
Comparison between an Object-Oriented Model and a Fast

Fourier Transform Model for Gravitational Wave Interferometers

Erika D'Ambrosio

Ligo Laboratory, California Institute of Technology, Pasadena CA91125

(June 2nd, 2001)

The features of two completely di�erent numerical approaches will be

reviewed. Such features are closely linked with the speci�c kind of issue that

is to be analysed using one of the two approaches. The motivation for doing

a comparison is checking on the reliability of the two codes for simulating

realistic cases both the programs can deal with. This was essential to �nd out

the reasons for discrepancies and �x bugs.

After preliminary analyses, diagnostics and improvements brought to a

very good agreement between the models, within few percents even for se-

vere perturbations and such an agreement can be further reduced at CPU

time expenses whenever the speci�c problem to be addressed is worthwhile.

Runs have been made for testing both the carrier �eld which resonates in

the arms and in the recycling cavity, and its sidebands that only resonate

in the recycling cavity. The sidebands are particularly interesting for certain

perturbations are not compensated by some adjustments of the lengths of the

cavities and as a result they show di�erent behaviours. This asymmetry has

been detected in real measurements and numerical valid tools are essential to

develop models for explaining the optical e�ects.
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INTRODUCTION

In Sec.I the main di�erences between the modal model and the FFT model will be

reviewed in order to understand which perturbations can be managed by both the numerical

programs. For example in the FFT scheme the maps of imperfections are put on the top of

mirrors' spherical surfaces and those are kept �xed for the entire run, while in the modal

model both the �eld and mirror are distorted by their reciprocal interaction. This makes the

former the right tool for studying tolerance limits on the mirrors' imperfections requirements

and the latter for simulating non-linear e�ects related with the light power. For instance in

the modal model input �les a lot of informations are needed such as speci�c heat, thermal

conductivity, refractive index and its dependance on temperature and so on. Also there

are signi�cant di�erences in the de�nition of mirrors' losses and in general the starting

parameters must be very carefully evaluated with a view to use the two di�erent tools for

achieving the same goal. This is due to the completely di�erent representations of the

electric �eld; an array of TEM modes weighted by di�erent coeÆcients in the modal model

and a grid for the transverse section in the FFT code. In Sec.II the results obtained by

using the two simulation schemes are compared for situations they both can deal with. The

most important outcome of this validation is that the numerical procedure that has been

worked out for the modal model to generate the e�ects of geometrical cold perturbations,

has been also implemented as routine for evaluating thermal distortions when dynamical

tranformations are allowed. In other words even if a comparison between the di�erent tools

has been limited to static deformations, those tests have been useful to improve an algorithm

that works for simulating dynamical interactions as well.
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I. COMPARISON OF THE MODAL MODEL AND THE FFT MODEL

WORKING PRINCIPLES AND THE INFORMATIONS THEY NEED

The FFT-code and the Melody program are two simulation tools for gravitational wave

detectors like LIGO.

The aims they were written for are completely di�erent; the former was planned to

investigate requirements and tolerances for all the mirrors used inside the interferometer and

the latter is pretty focused on the perturbations caused by thermal e�ects on both mirrors

and beam. In the FFT-code measured or simulated maps may be introduced instead of ideal

spherical mirrors, so that realistic or hypotetical interesting situations may be studied when

analytical calculations are not easy to pursue. On the contrary in the Melody simulation

the program is in charge of modifying the shape of the mirrors that are not �xed by the

user.

There are many situations though that can be approached with both the programs.

Before illustrating some simple cases I am giving an outline of the parameters that are

needed by the two programs to start. Many of them are straight and are shown in Table I.

Others are typical of only one of them such as the spot size and radius of curvature of the

beam on the ITM on-line mirror in the FFT-code. The input �le for the FFT-code is one,

while there are several �les to give the system's constants if Melody is run. One of those

�les regards the informations on materials such as conductivity, thermal expansion and so

on and three �les contain the speci�cs of the two arm cavities and the central part.

Also the way the two codes follow is rather di�erent. For the FFT the paraxial approx-

imation is used in order to calculate the propagation between mirrors, as a matrix operator

in the spatial frequency domain. The lengths are optimized in order to achieve a station-

ary locked con�guration and the power stored inside the arms and the recycling cavity is

evaluated. The total power may be analysed for checking purposes using the main modes

decomposition TEM00, TEM10 and TEM01 in order to realize for example possible asym-

metries due to mirrors' tilt that can be simulated by the FFT-code. The Melody program
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starts with a �xed number of modes that propagate back and forth between mirrors and the

thermal e�ects are perturbatively evaluated at every iteration until stationarity is achieved.

Since those e�ects depend on the laser power, the energy level is increased at each step

of a series starting from a low value to the one under investigation.

In the output �les the power for every mode is displayed both for carrier and sidebands.

The main features are recorded for every power cycle level and since the procedure is per-

turbative, the �nal con�guration for each step represents the starting point for the next

one. Some subtle di�erences in the terminology are worth noting; �rst the recycling cavity

power is measured at the symmetric beamsplitter port while the FFT-code picks up the

values both at the recycling mirror re
ective side and at the bright port of the beamsplitter.

Moreover the gain values for the FFT-code are just the power values normalized by the

laser power which only represents a scale factor. On the contrary for the Melody code the

power is a real variable that a�ects the physical behaviour of the system and the quantity

named enhancement refers to the TEM00 mode only, normalized by the laser power. In

the FFT-code the carrier and the sidebands are simulated by two di�erent consecutive runs

so that the cavities' lengths are optimized for the carrier and the Schnupp asymmetry is

optimized for the sidebands. The power is shared by carrier and sidebands in Melody which

treats the �eld as a whole.

The main informations are roughly collected in Tab.II. There are many output �les for

both the codes that can be looked at if some speci�c problem is to be addressed.

For example, the maps of the beam's cross-section obtained for some interesting pick-up

points inside the interferometer may be analysed in some details using dedicated utilities

for the FFT-code output grids. Also there are several �les showing partial results that are

especially useful for diagnostic purposes. The Melody output �les include informations on

the thermal distortion of the beam.

Indeed the �nal beam has a di�erent composition in terms of a TEM basis than it initially

had before the perturbative iterations. The mirrors' displacements and the �nal thermal

focal lengths are also evaluated. Since all those thermal deformations are not allowed by the
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FFT-code, the thermal perturbations must be disabled in the Melody program in order to

make a comparison between the �nal values of the most important physical quantities. One

simple case to start with may be a completely symmetric con�guration with ideal spherical

mirrors. Since this problem can be solved analytically too, the numerical results are supposed

to be the same and equal to the mathematical predictions for both the programs.

II. SIMULATIONS OF SIMPLE IDEAL CASES AND COMPLEX REALISTIC

PERTURBATIONS BOTH FOR THE CARRIER FIELD AND ITS SIDEBANDS

A. Variations of the re
ectivity parameters and the cavities lengths

The �rst test has been the ideal interferometer, where the radius of curvature of the

circulating �eld and the one of every mirror it impinges on match. This step was necessary

in order to check the right informations have been provided in the input �les.

The agreement with analytical calculations is within 0:06% for the FFT-code and 0:16%

for Melody. Those values were obtained for 1W input power but if a 0:1W level is used the

Melody results and the evaluations agree within 0:01% since the power is not simply a scale

factor as it is in the FFT-code.

The next step has been to switch o� one of the two arms. As a result the �eld promptly

re
ected back from the anti-re
ective side of the mirror has a sign opposite to the one it

would have got if it had gone into the arm through that mirror and been re
ected. Both

the codes implicitly assume resonant conditions in the two arms and cope with that change

in sign by adding � to the phase.

This results from adjusting the position of the mirror by �

4
. It is interesting to note

that if such adjustment is not included in mathematical calculations, the two ports of the

beamsplitter are exactly swapped if compared with analytical predictions. This is a general

feature for a Fabry-Perot cavity that is the re
ected �eld's amplitude depends on how

strongly it is rejected in anti-resonant conditions gaining a factor �1, or how tightly it
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is locked in resonant conditions gaining a factor +1, because of the combination of the

re
ectivities of the end mirrors. This is important for example when the laser is modulated,

generating sidebands which are anti-resonating in the arms of the interferometer. Such an

e�ect is achieved with a macroscopic constraint on the length of the cavities:

2��mod

c
2L = (2k + 1)� !

2L�mod

c
= k +

1

2
= 639:500

where L is the length of the arm, �mod is the modulation frequency and k an integer value,

2��mod

c
2Lr:c: = (2h+ 1)� !

2Lr:c:�mod

c
= h+

1

2
= 1:50000

with Lr:c: the recycling cavity length and h any integer. Because of the di�erent coupling

with the arm for the carrier and the sidebands, the resonant conditions in the recycling

cavity are di�erent in the two cases. Respectively

2��

c
2Lr:c: = 2n�

2�(� � �mod)

c
2Lr:c: = (2m+ 1)�

where � is the carrier frequency and n and m two any integers. When the arm is switched

o�

2��

c
2Lr:c: = (2n+ 1)�

becomes the resonant condition for the carrier inside the recycling cavity. The macroscopic

constraint on the length of that cavity causes the sidebands to be anti-resonant. The only

way to make the sidebands resonate inside the recycling cavity when the arms are switched

o� is to o�set its length in order to have

2��

c
2Lr:c: = 2n� :

This trick works and it's useful to model the situation of misaligned external mirrors when

the light going into the arms is completely lost. For experimental reasons related to the

procedure for locking the interferometer, this is a very interesting case to model.

Next the e�ects of geometrical perturbations of the mirrors are addressed and discussed;

the case of a smaller mirror and a decreased radius of curvature are simulated using the two

approaches. After many tests and diagnostic studies the �nal results are shown.
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B. Acting upon the diameter of one mirror and the radius of curvature

The numerical results have been compared with mathematical predictions for the cases

described in Tab.III and Tab.V. Analytical approaches are not pursuable for the tests we

are describing next. In Fig.1 the power stored in one arm is reported versus the diameter

of the external mirror.

This test has been very useful because a major problem was a�ecting the modal model;

the pseudolocker routine was pursuing a too good optimization cancelling the e�ects of the

perturbation. Even turning that option o� for perturbations up to 2cm the curve was 
at.

Moreover the asymmetry between the two arms due to this perturbation was not sensed

at the dark port of the beamsplitter whose exit power was staying �xed at the low value

corresponding to the unperturbed con�guration. The kind of tests which have been made

along are for example the check of the lengths chosen by the numerical locking procedure to

look for the location of the power peaks around those values. Because of the high Finesse

of the Fabry-Perot cavities the introduced o�sets should be of few nanometers. In Fig.2

an example of such investigations is shown. When the codes are run the distances between

mirrors are chosen in such a way that the round-trip phase of the carrier �eld is close to

zero. Any slight perturbation can modify those distances from the ideal values de�ned

in the equations above. Since the macroscopic lengths have beed designed in order to

make the sidebands resonate inside the recycling cavity and anti-resonate in the arms, small

adjustments of the initial values can easily bring the system out of such conditions. Both

the simulation programs allow for the modulation frequency to be optimized in such a way

that those changes are compensated. The idea is to maximize the recycling cavity gain, that

corresponds to have the sideband �elds not resonating at all in the arm cavities.

Indeed as they approach the exact anti-resonant condition, larger is the e�ect of rejection

toward the recycling cavity increasing the power stored there. The curve shown in Fig.3

assumes exact anti-resonance in the arms. It is obtained using the parameters corresponding

to the results of Tab.IV.
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Because of the high re
ectivity of the external mirror of the arms, the result of exact anti-

resonance for the sidebands is equivalent to complete re
ection back into the recycling cavity.

Another feature characterizing the sidebands is their sensitivity to macroscopic displacement

of the beamsplitter, necessary in real life for picking up the sideband signal at the asymmetric

port and detect its quadrature with the carrier �eld according to a demodulation scheme.

Since the phase variation induced by a gravitational wave is very small, this kind of detection

allows a measurement in the �rst order of magnitude for the carrier �eld exiting the dark

port. In Fig.4 the D.C. power measured at the dark port is shown as a function of the

displacement of the beamsplitter. There are two symmetric peaks whose height is increased

when the recycling cavity is \hermetic" for the sidebands.

If the recycling cavity doesn't behave as it were isolated, the peaks are moved toward

larger values of the beamsplitter displacement and become broadened. The presence of

some perturbations severely disrupts this simple picture. Comparing the results obtained

by the modal model and the FFT method, when the modulation of the laser �eld is allowed,

requires big control over a lot of phenomena and parameter changes. In order to keep things

as simple as possible the modulation frequency has been kept �xed and only microscopic

adjustments in the position of the beamsplitter were permitted. In Fig.5 the power stored

in the recycling cavity is shown for smaller values of the radius of curvature of one internal

mirror than \ideal".

This test is demanding since the recycling cavity becomes unstable. The carrier �eld

results for the two codes show a very close agreement and decreasing the array size in

the modal model only a�ects the sidebands data. Indeed using few modes gives a large

discrepancy especially in the critical area of instability.

In order to disentangle the two problems of an imbalance between the sidebands and the

overall gain largely reduced, the same perturbation has been applied to both the internal

mirrors.

Both the two simulating codes have given the same data for the upper and lower side-

bands. No optimization of the modulation frequency was allowed for this set of run nor
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macroscopic variations of the beamplitter position. When the mirrors are largely perturbed

the agreement between the data obtained by the di�erent approaches is not satisfactory.
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FIG. 1. The power built up in the Fabry-Perot cavity when the diameter of the external mirror

is shortened. The results obtained by the two approaches agree within few percent.
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FIG. 2. The power gain is shown versus an o�set taken around the value established at the end

of the iterative procedure that looks for the resonance of the carrier �eld.
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FIG. 3. The amount of sidebands' power circulating inside the recycling cavity depends on the

leakage toward the arms and through the beamplitter dark port. The former factor a�ects the

height of the central peak along the y-axis while the beamplitter's position changes the amount of

light which is actually recycled; it clearly diminishes out of the symmetric position along the x-axis
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FIG. 4. The D.C. power at the dark port of the beamsplitter is shown as a function of the di�er-

ential distance between that and the two long cavities. The numerical results are in agreement with

this theoretical prediction within 0:1%. The maximum of this curve corresponds to an asymmetry

of 12:18cm and it may vary according to the e�ective transmittivities of mirrors at the ends of the

recycling cavity.
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FIG. 5. The intensity of the light going through the symmetric port of the beamsplitter and

recycled is shown for di�erent radii of curvature of one internal mirror. The agreement is not as

good when the size of the array in the modal model is smaller.
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FIG. 6. The deformation of two mirrors is applied symmetrically and it causes a reduction in

the overall gain. No imbalance is appreciated between the intensities of the sidebands
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Input parameter FFT input �le Melody input �les

Mirrors' shape diameter, r.o.c., thick. diameter, r.o.c., height

Optics constants Rref , RA:R:, T , L Rref , T , Lref , LA:R:, Lbulk

Laser carrier and modul. freq. carrier and modul. freq.

Beam's geometry spot size and r.o.c. Max m+ n for TEMmn

Materials refractive index all the properties

TABLE I. The most important physical parameters driving the simulations

Basic informations FFT summary �le Melody summary �le

Lengths optimized values optimized values

Beam amplitude adapted to mirrors distorted as mirrors

Round-trip phases arms, rec. cav. arms, rec. cav.

Final Power b.s. ports, arms, re
., RM b.s. ports, arms, re
.

Decomposition TEM00, TEM01, TEM10 TEMmn m+ n < N

TABLE II. Fundamental results collected in the summary output text �les

R.M. B.S. ITMon�line ETMon�line ITMoff�line ETMoff�line

r2 0:98502 0.499975 0:97 0:999935 0:97 0:999935

t2 0:01493 0.499975 0:02995 0:000015 0:02995 0:000015

L 0:00005 0:00005 0:00005 0:00005 0:00005 0:00005

TABLE III. The input parameters for re
ectivity, transmittance and loss
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Gains values FFT-code Melody Analytical

Power by rec. mirror 65:6943 65:7331

On-line arm cav. 4288:09 4283:92 4290:62

O�-line arm cav. 4288:09 4283:92 4290:62

B.S. bright port 64:6979 64:6826 64:7365

TABLE IV. Comparison of the numerical results and the mathematical calculations

R.M. B.S. ITMon�line ETMon�line ITMoff�line ETMoff�line

r
2 0:00005 0.5 0:97 0:999935 0:0001 0:00005

t
2 0:9999 0.5 0:02995 0:000015 0:99985 0:000015

L 0:00005 0 0:00005 0:00005 0:00005 0:999935

TABLE V. The parameters that de�ne an asymmetric design of the interferometer

Gains values FFT-code Melody Analytical

Power by rec. mirror 1:00695 1:00693

On-line arm cav. 65:722 65:729 65:729

O�-line arm cav. 0:5035 0:5035 0:5035

B.S. bright port 0:2493 0:2494 0:2465

B.S. dark port 0:2464 0:2465 0:2494

TABLE VI. Gains for an asymmetric interferometer with only one arm on resonance
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