
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T020011-00-D ADVANCED LIGO 14 Jan 2003

Suspension model comparisons

Mark Barton, Calum Torrie

Distribution of this document:

SWG

This is an internal working note
of the LIGO Project.

California Institute of Technology

LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW17-161

175 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 1970

Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940
Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

Advanced LIGO LIGO-T020011-00-D

 2

1 Introduction

1.1 Purpose and Scope

This document summarizes results of comparisons made between Calum Torrie’s Matlab model of
the GEO triple suspension as well as the version for a quad pendulum by him and Ken Strain, and
the corresponding Mathematica models by Mark Barton.

It also summarizes some comparisons made between the Mathematica model and analytic
expressions for the thermal noise.

1.2 Version History

1/14/2002 – Release 00 draft

1/23/02 – Release 00 draft 2. Extra data from triple.

5/8/02 – Release 00 draft 3.

1/13/03 – Release 00

2 Matlab vs Mathematica Model Comparison

2.1 Description of Models

2.1.1 The Matlab models

The basis of the Matlab model for the triple pendulum is described in Calum Torrie’s thesis. It has
three rigid bodies connected by massless wires with longitudinal elasticity. Each of the rigid bodies
has the usual six DOFs, but a symmetric system is assumed so that many cross-couplings vanish
and the problem decomposes into independent vertical, longitudinal-pitch, transverse-roll, and yaw
subsystems, with only three or six DOFs each. The blade springs are not modeled independently
but are allowed for by adding their compliance to that of the associated wires. A version for a quad
pendulum was then produced by generalizing the matrix elements appropriately.

2.1.2 The Mathematica models

The Mathematica models will be described more fully in a separate document. They are
implemented in the symbolic algebra program Mathematica. By exploiting the symbolic algebra
capability to do the hard work of deriving the various couplings it is able to be somewhat more
ambitious and only a subset of it can be usefully compared to the Matlab. However where it does
overlap it has been made as similar as possible, e.g., with identical names for analogous
parameters.

The model contains three or four rigid body elements with six DOFs each for the pendulum
masses, as in the Matlab. All the names and values of dimensions, masses, moments of inertia are
the same as in the Matlab. Similarly, the model contains wires with the same names and values for
lengths, attachment points, longitudinal elasticities etc as in the Matlab. (There is some subtlety
about what “the same length” means – see below.)

Advanced LIGO LIGO-T020011-00-D

 3

In addition the model contains rigid body elements, also with six DOFs, representing the tips of the
blade springs. As explained in more detail below, these new DOFs can be ignored to a considerable
extent because the new modes that come with them have frequencies in a completely different
range (much higher) than the 18 or 24 low-frequency modes of the three or four pendulum masses
that the Matlab calculates.

The model can also include the bending elasticity of the wire. However because this is a minor
correction, takes significant computing time, and does not correspond to anything in the Matlab, it
has been made optional and was not turned on for any of the Matlab comparison tests. This
amounts to taking the results after “Stage 0” of the Mathematica code (see comments therein).

2.2 Differences Requiring Consideration

2.2.1 Structure

The biggest difference between the two models is structural. Both ultimately arrive at a matrix of
couplings between various DOFs and take the eigenvalues and eigenvectors of that matrix to
determine the mode shapes and frequencies. However in the Matlab, the matrix elements were
derived manually and entered in symbolic form, whereas in the Mathematica the symbolic algebra
capability is used to derive them on the fly. For efficiency reasons it is desirable to do key steps
numerically, so that formulae that can be directly compared to the Matlab are not generated.

Also, while the default version of the Mathematica model is symmetric, it was designed with a
view to including asymmetries later. Thus it ignores any symmetry in the model specification and
always solves the full 10x6=60 DOF problem (7x6=42 for the triple).

So unfortunately the only output that can easily be compared is the numeric eigenvalues and
eigenvectors.

2.2.2 Wire numbers

In the Mathematica model, each of the wires is specified individually and the fact that there are
only two rather than four at the top level of the quad is explicit. In the Matlab, the derivation of the
matrix elements assumes four wires at each level, and the case of two wires is allowed for by
making the elasticity for the top stage half that of the physical wires and putting the separation in
the x direction to zero.

2.2.3 Wire lengths

In the real physical system, each wire starts with some unstretched length and then comes to a
slightly greater stretched length when put under load. The details of this are allowed for in the
derivation of the Matlab matrix elements, and the final formulae are all in terms of stretched
lengths. (This is convenient in the design phase where one is principally interested in the final
assembled state of the system.) By contrast, the on-the-fly calculation procedure used in the
Mathematica naturally takes unstretched lengths as input and derives the equilibrium state of the
system from them by minimizing the total potential energy. To make the models more comparable,
a facility was added to the Mathematica whereby stretched lengths can be given as input and the
appropriate unstretched lengths are derived. (This is impractically difficult for arbitrary
asymmetrical models, so symmetry was assumed. This is of course adequate for comparisons with

Advanced LIGO LIGO-T020011-00-D

 4

the Matlab, but it needs to be kept in mind because it is the only place the Mathematica makes such
assumptions. Moreover it is convenient enough that users will want to leave it switched on for
routine design work. Thus they need to remember to switch it off if/when they come to explore the
effect of asymmetries.)

2.2.4 Provision for blades

The Mathematica models the blades explicitly and in some detail. By contrast, the Matlab matrix
elements are derived for a system without blades and the blades are allowed for by simply adding
their compliances to those of the associated wires. This is a fairly rough-and-ready approximation
that was resorted to because of the mounting complexity of the algebra, but as it will be seen, it
turns out to be adequate for many purposes. However it makes detailed comparison between the
two models rather difficult.

Two different approaches were used on the Mathematica side to restore some degree of
comparability:

(i) Disable the blades entirely in the Mathematica and move their compliance into the wires
as in the Matlab. This has the advantage that the same physical system (a pure
compound pendulum with unusually stretchable wires) is being modeled, but the
disadvantage that it doesn’t exercise the provision for blades in the Mathematica at all.

(ii) Leave the blades in but tweak them to make adding the compliances as valid as
possible. (The issue implicit here is that compliances only add linearly (as assumed) if
the corresponding springs act along the same line. This is not the case in the actual
physical system – the working direction of the blade springs is vertical whereas most of
the wires that attach to blade springs are significantly diagonal.)

2.2.5 Blade parameters

The only point of correspondence between the blades in the two models is the compliance in the
working direction, which of course has been made the same. The Mathematica model has a large
number of additional blade parameters, including blade-tip masses and moments of inertia and the
transverse and torsional compliances. Currently the values of these are mostly guesstimates that
will need refinement based on experimental data. However the only modes that are sensitive to
these values are new, high-frequency modes. The guesstimates for the transverse and torsional
stiffnesses are already very high, several orders of magnitude greater than those in the working
direction, so that the fundamental 24 modes of the pendulum masses that the Matlab calculates are
pretty much independent of them. To further increase comparability the blade-tip masses were set
very small (around 0.01 g).

2.2.6 Finding comparable definitions of wire elasticities

The Matlab and the Mathematica both used symbols kwn, kw1, kw2 and kw3 to represent wire
elasticities (without any corrections from blades). However the Mathematica defined them strictly
on a per-wire basis, whereas the Matlab defined them per-side. This introduced a factor of 2
difference between the top level in each model and the lower level(s). Since both these approaches
were convenient in their respective contexts, no effort was made to harmonize the definitions.
Instead, compensating factors were inserted in expressions to be compared.

Advanced LIGO LIGO-T020011-00-D

 5

2.2.7 Number of wires per blade

In the triple system being modelled, there is one blade for each wire in all cases, and the Matlab
allows for this by adding each blade compliance to the associated wire compliance throughout.
This is easy to emulate in the Mathema tica by immobilizing the blades and making the same
correction to the wire compliances. In the quad system, at the second and third levels from the top,
there are two wires on each blade. The Matlab allows for this by applying one of two different
fudges depending on the sub-problem. In the vertical, transverse/roll and yaw sub-problems, it
makes the obvious generalization and adds half of the compliance of each two-wire blade to each
of the associated wires. However for the longitudinal/pitch modes this gives unrealistically low
pitch frequencies, because differential stretching of the two wires on each blade is significant. For
this case it is better to leave the blade compliances out entirely. This means that there is no single
Mathematica model that can match all the Matlab mode frequencies for the quad. Therefore for
comparison purposes two separate models were created, one adding the blade compliances in
throughout, and the other leaving them out entirely.

2.3 Procedure

2.3.1 Versions

The versions of the Mathema tica models used were 2.3 for the quad and v1.2 for the triple.

2.3.2 Identifying the correct Matlab matrix elements

To minimize the possibility of manual error, the “Matlab” values for comparison were actually
generated within Mathematica, by cutting and pasting the Matlab formulae for the matrix elements
into a Mathematica notebook and applying the same parameter substitutions as used internally by
the Mathematica model. For the triple model, the correct matrix elements are given in appendix C2
of Calum Torrie’s thesis. Unfortunately at some point a number of typos found their way into some
versions of the model. These were found by Wen Ho and many versions were corrected but there
are still uncorrected versions (even some marked as corrected!) in circulation. Specifically,

in k11, 2*k2*s2^2*c2/I1y should be 2*k2*s2^2*c2^2/I1y

in j13, m23*n2*si2/I1x/c2*(n3*si2/l2-d2*c2/l2) should be
m23*g*n2*si2/I1x/c2*(n3*si2/l2-d2*c2/l2),

in j41, m23*g*d1/m2/l2 should be m23*g*c2*d1/m2/l2 and +m23*g*si2*n2/m2/l2/c2 should be
+m23*g*si2*n2/m2/l2,

in h23, h3/m3 should be h3/m2.

Similarly, the quad model matrix elements in versions in circulation when this study was begun
contained numerous errors. Fortunately most of them had no effect on the mode frequencies for
typical parameters because they involve swaps of quantities with the same numeric values, and the
remainder had only small effects (e.g., ˜ 1% for k34). However for the purposes of this study, all
the elements were rederived by generalizing the (corrected) triple matrix elements using
Mathematica.

Advanced LIGO LIGO-T020011-00-D

 6

2.3.3 Validation of input numeric values

The numeric parameters of the physical pendulum in the Matlab model command file are localized
in a single file (quadopt.m, triple.m, or jbr.m depending in the model) and corresponds to the
substitution list defaultvalues (and the numeric version constval derived from it) in the
Mathematica. The Matlab code was traced and the values of key variables were compared to the
values in constval to ensure that all input values had been correctly entered, and all derived values
had been correctly computed.

2.3.4 Disabling additional corrections in the Matlab

In the Matlab quad model, there was provision for modeling ribbons by using adjusted values of
the parameters d3 and d4 (the vertical distances of the fiber attachment points below and above the
centers of mass of the intermediate mass and optic respectively) when calculating the transverse-
roll modes. (Ribbons are stiff in the transverse direction and so have a different effective flexure
point.) This was disabled.

2.4 Quad Model Results

2.4.1 Blades switched off, compliance added to that of wires throughout

This test implements in Mathematica a system with immobile blades and extra-compliant wires,
which is equivalent to the system implied by the provision for blades used in the Matlab for the
transverse/roll, vertical and yaw subproblems. The Mathematica v2.2 quad model was used as a
basis and the compliance of the blades was transferred to the wires by applying the following set of
overrides (“lockedblades”) to the values in defaultvalues.

overrides = {
 mbeu -> scale[10^(-5)],
 mbei -> scale[10^(-5)],
 mbel -> scale[10^(-5)],
 kwnusual -> (Yn*An)/ln,
 kw1usual -> (Y1*A1)/l1,
 kw2usual -> (Y2*A2)/l2,
 kw3usual -> (Y3*A3)/l3,
 kbuzusual -> mnb*(2*N[Pi]*ufcn)^2,
 kbizusual -> m1b*(2*N[Pi]*ufc1)^2,
 kblzusual -> m2b*(2*N[Pi]*ufc2)^2,
 kwn -> recipadd[kwnusual, kbuzusual],
 kw1 -> recipadd[kw1usual, kbizusual/2],
 kw2 -> recipadd[kw2usual, kblzusual/2],
 kw3 -> kw3usual,
 kbuz -> 10^5*kbuzusual,
 kbiz -> 10^5*kbizusual,
 kblz -> 10^5*kblzusual,
 kbuy -> 10^5*kbuzusual,
 kbiy -> 10^5*kbizusual,
 kbly -> 10^5*kblzusual,
 kbux -> 10^5*kbuzusual,
 kbix -> 10^5*kbizusual,

Advanced LIGO LIGO-T020011-00-D

 7

 kblx -> 10^5*kblzusual
};

The usual expressions for the wire elasticities are assigned to symbols kwnusual, …, kw3usual to
have them available without letting them feed into the rest of the calculation. Similarly the usual
expression for the blade elasticities are assigned to kbuzusual, etc. The values assigned to kwn,…,
kw3 include the blade elasticities and the values assigned to kbuz etc are set very large (i.e., stiff).
The blade tip masses mbeu, mbei and mbel are set very small.

The “Matlab” values for all four subproblems, longitudinal/pitch, transverse/roll, vertical and yaw,
were obtained by applying the following substitutions for the wire elasticities to the Matlab
expressions for the matrix elements and taking the eigenvalues of the resulting matrices:

kkkLB = {
 kn -> recipadd[kwnusual,kbuzusual],
 k1 -> recipadd[2 kw1usual, kbizusual],
 k2 -> recipadd[2 kw2usual, kblzusual],
 k3 -> 2 kw3usual
};

This exactly replicates the algorithm and the results of the real Matlab code for the transverse/roll,
vertical and yaw (but not longitudinal/pitch) subproblems, and it has been checked that the two
calculations agree. Note that there is no factor 2 in front of kwnusual, reflecting the fact that there
is only one wire per side at the top level. The “Matlab” values for longitudinal/pitch were also
calculated with kkkLB and should agree with the Mathematica values from this test but not the real
Matlab code.

The results for this test are given in Table 1.

Longitudinal/Pitch Transverse/Roll Vertical Yaw

Matlab Math. Matlab Math. Matlab Math. Matlab Math.

3.0320 3.0320 22.5664 22.5664 16.6701 16.6701 4.1881 4.1881

1.9881 1.9881 4.8823 4.8830 3.6905 3.6905 2.8446 2.8446

1.5261 1.5262 3.2820 3.2938 2.1864 2.1864 1.5485 1.5485

1.0256 1.0257 2.8710 2.8562 0.6191 0.6192 0.6711 0.6711

0.8535 0.8532 2.0045 2.0050

0.7699 0.7697 1.0390 1.0368

0.4374 0.4373 0.8387 0.8403

0.4082 0.4083 0.4343 0.4333

Table 1: Mathematica and Matlab results for quad pendulum with blade compliance added
to that of wires throughout.

Advanced LIGO LIGO-T020011-00-D

 8

2.4.2 Blades switched off entirely

This test implements in Mathematica a physical system with immobile blades but realistic wires.
This is the physical system implied by the calculation used for the longitudinal/pitch subproblem in
the Matlab. (The reason for not adding in the compliance of the blades is that it seriously distorts
the mode shapes and frequencies for modes which involve relative pitch motion at the levels where
there is a single blade and two wires on each side, i.e, between the top and second masses and
between the second and intermediate masses. In other modes involving stretching of the wires, the
blade and the two wires in each group move in phase as a single compound spring, but for the pitch
modes, the wires move in antiphase, with the spring, which is very stiff in pitch, essentially
immobile.) In the Mathematica v2.2 quad model, the compliance of the blades was transferred to
the wires by applying the following set of overrides (“lockedbladesLP”) to the values in
defaultvalues:

overrides = {
 mbeu -> scale[10^(-5)],
 mbei -> scale[10^(-5)],
 mbel -> scale[10^(-5)],
 kbuzusual -> mnb*(2*N[Pi]*ufcn)^2,
 kbizusual -> m1b*(2*N[Pi]*ufc1)^2,
 kblzusual -> m2b*(2*N[Pi]*ufc2)^2,
 kbuz -> 10^5*kbuzusual,
 kbiz -> 10^5*kbizusual,
 kblz -> 10^5*kblzusual,
 kbuy -> 10^5*kbuzusual,
 kbiy -> 10^5*kbizusual,
 kbly -> 10^5*kblzusual,
 kbux -> 10^5*kbuzusual,
 kbix -> 10^5*kbizusual,
 kblx -> 10^5*kblzusual
};

The “Matlab” values in the table were obtained by applying the following substitutions for the wire
elasticities to the Matlab expressions for the matrix elements and taking the eigenvalues of the
resulting matrices:

kkkLBLP = {
 kn -> kwn,
 k1 -> 2 kw1,
 k2 -> 2 kw2,
 k3 -> 2 kw3
};

Note that there is no factor 2 in front of kwnusual, reflecting the fact that there is only one wire per
side at the top level. The “Matlab” values for longitudinal/pitch should and do agree with the real
Matlab code. The others should agree with the Mathematica results in this test but not the output of
the real Matlab code.

Advanced LIGO LIGO-T020011-00-D

 9

The results for this test are given in Table 2.

Longitudinal/Pitch Transverse/Roll Vertical Yaw

Matlab Math. Matlab Math. Matlab Math. Matlab Math.

3.0320 3.0321 64.1518 64.1000 48.3877 48.3493 4.2091 4.2091

2.2740 2.2724 51.4532 51.4140 31.8795 31.8562 2.8536 2.8536

1.9860 1.9860 18.0753 18.0743 14.8956 14.8913 1.5487 1.5488

1.6363 1.6359 6.4724 6.4684 6.3740 6.3705 0.6725 0.6724

1.1114 1.1109 2.9259 2.9147

1.0230 1.0232 1.5540 1.5509

0.4916 0.4916 1.0042 1.0098

0.4238 0.4239 0.5178 0.5177

Table 2: Mathematica and Matlab results for quad pendulum with blade compliance added
to that of wires throughout.

2.4.3 Blades not disabled but rotated into the direction of the wires

This test implements in Mathematica a system with blades enabled but with their working direction
rotated so as to be in line with the associated wires. This is the closest system with interesting
correspondences to the Matlab that doesn’t involve disabling the blades in the Mathematica. It was
implemented in the Mathematica with the following overrides (“diagblades”):

overrides = {
 mbeu -> scale[10^(-5)],
 mbei -> scale[10^(-5)],
 mbel -> scale[10^(-5)],
 vertblades -> False
};

As before, the blade tip masses are set very small. Also the vertblades option is set to False, which
engages a whole lot of stuff to make the springs line up with the wires. The results are given in
Table 3. The “Matlab” values are the final output ones, being a hybrid of the previous two cases,
with blade compliance added to wires for all modes except longitudinal/pitch. The agreement in
vertical is perfect and all the other modes are within a few percent, which is as good as can be
expected given that the systems being modeled are only approximately the same.

Advanced LIGO LIGO-T020011-00-D

 10

Longitudinal/Pitch Transverse/Roll Vertical Yaw

Matlab Math. Matlab Math. Matlab Math. Matlab Math.

3.0320 3.0231 22.5664 22.5664 16.6701 16.6701 4.1881 4.2016

2.2740 2.2048 4.8823 4.8829 3.6905 3.6905 2.8446 2.8497

1.9860 1.9818 3.2820 3.2936 2.1864 2.1864 1.5485 1.5481

1.6363 1.5969 2.8710 2.8562 0.6191 0.6191 0.6711 0.6719

1.1114 1.0229 2.0045 2.0050

1.0230 0.9007 1.0390 1.0368

0.4916 0.4388 0.8387 0.8402

0.4238 0.4096 0.4343 0.4331

Table 3: Mathematica and Matlab results for the quad pendulum with blades rotated into the
direction of the wires.

2.5 Triple model results

In the case of the triple model, the same provision for the blades is used for all four subproblems.
(This is because, in the triple, at the levels where there are four wires, there are also four springs,
one per wire, so that stretch of a wire is always accompanied by downward motion of the
associated spring, even in pitch modes.) This means that only one test case (“lockedblades”) is
required:

overrides = {
 mbeu -> scale[10^(-4)],
 mbel -> scale[10^(-4)],
 kw1usual -> (Y1*A1)/l1,
 kw2usual -> (Y2*A2)/l2,
 kw3usual -> (Y3*A3)/l3,
 kbuzusual -> (m1/2)*(2*N[Pi]*ufc1)^2,
 kblzusual -> (m2/4)*(2*N[Pi]*ufc2)^2,
 kw1 -> recipadd[kw1usual, kbuzusual],
 kw2 -> recipadd[kw2usual, kblzusual],
 kw3 -> kw3usual,
 kbuz -> 10^4*kbuzusual,
 kblz -> 10^4*kblzusual,
 kbuy -> 10^4*kbuzusual,
 kbly -> 10^4*kblzusual,
 kbux -> 10^4*kbuzusual,
 kblx -> 10^4*kblzusual
};

The results for this test are given in Table 4.

Longitudinal/Pitch Transverse/Roll Vertical Yaw

Advanced LIGO LIGO-T020011-00-D

 11

Matlab Math. Matlab Math. Matlab Math. Matlab Math.

3.5815 3.5814 52.3948 52.3948 36.5561 36.5561 3.0714 3.0713

2.6656 2.6655 3.3391 3.3390 3.8739 3.8738 1.5583 1.5583

2.4043 2.4040 2.4797 2.4796 0.9542 0.9541 0.3879 0.3879

1.3550 1.3550 1.3553 1.3553

0.6140 0.6140 0.8461 0.8459

0.5118 0.5115 0.6054 0.6054

Table 4: Mathematica and Matlab results for wire-only triple pendulum with blade
compliance added to that of wires.

3 Thermal noise comparisons

3.1 Procedure

To test the provision for thermal noise in the Mathematica, the thermal noise was calculated for a
quad system and compared to analytical results. Because of the complexity of the quad, it is not
practical to compute the total thermal noise in closed form. Instead, a “naïve” prediction based on
only the last stage was used. Because thermal noise generated in higher stages is filtered by the
lower stages, the full thermal noise should asymptote to the naïve prediction at frequencies above
the highest mode.

3.1.1 Parameters of the simulated pendulum

The quad system used was similar to the MIT quad prototype except with fused silica fibres instead
of steel wires in the last stage. The thickness of the fibres was chosen to minimize thermoelastic
damping according to Phil WIllem's prescription: strain = alpha/beta.The results were generated
using v2.2 of the quad model with the following overrides:

overrides = {
 Y3->ifo[Suspension,Silica,Ey],
 r3->Sqrt[m3 g l3 betasilica/(4 N[Pi] Y3 alphasilica)],
 betasilica->0.00015,
 deltafibre->Ysilica*temperature
 *(alphasilica-betasilica*g*(m3)/(nw3*N[Pi]*r3^2*Ysilica))^2
 /(rhosilica*Csilica),
 taufibre->magicnumber*rhosilica*Csilica*4*(N[Pi]*r3^2)/N[Pi],
 damping[imag,fibretype] -> ((phisilica + phissilica/r3/2)&),
 damping[imag,fibreatype] -> (
 (
 phisilica
 + phissilica/r3
 + deltafibre*(2*N[Pi]*#1*taufibre)
 /(1+(2*N[Pi]*#1*taufibre)^2)
)&

Advanced LIGO LIGO-T020011-00-D

 12

)
};

The results at the end of stage 1 were used. (It turns out that the stage 2 calculation is a very small
perturbation.) The mode structure at the end of stage 1 was as follows:

Table 3: Mode frequency and structure for stage one of the quad model with silica fibres in
the last stage. The variable names below and to the right of “type” are the coordinates with
significant displacement in the corresponding eigenmodes. Variables with postscript “3” refer
to the optic so the l

3.1.2 Analytical calcululation for comparison

As noted above, "naive" theoretical results for comparison were calculated by taking each of the six
DOFs of the final stage separately and applying the fluctuation dissipation theorem formula for a
one-dimensional mass-spring system, with appropriate masses (or MOIs), elasticities and
frequency-dependent damping factors. The sources of elasticity considered are listed below. The
damping for each elasticity type is specified in terms of the tag (e.g., “fibreatype”) used in the
Mathematica. (The corresponding magnitudes and frequency dependences can be found in the
code. Although the expressions used were intended to be representative, the details don’t matter for
the present purposes because they enter in the same way into the full-model results and the
comparison results.)

Longitudinal:

• Pendulum elasticity of 4 wires of length l3 supporting m3/4 each:

 4 m3/4 g/l3 (damping: lossless)

• Flexure elasticity (about the y-axis) of 8 wire endpoints converted to longitudinal elasticity with
a lever arm of l3:

Advanced LIGO LIGO-T020011-00-D

 13

 8 Sqrt[m3/4 g Y3 M31]/2/l3^2 (damping: "fibreatype")

Transverse:

• Pendulum elasticity of 4 wires of length l3 supporting m3/4 each:

 4 m3/4 g/l3 (damping: lossless)

• Flexure elasticity about the x-axis of 8 wire endpoints, converted to longitudinal elasticity with
a lever arm of l3:

 8 Sqrt[m3/4 g Y3 M31]/2/l3^2 (damping: "fibreatype")

Vertical:

• Direct elasticity of 4 wires of longitudinal elasticity kw3:

 4 kw3 (damping: "fibretype")

Yaw:

• Pendulum elasticity of 2 pairs of wires supporting m3/2 each, converted to a torque about the z
axis through a lever arm of the radius of the optic:

 m3/2 g/l3 tr^2 (damping: lossless)

• Flexure elasticity of 8 wire endpoints, converted to a longitudinal elasticity with a lever arm of
l3, and then back to a torque (about the z axis) with a lever arm of the radius of the optic:

 8 Sqrt[m3/4 g Y3 M31]/2/l3^2 n5^2 (damping: "fibreatype")

Pitch:

• Direct elasticity of 4 wires of longitudinal elasticity kw3, converted to a torque about the x axis
through a lever arm of half the wire separation:

 4 kw3 sl^2 (damping: "fibretype")

• Flexure elasticity of 4 wire endpoints:

 4 Sqrt[m3/4 g Y3 M31]/2 (damping: "fibreatype")

Roll:

• Direct elasticity of 4 wires of longitudinal elasticity kw3, converted to a torque about the x axis
through a lever arm of 1/2 the radius of the optic:

 4*kw3*tr^2 (damping: "fibretype")

• Flexure elasticity is theoretically relevant as for pitch but small enough to ignore

3.2 Results

As can be seen in Figures 1-6, the thermal noise in the full model asymptotes very rapidly to the
naive prediction at frequencies above the highest mode in the transfer function for each DOF.

Advanced LIGO LIGO-T020011-00-D

 14

Figure 1: Optic longitudinal thermal noise (m/rtHz) and last-stage prediction against log f.

Figure 2: Optic transverse thermal noise (m/rtHz) and last-stage prediction against log f.

Advanced LIGO LIGO-T020011-00-D

 15

Figure 3: Optic vertical thermal noise (m/rtHz) and last-stage prediction against log f.

Figure 4: Optic yaw thermal noise (rad/rtHz) and last-stage prediction against log f.

Advanced LIGO LIGO-T020011-00-D

 16

Figure 5: Optic pitch thermal noise (rad/rtHz) and last-stage prediction against log f.

Figure 6: Optic roll thermal noise (m/rtHz) and last-stage prediction against log f.

Advanced LIGO LIGO-T020011-00-D

 17

4 Conclusion

As a result of this comparison a number of bugs in both models were discovered and corrected, and
although one can never be sure, it is probable that both models now implement completely
correctly the particular subset of the physics that they aim to cover. Both models will probably
continue to be useful in the future – the Matlab is familiar to the GEO people and quick to
recompute, and the Mathematica will be useful for studies of assymetries, thermal noise and more
radical designs. The latest versions of both models, with special cases for designs of interest can be
found at

< http://www.ligo.caltech.edu/~mbarton/SUSmodels/>

