/ examples/ examples_inspiral/ matlab_noise3 as an ex-
ample). In all the below, please set the path to …nd your transfer function.
To do this, search for …lep (the …le pointer to the transfer function …le) in the
code and change the argument of fopen to the desired path and …le name. Two
transfer functions are included in the directory GRASP_HOME/ src/ exam-
ples/ examples_inspiral/:

² – ssones.ascci-which is a unity transfer function

– SeismicStack2.ascii-which is the transfer function of the seismic stack
using a model in given PEM document written by Ed Daw. Also,
included in this transfer function is the transfer function of the pen-
dulum’s that the test masses are hung on. Also, the transfer function
has been multiplied by an over all constant.

– The format of these …les is three columns: 1-frequency 2-real part of
transfer function 3-imaginary part of transfer function. One must set
LIGOfrinum at beginning of …le to the total number of points (nb.
LIGOfrinum = numberof lines ¤ 3).

² optimalF.c

– This function can now grab LIGO frame data *.frame (take care if
you have frames that are newer than version 4.11; this release has
been tested with 4.11 but no later version).

– It can now grab a channel from an environmental variable called
GRASP_CHANNEL. For example, one might set this variable to
L0:PEM_BSC4_ACCX which gives the accelerometer reading in the
x-direction at the west end station. As per usual takes it data from
GRASP_FRAMEPATH.

– It can now collect frames from shared memory at either LIGO site.
If one wants to collect data from live frames at LLO (LHO) on
decatur (fortress), one creates a directory and puts an empty …le

4

called LLO_shared_mem (LHO_shared_mem) into it. As long
as shared memory has been correctly setup with the handle be-
ing /online/LLO_Online (/online/LHO_Online) (for example, in
LLO the environmental variable LIGOSMPART must be set to /on-
line/LLO_Online). Run ”FrDump” to see that frames are indeed
being put into shared memory. Also, be careful that enough shared
memory has been allocated to keep frames for long enough time that
calculations can be done. If one is using computers that are being
used by others, be sure to remember to run GRASP only at times
when the load put by GRASP will not interfere with others work. If
one has to interrupt the program during frame collection, type ”sm-
repair” to keep from tying up shared memory for other users; this is
also a good thing to do if one is doing a lot of short runs.

¤ In order to accomplish the interface with the DMT, I had to
compile the program with a c++ compiler rather than just a c
compiler. This was done two ways: the way it was done here with
optimalF did not involve changing the …le but added another …le
called main_assign.c. The second method involves introduces
changes in the …les themselves GRASP_HOME/ src / examples/
examples_template_bank/ multi…lterF.c for an example of this.

– It now handles transfer functions. The transfer function is applied
to the data before it is sent to the optimal …ltering and veto coding.
This function can be any ”frequency …ltering” one wants to apply.
One manually enters a transfer function …le that will be applied to the
raw data to take one from the output of the measuring device to mo-
tion of test mass due to speci…ed PEM channel (SeismicStack2 is an
ASCII …le that contains conversion from the output of large Wilcoxan
(model #731A) accelerometer (through seismic stack and test mass
pendulum– note a particular scalar factor has been applied to the
original transfer function to emphasize a certain frequency range).
There is also a function optimalF_with_Pem_transFun_env_var.c
that allows one to set path to transfer function using an environmen-
tal variable rather than hard coding.

– It now has debug functionality to check for unity response function
by using the di¤erence. This code is present in optimalF.c and is also
recommended as a template for other types of testing and function-
ality.

– It now puts the mean power spectrum into a …le after ”decay”(nominally
15) calls to avg_inv_spec. Two …les are made: one, called seis-
micN.dat, contains just power spectrum numbers for each bin; the
other, called seismic.dat, gives the frequency in …rst column and
power in second

– It now handles PEM sized data. In particular, an argument of
is_gaussian has been increased.

5

² optimalF-noise_make_file.c

– This function is a modi…ed version of the optimalF program described
above.

– Its main feature is that it generates the two noise …les described be-
low. These …les allow one to use N segments of data to create a
simple average background noise that is then used for the optimal
(matched) …ltering in the program; this, for example, provides a way
of comparing the results of optimal …ltering with local exponential
averaging (which is what is done in optimalF.c) to optimal …ltering
with simple arithmetic average of a ”typical” portion of the data
(which is what is done in optimalF-noise_use-…le.c below). The two
…les are put into the directory that optimalF-noise_make_…le is ex-
ecuted (to change search for “fptwice” in the code and change the
path accordingly). The two …les created are:

¤ data-mean_pow_spec (this one starts from icut and goes to
npoint/2-1) and

¤ data-twice_inv_noise (this one starts at zero and goes to npoint/2)

– These …les contain respectively the arithmetic average of successive
data segments of mean and twice inverted noise (i.e. of data). The
average is done by a function, simple_avg_inv_spec, (instead of
avg_inv_spec) found in matched.c in $GRASP_HOME/ src/ inspi-
ral. The net e¤ect is to give average mean power = (P 1 + P 2 +
P3::::PN)=N . The …les created by this program are then to be used
by optimalF-noise_use_…le to perform the optimal …ltering (one …l-
ter) on the given data channel.

– It has the capability of injecting chirps from ASCII …les. The chirp
or other desired injected signal is inserted into an array by this code
and then can be put into the data stream using time_inject_chirp.

² optimalF-noise_use_file.c

– This function uses a simple average of N segments of ”typical” data
for the optimal …ltering. It does this by making use of the …les data-
mean_pow_spec and data-twice_inv_noise generated by optimalF-
noise_make-…le.c for the optimal …ltering on frame data. It looks for
the …les it needs in the current directory (to change this directory
search for “fptwice” in the code).

² optimalAscii-noise_make_file.c

– This function is identical to the above function (optimalF-noise_make_…le)
except that it takes its data input from an ASCII …le (this …le is
speci…ed in code –search for “fpmatlab_noise”; currently it points
to matlab_noise3) rather than from frames. It creates two noise

6

…les: mean_pow_spec and twice_inv_noise as done above in the
current directory. If one wants to use this for creating noise …les
for use with optimalAscii-noise-use-…le.c set NPOINT=16384 (for
multi…lterAscii-noise-use-…le.c (see below) set NPOINT=65536). There
is also a hard coded option (currently commented out) that puts
mean_pow_spec in two …les:

¤ noise_gauss-whtN.dat and noise_gauss-wht.dat. The …rst …le
has only spectral power Numbers while the other includes fre-
quency as well as power spectral numbers.

² optimalAscii_noise-use_file.c

– This function uses a simple average of N segments of ”typical” data
for the optimal …ltering. It is the ASCII version of optimalF-noise-
use-…le.c. The ASCII is accessed as above. It uses the …les data-
mean_pow_spec and data-twice-inv noise generated by optimalAscii-
noise_make_…le.c for optimal …ltering on an ASCII …le. It looks in
the current directory for these …le (to change look for …le pointer
“fptwice” in code).

7

1.4 Filtering data with a bank of matched templates
The following changes have been made to program multi…lterF.c, described in
section 9 of the GRASP manual. The multi…lterF.c program takes frames as
input and runs a bank of matched …lters across the data. If a given segment
of data has an SNR greater than a given value the segment is then subject to
two further tests: gaussianity and a test that returns the probability that the
segments frequency distribution is gaussian noise plus a chirp of the prescribed
type. The multi…lterF.c module and the modules that are derived from it are
described below; many of them are parallel versions to the optimal*.c series
described above. As for the optimal*.c series, the naming convention is that
”F” in multi…lterF.c means optimal …ltering applied to frame …les. Whereas the
”ASCII” in multi…lterAscii.c means optimal …ltering applied to an ASCII …le.
Make sure transfer function is set to correct location before running (for more
details see description preceding the optimal*.c series).

² multifilterF.c

– This function now allows all the functionality described above for op-
timalF.c. The …le readme_multifilter_running contains the com-
mand line for running multi…lterF; one will need to alter the path to
“mpirun” to agree with your installation setup. The number in the
…le is the number of processors one wants to use. As per usual, one
must set the machines in /mpi/mpich-1.2.0/util/machines.

² multifilterF-noise_make_file.c

– Analogous to multi…lterF.c, this function makes the two noise spec-
trum …les mean_pow_spec and twice_inv_noise by averaging the
…rst N data segments of the GRASP_FRAMEPATH data in Channel
GRASP_CHANNEL. The …les are created in the directory that the
function is executed in (to change this search for “fptwice_inv_noise”
in the code). These …les are then used by multi…lter-noise_make_…le.c.
To do averaging, one needs to make use of simple_avg_inv_spec in-
stead of avg_inv_spec (both are in matched.c in GRASP_1.9.8/
src/ inspiral). Both ”make” and ”use” are currently set up to use
transfer function of the seismic tack; see optimalF-noise_make_…le
for a few details of how calculation are done.

² multifilterF-noise_use_file.c

– This …le replaces the local exponential averaging done by multi…lterF
with a simple arithmetic average of ”typical” data segments. Uses
twice_inv_noise and mean_pow_spec from ”make” …le immediately
above. It looks in the current directory for these …les (to change,
search for the …le pointer “fptwice_inv_noise” in code).

² multifilterAscii.c

8

– This code does local exponential averaging (with 1/e at 15 data seg-
ments) to get noise used in optimal …ltering on an ASCII data …le.
It does optimal …ltering on the ASCII data …le with name and path
given in the code (to change the …le, search for, “fpmatlab”, the …le
pointer to the ASCII data …le).

² multifilterAscii-noise_make_file.c

– This code would do the same as multi…lterF-noise_make_…le.c, ex-
cept it would take data from an ASCII …le referenced in code (look for
…le pointer “fpmatlab”). However, there is no need for a new func-
tion. One uses optimalAscii-noise_make_…le.c to create noise …les
for use by multi…lterAscii-noise_use_…le.c. One must use NPOINT=65536,
when making a noise …le for multi…lterAscii-noise_use_…le. The
ASCII …le is accessed as in optimalAscii-noise_make_…le.c above.
One also should use names for the noise …les created by optimalAscii-
noise_make_…le for multi…lterAscii-noise_use_…le.c that will distin-
guish it from the …les created for optimalAscii-noise_use_…le.

² multifilterAscii-noise_use_file.c

– This program looks at an ASCII …le given in code and uses a mean_pow_spec
and twice_inv_noise from ASCII …les created by a make …le from
the ASCII data …le. Make sure to set the correct path in the code
(search for “fptwice_inv_noise” to change).

² multifilterAscii-noise_use_file-hist_make.c

– This code is the same as multi…lterAscii-noise_use_…le.c but also
bins SNR and probability to create 2D histogram ASCII …le that is
named in the code (initially matlab_hist) (search for the …le pointer
“fphist” and change the …le path/name to what you like) . Once
the …le is created it can be displayed in matlab using the provided
program, ThreeDHist.m.

² multifilterAscii_with_injectedChirps.c

– This program is the same as multi…lterAscii.c, but before the tem-
plate bank is run past the data, chirps are injected into the data. It
can be used, for example, to determine how accurately one can recon-
struct chirp parameters using …nd_chirp. The following (#de…ne)
parameters must be set and explain the operation of the program.

¤ INJECT_CHIRPS: This is “1” or “0” variable that one should
set to “1” if one wants to inject chirps.

¤ INJECT_SINGLE_CHIRP: This is 1 or 0 variable that one
should set to “1” if one wants to inject only a single chirp not a
series of chirps.

9

¤ N_TIMES_INJECT: It speci…es the number times to inject the
same chirp before going on to next chirp. If it were set to 50,
with 66 templates and no skips, this requires 3300 data segments;
note that the segments after this will have no injected chirps.

¤ DATA_SEGS_WAIT: This variable is currently set to 15. With
this value, it says to inject a chirp only into every 15th data
segment.

¤ N_TEMPLATES_TO_SKIP: This says to do every
N_TEMPLATES_TO_SKIP in the template grid.

10

1.4.1 Histogram binning and drawing

The following are …les that contain programs for binning the output of multi…l-
ter* programs.

² bin_for_hist.c and related scripts for making histograms

– This is a program that takes the output c-shell scripts below and
creates a histogram in an ASCII …le. The multi…lter programs above
create signals.***** …les (each …le corresponds to one block of data
with results for all matched …lter templates) that are used as input
by the scripts below. These scripts (found in GRASP_HOME/ src/
examples/ examples_template) are:

¤ program_max_prob- script that picks out max probability (prob)
in each signal …le (signals.* from multi…lter) and creates a sorted
list in …le named max_prob with highest probability at top. The
list contains the signal …le name that it found along with the
probability.

¤ program_max_snr – does the same as max_prob but sorts out
signal to noise ratio (SNR) instead of probability. The output
goes in …le named max_snr.

¤ program_max_prob-withSNR – same as max_prob but includes
SNR in output. The output goes in …le named max_prob-
withSNR.

¤ program_max_snr-withPROB -same as max_snr but includes
probability (prob) in output. The output goes in …le named
max_snr-withPROB.

¤ program_prob+snr - same as program_max_prob-wtihSNR but
removes ”variance” name that sometimes appears in place of
number when using above.

¤ ThreeDHist.m-matlab program that allows display of output.

² signal_test_multi_files.c

– This program takes as input the signals.* …les which is the output
from multi…lter programs. Signals.* is an 11 column array with
N (number of templates) lines per …le. This program outputs 12
columns: the …rst 11 are as in signals.* the last is the line number
(or template number). It outputs only those that have passed a win-
dowing test (i.e. withinrange (maxvalue, minvalue)). The program
prompts you for which parameters you would like to use as a win-
dow test; answer y (otherwise n) to those you wish to use and it will
prompt you for minimum and maximum values. We output this into
a …le called tested_*.out for example, if one has used test SNR > 5
then …le is tested_snrgt5.out.

11

² histogram1-12.c

– It takes as input the output of signal_test_multi_…les.c, bins a one
dimensional histogram with given min and max values, (any values
above max are binned into max any values below min are binned
into min) and outputs into a …le with a naming convention like
hist_snrgt5_snr.out. The ”12” in the name of this program refers
to the number of columns it accepts in its input …le; it is expected
that it will be expanded.

² histogram2-12-col.c

– This program is the same as above except it bins a 2D (instead of 1D)
histogram. The output …le naming convention, for example …le, is
hist2d_snrgt5_snrprob.out where we are binning SNR and proba-
bility and have used the condition in signal_test_multi_…les.c that
the SNR is greater than 5. That is, only template lines inside sig-
nals.***** that pass this SNR test are used. The output format is
columns of numbers; this format will not be accepted by Histmat.m.
The program below, histogram2-12-hist.c, will output a format that
can be displayed using the matlab program Histmat.m.

² histogram2-12-hist.c

– This is the similar to above program, histogram2-12-col.c, except
outputs a …le that is in the form of a matrix that looks like a 2d-
historgram. An example of the output …le naming is hist2dform_snrgt5_snrprob
where we are binning SNR and prob for values of SNR greater than 5.
Such an output …le is what Histmat.m expects. The matlab program
Histmat.m can be used with this as input to create a pictorial input.

² Histmat.m

– This is a matlab prgram that uses output from programs speci…ed
above to draw histogram.

12

1.5 Making further changes
² In general to make any changes to the code simply make the change and

type ”make” and any …le changes made will be compiled in. To make the
changes ”permanent” one may like to use the new script :

– make_new_tail

¤ This script is run as “make_new_tail < Make…le”. It takes the
Make…le and strips out the last part and dumps it into Make-
…le.tail. It saves the old Make…le.tail before over writing it. The
stored Make…le.tail format is Make…le.tail.0 where the ”0” can
be up to ”2”.

To convert a …le that is not already converted to reading frames from shared
memory follow the following procedure. Suppose we are editing a program …le
called program.c:

² Change the Make…le (and the Make…le.tail (see make_new_tail script
above) if you wish the changes to remain when one recompiles GRASP)
every $(CC) command in the compile block for program.c to $(CC_PP).
This will cause the program to be compiled by your chosen c++ compiler.

² Type: make. The compile will give errors for the items that cannot be
found. For example, realft() looks for certain c++ libraries. Make a list
of all the functions that cause errors.

² In program.c, comment all declarations for these variables then insert the
following lines just below the last preprocessor directive at the top of the
…le:

– extern ”C” {int FrIOOpenR(int,int,int);void realft(‡oat*, unsigned
long,int);}

– int dumbframe=0

– At the beginning of the ”main” subroutine after the declarations
insert the line: while (dumbframe) FrIOOpenR(0,0,0);

– Run make to compile changes.

² For an example of how this is done, one can look at GRASP_HOME/
src/ examples/ examples_template_bank/ multi…lterF.c

13

1.6 Characterizing the PEM data with GRASP
This section gives a brief account of the use of the code in this chapter for
benchmarking PEM data.

The central problem of gravity wave detection is extracting the very small
signal from the background noise. Experimentally, this means isolation from
the noise and design strategies that emphasize signal and suppress noise. From
the data analysis point of view, a signi…cant part of the problem is making sure
that an apparent gravity wave detection is not really just noise masquerading as
signal. For example, one might ”see” a chirp-like waveform in the interferometer
output; one might think that a gravity wave from a binary-inspiral has been
detected. However, one must be careful, because this signal could also have
been induced from the noise background; it may actually come from one of
the environmental variables. For instance, the ground could be moving in such
a way that, after being transmitted through the mechanical couplings of the
seismic stack and the pendulum, it induces a chirp-like motion of the test mass.
Hence, one must setup an anti-coincidence between environmental channels and
the interferometer output to …lter out such false detections. In this regard it
is important to characterize each Physics Environmental Monitoring (PEM)
channel and indeed all noise sources, to determine the degree to which each
channel contains chirp-like (after being referred to the test mass) signals. In
short, one would like a benchmark telling the degree of “chirpiness” of each
channel. The plots of the noise contribution to the test mass motion from
various sources are given in terms of rms power spectrum. Such graphs do not
tell the whole story. For example, noise that is very chripy will be harder to
…nd a real binary-inspiral gravity wave signal then noise that is in some sense
orthogonal to a chirp; these graphs are opaque to this issue.

To make a “chirpiness” benchmark, we use the same techniques that will
be used to detect the gravity wave signals. The techniques must be the same
to get a real indication of what level of false detection a given environmental
channel will induce. One can characterize each channel by obtaining the number
of false detections that would occur assuming that the given channel is the only
source of test mass motion. In this chapter, routines and code modi…cations
are discussed for making such chirpiness benchmarks but, of course, similar
studies would be useful for ring-down and other sources. Speci…cally, …nding
the benchmark for seismic induced noise in the test mass is often mentioned,
but again the reasoning applies to any PEM channel.

To be concrete, let’s take the case of the seismic channel. First convince one-
self that the system is correctly operating from seismometer (or accelerometer)
through to GRASP. This can be done, for example, by signal injection. Next,
one should obtain the transfer function that takes one from ground motion up
through to the in-line motion of the test mass. One only has the output of the
seismometer not the ground motion directly so this means dividing by the seis-
mometer’s transfer function to get back to ground motion and then multiplying
by the transfer function of the seismic stack and the pendulum that the test
mass hangs on. Typically, one has experimental numbers and theoretical input

14

that one must use to make a model so he can produce an ASCII …le of the format
described above. One must pick a frequency of interest and scale the transfer
function accordingly; this is only important for transfer functions and variables
that have a large dynamic range. One now may want to use make_grid and
make_mesh to create an optimal template bank grid; however, these functions
have several problems that cause core dumps even if the transfer function is not
as steep as that of the seismic stack. Instead, the user may choose to use what
seems a reasonable covering of the parameter space; in any case, the bench-
mark (false events/unit time) obtained with a less than optimal grid will only
be smaller than the actual. Using the chosen template bank, one then runs the
code. The code inserts the transfer function before the matched …ltering bank
and then runs the bank across it giving as output SNR and other parameters for
each segment. Finally, one analyzes the data to extract a reasonable benchmark
in terms of false events per unit time.

15

1.7 Summary of changes and additions
This section is a summary of the functions that have been changed and added
much of it for PEM characterization. All functions have been tested with
LINUX and SUN beowulf systems (note dmt frames only exist on SUN plat-
form). GRASP_HOME = GH is the variable set in the SiteSpeci…c …le. The
format is directory followed by …les changed or added.

² GH

– setgrasp

– make_new_tail

– SiteSpeci…c

– libraries added: lsmp.o lsmp_con.o SigFlag.o

² GH/tree

– animateF_tree

– GRASP_tree

– optimalF_tree

– snapshotF_tree

² GH/src/inspiral/

– matched.c

² GH/src/utility

– frameinterface.c

² GH/src/examples/examples_frame/

– animateF.c

– snapshotF.c

– optimalF.c

– calibrateF.c similar modi…cations to above: note units will not be
correct

– Make…le.tail

² GH/src/examples/examples_inspiral

– optimal* series described above

– ASCII transfer function …les

– setgrasp

16

² GH/src/examples/examples_template_bank

– bin_for_hist.c and related scripts for making histograms

– histogram1-12.c

– histogram2-12-col.c

– histogram2-12-hist.c

– signal_test_multi_…les.c

– multi…lter* series described above and Make…le.tail

– ASCII transfer function …les

² GH/src/examples/examples_binary-search/

– The ”binary-search …les” list below are not changed in this release.
However, …les modi…ed in a similar way to the optimal*.c and mul-
ti…lter*.c series exist; some debugging and testing are not complete
so they have not been included. Please contact Dr. A. Rizzi at
arizzi@ligo.caltech.edu for more information. In any case, I recom-
mend the muliti…lter package for the PEM operations.

– binary_get_data.c

– binary_search.c

– binary_params.h

– environment-setup

² GH/parameters

– The functions listed below are used with make_grid to allow creation
of optimized template grid for accelerometer at South end at LLO.
They incorporate the seismic stack and the pendulum.

– detectors.dat.seismic

– noise_seismic_transFun.dat

² GH/src/examples/examples_template_bank

– make_grid.seismic.c —contains setup for creating grid appropriate
to seismic induced motion of test mass.

² GH/examples/examples_utility

– translate.c

17

1.7.1 Acknowledgments:

I would like to thank the many people who have contributed to the e¤ort
in modifying GRASP to give the functionality described in this chapter: in
particular, Mike Werda, Tom Evans, Dan Fabrycky, John Zweizig, Chethan
Parameswariah, Joel Tohline and Mario Diaz.

18

