Mode matching calculator, published 1 Mar 2002 by Shanti Rao,
rao_s@ligo
Instructions:
Create a new worksheet, and set the cell D2 to the laser wavelength, in millimeters.
Starting with the 'laser source' calculator, copy optical elements from the 'library' worksheet, two rows at a time.
Only change the boxes that are white. Colored backgrounds represent calculations.

The available optical elements are:
Free parameters
Laser source
Waist radius, position
This should be the first element in your design. The waist radius is in mm . The position is an arbitrary offset that will be

CC/CC Cavity

Length, radius of curvature
Assumes a symmetric cavity, with the beam waist at the center. Lens position reflects the location of the first mirror. If this is in front of the last optic, the first column will say "Error".

CC/PL Cavity

Length, radius of curvature

Assumes the input mirror is CC, and the ouput is PL. The waist will be at the surface of the output mirror. Lens position reflects the location of the first mirror. If this is in front of the last optic, the first column will say "Error".

Ring cavity

Radius of curvature, waist radius
Assumes a symmetric, triangular ring cavity. The curved mirror, at the far vertex, images the waist onto itself. The round trip path length is calculated. A ring cavity assumes that the two planar mirrors are very close together, and so the lens and waist positions are not changed.

http://www.its.caltech.edu/~shanti/tni/

thin lens

focal length, radius of next waist
Finds the real solution that images the last waist onto a new waist, of specified size. The lens and waist location are calculated.
thin lens
focal length, distance from last optic
Finds the real solution for a new waist, where the lens is at a specific position, and the waist size and position are calculated.

mode match focal length

Calculates the location of a lens that will image the last waist onto the next waist. A mode match element should usually precede a cavity element.
mirror
radius of curvature, waist radius
Assumes a concave mirror at normal incidence, such as for reflecting a beam back through an AOM.

spacer

Acts as a placeholder in the spreadsheet.

propagator
 length, index of refraction

Calculates the spot size after a length of travel. Use this to account for a region in which there can be no lenses (like a
window) or a thick piece of high-index material (like a Pockel's Cell).

Mode-matching calculator. All units in mm .
Wavelengt 0.001064 mm

