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Location of the Center of Mass of the Inner Stage,  
Relative to the Horizontal Actuator-Flexure Plane,  

and the Table Top 
 

Brian Lantz, 
June 1, 2001 

The Short Answer 
If we want the uncontrolled dynamics to be well behaved for the inner stage, and the 

current set of spring/ mass parameters, the center of mass of the inner stage should be 
always stay within about 8 cm of the horizontal plane defined by the horizontal actuators 
and flex points. This being the case, I recommend 

1) Put the center of mass of the inner stage (excluding 600 kg payload) anywhere 
from the actuator-flexure plane to 8 cm below that point. 

2) Keep the actuator-flexure plane as close to the table top as possible, so that the 
mass of the payload is easier to deal with. 

3) Make sure it is possible to put some counter-weights well below the actuator-
flexure plane, so we can compensate for the payload if need be. 

 
The Model 

To consider the importance of the vertical location of the center of mass of the inner 
stage, relative to the plane of the horizontal actuators and lower flex points, I have made a 
simple model of the inner stage of the ETF system. The real stage has 3 cantilevers with 
flexures, the model has 3 idealized pure vertical springs, which mimic the vertical 
stiffness of the cantilevers, and a single horizontal spring, which mimics the pendulum 
and bending stiffness of the rod flexures. The three springs are arranged around the table 
on a 23� circle as shown in figure 1. 
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Figure 1: Top view of simplified model of the inner stage 

 If each of the three cantilever blades has a vertical stiffness of vk , then the rotational 
stiffness of the table, Κ , about the y axis will be determined by the vertical stiffness of 
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springs 1 and 2, and will be 2)2
3(2 rkv ⋅⋅=Κ . The stiffness about the x axis should be 

identical. Now we consider a side view of the table, and consider only two degrees of 
freedom: translation along x and rotation about y, denoted θ . 
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Figure 2. Side view of the simple model, showing the vertical offset of the actuator and 
the horizontal spring from the center of mass. 

The two vertical springs provide a rotational stiffness of Κ , the horizontal spring is 
located a distance 1z below the center of mass, and the horizontal force is applied a 
distance 2z below the center of mass. The stage has mass m and moment I. The stage can 
translate in x and rotate in θ. The displacement of the horizontal spring is then θ⋅+ 1zx . 

The equations of motion, are, therefore: 
Fzxkxm h ++−= )( 1θ&& , and 

211 )( FzzzxkI h +⋅+−Κ−= θθθ&&  
which is only interesting for two reasons. First, you can shove the mess into Matlab 

and run some calculations, which you will see in a moment. Second, you can examine the 
2x2 matrix which determines all the dynamics, which I call KoM in the Matlab code 
(short for k over m). We can rewrite the equations of motion as: 
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If we assume that the horizontal spring is near enough to the center of mass so that the 

rotational stiffness is dominated by Κ, i.e. 2
1zkh>>Κ , then the eigenvalues, λ,  are 

determined by 
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which tells us, unsurprisingly, that the two frequencies are m
kh  and I

Κ , and that 

the eigenvectors are essentially pure translation and pure rotation. However, as the 
horizontal spring begins to play a non-negligible role in the rotational stiffness, the modes 
become coupled. In the current model, 2

1zkh=Κ  when cm551 =z .  
 

The Characteristic Height 
Setting the rotational stiffness of the vertical springs equal to the rotational stiffness 

about the center of mass of the horizontal springs allows us to define a characteristic 
height, cz , as 2

ch zk=Κ , or 

h
c kz Κ= . 

Looking at the Matlab results, so long as 1z is less than about 8 cm, the coupling seems 
pretty small. At 30 cm, the coupling is large, and the dynamics are different. When the 
vertical offset reaches the characteristic height of 55 cm, the system gets really bad, as 
you can see in figures 3 and 4, below.  

Hence, for the current system, 1z should be less than 8 cm. In general, I believe that if 
we keep the offset to 1/7 of the characteristic height, we should get the same behavior. 
Hence, we may get some benefit by increasing the characteristic height, which we could 
do by: 

Stiffening the cantilever blades. 
Moving the cantilever attach points farther out. 
Softening the horizontal spring (lighten the table or lengthen the rods) 

We should be careful about lengthening the rods, since that will add move the table 
top up relative to the lower attach points. This is not a good move, since it moves the 
science payload farther from the table center, and thus the cg of the science load is harder 
to deal with. 

 
Results of the Simple Matlab Model 

This simple model was coded into Matlab, so one can evaluate the frequency response 
of the system. The model will be distributed along with this document, and instructions 
for playing with the model are included at the end of this document. The current 
parameters are: 

ETF =
kv: 85000
d: 0.5040

KK: 4.3183e+004
m: 850

pend_len: 0.0600
kh: 1.3883e+005
I: 212.5000

coyne
LIGO-T010170-00-Z



 

 4

In figures 3 and 4, below, 21 zz = . First, we look at the tilt response of the inner stage 
Again, all the inner stage servo loops are off � turning on the vertical loops will stiffen 
the system by factors of 10 � 100 at the frequency range from 0.1 to 10 Hz.  
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Figure 3. Tilt response of the inner stage. The horizontal spring and the actuator are 
aligned to one another, but are offset from the center of mass by various amounts. 

In figure 3, we see the tilt response of the system at an 8 cm offset is acceptable, but at 
20cm, the modes have obviously become coupled, and at 55 cm, the system looks pretty 
bad. We can also look at what happens to the horizontal seismometers as we increase the 
offset. Even though there is no offset between the horizontal actuator and the horizontal 
restoring force, the tilt motion is clearly evident in the horizontal sensors as the offset 
approached the 55 cm characteristic length. 
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Are We Fooling the Horizonal Seismometer?
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Solid line is the sensed motion, and the
Dashed line is the true horizontal motion 

 
Figure 4. Horizontal motion as sensed by the horizontal seismometer. 

Figure 4 shows the output of an idealized seismometer, the plot shows 

θ
ω 2
gxoutput +=  

The solid lines in figure 4 are the output as defined in the expression above. The 
dashed lines are the true horizontal motion, which are only plotted for offsets of 20 cm or 
more. At 20 cm, the tilt makes a negligible contribution to the seismometer output. With 
a 45 cm offset, the tilt begins to noticeably impact the seismometer output. When the 
offset equals the characteristic height, we see that the tilt makes a serious impact on the 
horizontal seismometer output. I don�t have a nice explanation for the low frequency 
slopes of these curves yet. How much does this impact the servos? The dynamics of the 
ideal case and the 8cm offset are very similar. The dynamics at a 20 cm offset are 
noticeably different, but are in no way destabilizing. Currently, the blend frequency of the 
position sensor to inertial sensor on the inner stage happens at 0.3 Hz. Without the 
vertical servos, the blending will still be stable with a 20 cm offset, may be stable with a 
45 cm offset, and will be hopeless with a 55 cm offset. 

 
Suspended Mass of the Multiple Pendulums 

So far, we have ignored the suspended mass of the payload. This could be as much as 
300 kg, and it could be suspended by as much as 940 mm above the table top. At 
frequencies below the pendulum modes (about ½ Hz), this inverted pendulum has a 
rotational stiffness, pΚ , of  
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hgmpp ⋅⋅−=Κ  
where pm is the suspended mass of the pendulum (about 300 kg) and h is the height 

above the center of mass (about 1 meter). Thus, 000,3−≈Κ p N-m. Below the natural 
frequencies of the pendulum, its mass also acts to stiffen the horizontal pendulum mode 
of the table by N/m000,49/ ≈= lgmk php . This moves the characteristic length down to 

cm46
4.9e41.39e5

3e34e3.4 =
+
−≈

+
Κ+Κ

=
hph

p
c kk
z  

This is an almost 20% change, and we will probably need to do some compensation 
with ballast masses to make up the difference. 

 
Conclusion 

If we can keep the center of mass of the inner stage table within about 8 cm of the 
plane defined by the horizontal actuators and flexure points, the dynamics of the 
translation and tip modes will not be strongly coupled by this offset. An ideal case would 
have the cg of the table without any of the 600kg payload be about 8 cm below the 
actuation plane, and have the table top be as close as possible to the actuation plane. This 
way we can put lots of mass on top of the table without needing to add ballast mass to a 
keel. 

 
P.S. Running the Matlab Program 

To run the program to generate the plots you see in this document you need three files: 
ETF_params.m A function which fills a structure with current values of the 

ETF design. 
ETF_sys.m A function which uses the data structure created above to 

create a dynamic 2-DOF model of the system. Input is 
force. Output 1 is x, output 2 is theta. 

ETF_cg.m This script calls the other functions with various parameters 
and plots up the results. This is the file to look at and to 
run. 
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