
This is an internal working note of
the LIGO Project

California Institute of Technology
LIGO Project - MS 18-33

Pasadena CA 91125
Phone +1.626.395.2966
Fax +1.626.304.9834

E-mail: info@ligo.caltech.edu

/home/gmendell/T020140-00-W.fm September 25, 2002 12:28 pm

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Doc Number Group Date

Title

Author

 -

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone +1.617.253.4824
Fax +1.617.253.7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu

Technical Note LIGO-T020140-00 W 02.09.24

How To Use
 The knownpulsardemod DSO

Gregory Mendell

Contents

1 Package: knownpulsardemod 2
1.1 Introduction . 3

1.1.1 Overview . 3
1.1.2 F-statistic, SFTs, and LALDemod . 4

1.2 Header KnownPulsarDemod.h . 7
1.2.1 Structures . 7
1.2.2 Error Codes . 10

1.3 Module KnownPulsarDemod.c . 10
1.3.1 Dependencies . 10
1.3.2 Static Functions . 11
1.3.3 Flags . 11
1.3.4 LALWRAPPERInitBarycenter.c . 11

1.4 Filter Parameters . 12
1.4.1 The Mode Parameter . 12
1.4.2 Time Series Parameters . 12
1.4.3 Template Parameters . 13
1.4.4 Test Parameters . 14
1.4.5 Interferometer and Source Designation Parameters 15
1.4.6 Input SFT Parameters . 15
1.4.7 Output Option Parameter . 16

1.5 dataPipeline Commands . 16
1.5.1 dataPipeline commands for creating SFTs . 16
1.5.2 dataPipeline commands for creating F-statistic 18

1.6 Scripts . 18
1.6.1 Driver Scripts . 19
1.6.2 SegToQC script . 20
1.6.3 Auxilary scripts . 21

1.7 Schema Files . 21
1.8 References . 21

1

Chapter 1

Package: knownpulsardemod

2

1.1. Introduction Pg 3

1.1 Introduction

1.1.1 Overview

The knownpulsardemod dynamic shared object (DSO) was written to search for continuous grav-
itational waves from known pulsars or targeted sky positions for a single set of filter param-
eters. It is a contribution to LALwrapper and runs from within the wrapperAPI in stand-
alone mode or the LDAS environment. The code can be checked out from the CVS reposi-
tory: :pserver:username@gravity.phys.uwm.edu:/usr/local/cvs/lalwrapper and is located in the con-
trib/knownpulsardemod/ directories.

The code uses functions from the Ligo Algorithms Library (LAL) to process input data. The
primary function used is the LALDemod function (see Berukoff and Papa1, LAL Software Documen-
tation, Pulsar Package, Chapter 4; available from http://www.lsc-group.phys.uwm.edu/lal/lsd.pdf).
This function, and its dependent functions, coherently sums the data to extract the signal, correct-
ing for phase and amplitude modulation due to the motion of the detector and intrinsic frequency
changes in the source. (It is assumed that the instantaneous frequency can be well modeled by a
Taylor series, when viewed from the Solar System barycenter.) The LALDemod function returns a
statistic, called the F-statistic, for each frequency in the requested band. The F-statistic is related
to the log of the likelihood function, and represents a measure of the ratio of signal power to the
mean power of the noise. It is defined in Jaranowski, Krolak, and Schutz2 (gr-qc/9804014); see this
paper for a complete discussion of the theory. Note that it should not be confused with the F test
or F distribtion discussed in statistic and data analysis books.

The computational scheme used to compute the F-statistic is discussed by Schutz and Papa3 (gr-
qc/9905018), Williams and Schutz4 (gr-qc/9912029) and S. Berukoff and M. A. Papa1. This scheme
involves two steps. Step 1 is to split the observation time into shorter segments and generate a Short-
time Fourier Transform (SFT) for each segment using ordinary FFT routines. The time baseline
used to compute SFTs must be chosen short enough so that the source appears monocromatic at
the detector during this time. Schutz and Papa3 give the following limit for the SFT time, for which
doppler shifts induced by motion of the Earth introduces frequency shifts smaller than the SFT
frequency resolution:

TSFT ≤ 5.5× 103
√

300Hz/f) s. (1.1)

Step 2 is to input the SFT data for a narrow frequency band of interest from all the SFTs that cover
the observation time and to send this data into the LALDemod function to calculate the F-statistic.
Note that Step 2 only requires the data from a narrow frequency band; thus the number of complex
data points needed for Step 2, for an observation time T and frequency band ∆f is T∆f . Since
∆f can be chosen very small, the data needed to coherently analyse a very long observation time T
can fit into the memory of a single processor. Furthermore, Step 2 can be repeated for each band
of interest in parallel; making this computational scheme ideal for a parallel cluster of computers.
(Note that Step 1 only needs to be done once, and also can be done on a single processor, since the
number of data points in TSFT is ∼ 106−7.)

Thus, the knownpulsardemod DSO serves two purposes. The first is to generate SFTs of the
gravity wave channel, with appropriate meta data. The second is to send SFT data to the LALDe-
mod function to stitch together the SFTs to calculate the F-statistic, and to output results based
on the returned values for F . The F values are analyzed to give the signal-to-noise ratio, confi-
dence, and other statistical measures, and the outcomes are stored in the directed signal periodic
(SNGL DPERIODIC) LDAS database table, and optionally in frame or ilwd format. Summary
information goes into the SEARCH SUMMARY and SEARCH SUMVARS LDAS database tables.

Scripts written in tcl that drive the knownpulsardemod DSO are in CVS reposi-
tory: :pserver:username@gravity.phys.uwm.edu:/usr/local/cvs/ldasmdc, under the knownpulsarde-
mod/scripts directory. These scripts send dataPipeline commands the LDAS managerAPI to run
the knownpulsardemod DSO.

The SFT generating part of this DSO was tested during the November 20001 Known
Pulsar Demodulation Mock Data Challenge (MDC). Documentation and results for the
MDC can be checked out of the knownpulsardemod directory from the CVS reposi-

1.1. Introduction Pg 4

tory: :pserver:username@gravity.phys.uwm.edu:/usr/local/cvs/ldasmdc, under the knownpulsarde-
mod/doc directory, and from the LIGO Document Control Center (DCC) as LIGO-T020014-00-W.
A complete specification for the SFTs is also in the MDC document and DCC document LIGO-
T020043-00-W.

1.1.2 F-statistic, SFTs, and LALDemod

The following is a brief description of the F-statistic and its computation from SFTs via LALDemod.
(This section is based on Berukoff and Papa1, and Jaranowski, Krolak, and Schutz2. See these
references and references therein for further details.)

To track frequency and amplitude modulation of a signal embedded in a time series xj , we must
have a model of the phase Φj and calculate the detector response. (The subscript j is a discrete
time index.) The latter is done via two two functions aj and bj , which are given in terms of the
beam-pattern response functions F+ and F× by,

a = (F+ cos 2ψ − F× sin 2ψ)/ sin ζ, (1.2)
b = (F+ sin 2ψ + F× cos 2ψ)/ sin ζ, (1.3)

where ψ is the polarization angle of signal, and ζ is the angle between the interferometer arms.
Even though ψ appears in these equations, the quantities aj and bj are independent of this angle.
Since, a priori, the polarization angle is not known, the quantities aj and bj are the convenient
response functions to use in the analysis. The phase depends on the instristic frequency evolution
of the source, but also on its sky position, as do the detector response functions. The dimensionless
F-statistic defined in Eq. (110) of Jaranowski, Krolak, and Schutz2 (gr-qc/9804014), but for a
component signal, is given by

F =
4

Sh(f0)T0

B|Fa|2 +A|Fb|2 − 2C<(FaF ∗b)
D

, (1.4)

where

Fa =
NM−1∑
j=0

xjaje
−2πiΦj∆t, (1.5)

Fb =
NM−1∑
j=0

xjbje
−2πiΦj∆t. (1.6)

Note that these equations represent demodulated Fourier transforms of the data for the two polar-
izations of the gravitational waves. Furthermore, in the above equations, ∆t is the time step size,
T0 is the observation time, Sh is the noise power spectral density, and A, B, C, and D are constants
related to the the mean square values of aj and bj and their dot product:

A =
2

MN

NM−1∑
j=0

ajaj , (1.7)

B =
2

MN

NM−1∑
j=0

bjbj , (1.8)

C =
2

MN

NM−1∑
j=0

ajbj , (1.9)

D = AB − C2. (1.10)

Thus, the F-statistic is the absolute square of a weighted sum of Fa and Fb; the weights were chosen
by Jaranowski, Krolak, and Schutz2 to maximizethe value of F when a signal is present.

1.1. Introduction Pg 5

In writing the previous equation we have assumed that there is a total of M · N data samples.
This is to indicate that the time series xj can be divided into M segments, each of N samples. If
we introduce a short-time index 0 ≤ n < N − 1 and a segment index 0 ≤ α < M − 1, so that
j = Nα+ n, we can rewrite the above sum for Fa as

Fa =
M−1∑
α=0

N−1∑
n=0

xαnaαne
−2πiΦαn∆t. (1.11)

Now, if XSFT
αk is the un-normalized Discrete Fourier Transform (DFT) of segment α, the SFTs

are defined by

XSFT
αk =

N−1∑
n=0

xαne
−2πinkN . (1.12)

The inverse DFT of Xαk gives xαn:

xαn =
1
N

N−1∑
k=0

XSFT
αk e2πinkN . (1.13)

Furthermore, note that aαn is a periodic function with period equal to one sidereal day. If we choose
the segment time baseline (which will be the SFT time baseline) to be much shorter than that then
aαn does not change significantly during one segment. Thus it can be taken outside the summation
over n, and evaluated at the midpoint of each segment. Making the appropriate substitutions, Eq.1.5
becomes

Fa =
M−1∑
α=0

aαQα

N−1∑
k=0

XSFT
αk Pαk∆t. (1.14)

Thus, the constants in Eq. (1.4) can be computed more simply by

A =
2
M

M−1∑
α=0

aαaα, (1.15)

B =
2
M

M−1∑
α=0

bαbα, (1.16)

C =
2
M

M−1∑
α=0

aαbα, (1.17)

D = AB − C2. (1.18)

If the phase evolution can be described as linear in t during each SFT time, such that the phase
can be Taylor expanded about the midpoint of each segment

Φαn = Φα1/2 + fα1/2(tαn − tα1/2). (1.19)

then, Qα and Pαk can be expressed in closed form,

Pαk =
sinuαk
uαk

− i1− cosuαk
uαk

, (1.20)

Qα = eivα , (1.21)

uαk = 2π
(
T

M
fα1/2 − k

)
, (1.22)

vα = −2π
(

Φα1/2 −
T

2M
fα1/2

)
. (1.23)

(1.24)

1.1. Introduction Pg 6

Note that Pαk, is strongly peaked near the fudicial frequency k∗α = T
M fα1/2, and only terms

near the peak need to be summed, greatly reducing the complexity of the computation. Thus,
Eq. (1.14) can be rewritten as just a sum over k near k∗α. Furthermore, we can also absorb some of
the normalization factors from Eq. (1.4) into Fa. Note that To = MTSFT, and that Sh realistically
is not constant, but potentially different for every segment and frequency, and thus should be given
as Sαk. Thus, we define a dimensionless version of Fa, written as F̃a and given by

F̃a =
M−1∑
α=0

aαQα

k=k∗α+∆k∑
k=k∗α−∆k

(
∆tXSFT

αk /
√
TSFT√

Sαk

)
Pαk. (1.25)

According to Berukoff and Papa1, if ∆k is 8 the power loss due to this approximation is less than
∼ 5%. The expression for F̃b is analogous to that for F̃a. Given the dimensionless SFT input(

∆tXSFT
αk /

√
TSFT√

Sαk

)
(1.26)

the LALDemod function computes Eq. (1.4) via this equation:

F =
4
M

B|F̃a|2 +A|F̃b|2 − 2C<(F̃aF̃ ∗b)
D

. (1.27)

Note that since k is a frequency index, we only need to input SFT data (XSFT
αk) for a narrow band

of frequencies, greatly reducing the memory needs to compute the F-statistic; and since the sum
over k is only over this narrow band the complexity of the computation is greatly reduced too. These
are the advantages of using the SFTs. This does not mean that SFTs are the most computationally
efficient way to computer the F-statistic. One could compute Fa and Fb via FFTs of a demodulated
time series (see Sec. 3.4 of Jaranowski, Krolak, and Schutz2). This is more computationally efficient
than using SFTs, if one want to look for signals at all frequencies, for a given source position, by
roughly a factor of 2∆kM/ log2(MN). However, the SFT algorithm is easier to run on a parallel
cluster than FFTs of demodulated time series; thus in practice it is the most efficient algorithm we
currently have for coherent searches for continuous gravitational waves.

1.2. Header KnownPulsarDemod.h Pg 7

1.2 Header KnownPulsarDemod.h

1.2.1 Structures

struct DemodSearchParams

This structure to hold all parameters and data that need to be initialized in LALInitSearch and
LALConditionData and preserved between calls to LALApplySearch in LALWrapper.

typedef struct
tagDemodSearchParams
{
/* Basic beowulf node descriptors */
BOOLEAN searchMaster; /* TRUE on the search master */
UINT4 rank; /* Rank of this slave */
UINT4 numSlaves; /* Total number of slaves */
UINT4 curSlaves; /* Current number of slaves still working */
UINT4 numNodes; /* Should equal number of slaves + 1 for search master */

UINT4 numDBOutput; /* Number of rows written to the database */

gpsTimeInterval times; /* The GPS start and end time of the data */

/* next are parameters passed as arguments */
INT2 doDemod; /* 0 = compute SFTs, 1 compute SFTs and Demod; > 1 input SFTs */
INT4 mObsCoh; /* Number of DeFTs to compute from input observation time */
UINT4 gpsStartTime; /* GPS start time of data requested */
REAL8 deltaT; /* time step in seconds = 1/sample rate */
UINT4 inputN; /* number of input data points */
REAL8 tSFT; /* duration in seconds used to compute SFTs */
INT4 nSFT; /* number of time domain data points used to compute one SFTs */
UINT4 mCohSFTPerCall; /* number of SFTs to compute during each call to ApplySearch */
REAL8 templateRA; /* Right Ascension of template */
REAL8 templateDec; /* Declination of the template */
REAL8 templatePhase0; /* Initial phase of template (not used)*/
REAL8 templateFreq0; /* frequency of template */
REAL8 templateFreq0Band; /* Band around f0 to compute DeFT */
REAL8 templateFreqDeriv0; /* first deriv of freq of template */
REAL8 templateFreqSecondDeriv0; /* second deriv of freq of template */
REAL8 templateFreqThirdDeriv0; /* third deriv of freq of template */
REAL8 templateFreqFourthDeriv0; /* fourth deriv of freq of template */
REAL8 templateFreqFifthDeriv0; /* fifth deriv of freq of template */
CHAR generateTestData; /* Generate test data: y = yes, n = no. */
UINT2 testType; /* 0,3 = signal only; 1,4 = with noise; 2 = add test data to input data */
REAL8 testRA; /* Right Ascension of test */
REAL8 testDec; /* Declination of the test */
REAL8 testAmplitude; /* Amplitude of the test */
REAL8 testPhase0; /* phase of test */
REAL8 testFreq0; /* frequency of test */
REAL8 testFreqDeriv0; /* first deriv of freq of test */
REAL8 testFreqSecondDeriv0; /* second deriv of freq of test */
REAL8 testFreqThirdDeriv0; /* third deriv of freq of test */
REAL8 testFreqFourthDeriv0; /* fourth deriv of freq of test */
REAL8 testFreqFifthDeriv0; /* fifth deriv freq of test */
REAL8 testPolarization; /* Polarization of test; NOT IMPLEMENTED */

1.2. Header KnownPulsarDemod.h Pg 8

INT4 testDeletions; /* If deletions > 1 then create gaps between tSFT segments of test data */
CHAR *ifoNickName; /* IFO nickname is H2, H1, or L1; */
CHAR *IFO; /* IFO is the really the site = LHO, LLO, GEO, etc.... */
CHAR *targetName; /* A name that identifies the target of the search (e.g., Crab Pulsar)*/
CHAR channel[dbNameLimit]; /* Channel Name (e.g., H2:LSC-AS_Q)*/
INT4 inputSFTm; /* Number of input SFTs */
INT4 inputSFTn; /* Number of data points in the input SFT */
REAL8 inputSFTf0; /* Start frequency of the input SFTs */
REAL8 inputSFTband; /* Band width of the input SFTs. */
INT2 outputDeFT; /* if > 0 then will output DeFT into frame or ilwd file */

/* next are containers for storing data */
REAL4Vector* vecInputData; /* data received from the wrapper master */
LALUnit unitSFT; /* Unit SFTs are stored in (e.g., ADC counts per root Hertz */

/* next are containers for storing output results */
REAL8 freqPWF0; /* freq detected with power pwF0 */
REAL8 pwMax; /* power = absolute square of the amplitude at this freq */
REAL8 phaseForPWF0; /* phase that goes with amplitude at F0 power */
REAL8 pwMean; /* mean power detected (mean computed less power in F0 bin) */
REAL8 pwF0OverpwMean; /* ratio of powMax to pwMean */
REAL8 pwF0; /* Power in the bin closest to templateFreq0 */
REAL8 pwStdDev; /* Standard deviation in power (less pwF0) */

CHAR *dsoName; /* Name of this DSO */

/* Percent of input time series to produce each SFT was padded to fill in gaps */
REAL4 percentPad;

/* parameters for keeping track of which SFTs to do per call to ApplySearch */
UINT4 firstK; /* Index of the first SFT to compute this call to ApplySearch */
UINT4 lastK; /* Index of the last SFT to compute this call to ApplySearch */
BOOLEAN finishedSFTs; /* Set equal to true when all SFTS for this job have been computed */

/* Parameters used to compute SFTs */

RealFFTPlan *pfwdReal; /* Plan for computing FFTs from real input. */

REAL8 tCoh; /* Duration of DeFTs. For now, this is taken as the time input into this code */
REAL8 dfSFT; /* Freq resolution of SFT = 1/duration of SFTs */
INT4 mCohSFT; /* Number of SFTs in one DeFT. */
INT4 mObsSFT; /* Total number of SFTs in the observation time. */
INT4 nDeltaF; /* Number of output data points in one SFT */

INT4 ifMin; /* Index of minimum frequency in SFT band */
REAL8 fMin; /* min freq in SFT band */
INT4 ifMax; /* Index of maximum frequency in SFT band */
INT4 if0Min; /* Min search freq index in coarse-grained frequency resolution */
REAL8 f0Min; /* Min freq in coarse-grained freq resolution */
INT4 if0Max; /* Max search freq index in coarse-grained frequency resolution */
REAL8 f0Max; /* Max freq in coarse-grained freq resolution */

INT4 nDeFT; /* Number of bins in a DeFT */

1.2. Header KnownPulsarDemod.h Pg 9

FFT **SFTData; /* Container for SFTs = input to LALDemod */

DemodPowerStats **SFTStats; /* Container for statistics about each SFT */

REAL4Vector *tvec; /* Temporary holder in input when computing each SFT */
COMPLEX8Vector *fvec; /* Temporary holder of output when computing each SFT */
LIGOTimeGPS *timeStamps; /* Container for SFT time stamps */
gpsTimeInterval *timeIntervals; /* Array of SFT time intervals */

void (*funcName)(REAL8, REAL8, REAL8, REAL8 *, REAL8 *);
/* Test function that converts local t = GPS time to T = barycenter time and dT/dt) */

/* pointer to ephemeris data for DemodSearchParams */
EphemerisData *edat;

INT4 *sftPerCoh; /* Number of SFTs to use in a coherence time */

}
DemodSearchParams;

struct DemodPowerStats

This structure to hold statistics about a power series.

typedef struct
tagDemodPowerStats
{
REAL8 pwMax; /* max power */
REAL8 freqPWMax; /* frequency associated with pwMax */
REAL8 pwMean; /* mean power */
REAL8 pwStdDev; /* std dev of power */
}
DemodPowerStats;

1.3. Module KnownPulsarDemod.c Pg 10

1.2.2 Error Codes

<name> code description
NULL 1 "Null pointer"

MOBSCOH 2 "mObsCoh = number of DeFTs must be 1 in current code"
GPSTINT 3 "Unexpected GPS time interval"
DELTAT 4 "Invalid deltaT"
INPUTN 5 "Unexpected number of input data points"
TSFT 6 "Invalid tSFT"
RA 7 "Invalid right ascension"
DEC 8 "Invalid declination"
PHASE 9 "Invalid phase"
FREQ 10 "Invalid frequency +/- 0.5*band (could be negative, outside

LIGO band, or to high for sample rate)"
FREQDERIV 11 "One of the frequency derivatives is possibly too large;

frequency will evolve outside allowed band"
GENTEST 12 "generateTestData must be y or n"
TESTTYPE 13 "Invalid test data type"
ALOC 14 "Memory allocation error"
NODATA 15 "No input data was found"
NDATA 16 "Invalid number of input data points"

TIMESTEP 17 "Incorrect input data time step"
STARTTIME 18 "Incorrect input data start time"
STOPTIME 19 "Incorrect input data stop time"
NSFT 20 "Invalid nSFT"
NTSFT 21 "nSFT and tSFT are inconsistent with deltaT"

MCOHSFTPERCALL 22 "Invalid mCohSFTPerCall"
DCONDESC 23 "Invalid or null ifoNickName"

IFO 24 "Invalid or null IFO"
TARGETNAME 25 "Invalid or null Target Name"
DATATESTTWO 26 "Invalid input data or inputN for test type 2"
CHANNEL 27 "Invalid or null channel"

ISTARTTIME 28 "Requested GPS start time resulted in invalid index to input
data."

MISSINGSFTDATA 29 "Some requested input SFT data is missing"

The status codes in the table above are stored in the constants KNOWNPULSARDEMODH_E<name>, and
the status descriptions in KNOWNPULSARDEMODH_MSGE<name>. The source code with these messages
is in KnownPulsarDemod.h on line l.120.

1.3 Module KnownPulsarDemod.c

All the source code for the knownpulsardemod DSO currently resides in a single module: Known-
PularDemod.c.

1.3.1 Dependencies

The following include files are needed to build the knownpulsardemod DSO (some are already in-
cluded in LALDemod.h):

#include <stdio.h>
#include <math.h>
#include <lal/LALStdlib.h>
#include <lal/AVFactories.h>

1.3. Module KnownPulsarDemod.c Pg 11

#include <lal/RealFFT.h>
#include <lal/LALConstants.h>
#include <lal/LALDemod.h>
#include <lal/DetResponse.h>
#include <lal/DetectorSite.h>
#include <lal/LALComputeAM.h>
#include <lal/ComputeSky.h>
#include <lal/LALBarycenter.h>
#include <lal/Units.h>
#include <KnownPulsarDemod.h>

1.3.2 Static Functions

Besides the standard LALInitSearch, LALConditionData, LALApplySearch, and LALFinalizeSearch
The KnownPularDemod.c module also contains static functions for unpacking ephemeris data, han-
dling time stamps for SFTs, and building database and multidim data output (output by LDAS in
ilwd or frame format).

1.3.3 Flags

The following flags can be uncommented/commented to turn on/off certain features of the code,
mostly for debugging.

#define INCLUDE_DEMOD_CODE
#define INCLUDE_TEST_DATA_CODE

/* #define DEBUG_KNOWNPULSARDEMOD */
/* #define DEBUG_SFT_CODE */
/* #define DEBUG_OUTPUT_SFT_FILES */
/* #define DEBUG_DEMOD_CODE */
/* #define DEBUG_KNOWNPULSARDEMODINPUTFILES */
/* #define DEBUG_KNOWNPULSARDEMODOUTPUTFILES */
/* #define DEBUG_BUILDOUTPUT_CODE */
/* #define DEBUG_BUILDFRAMEOUTPUT_CODE */
/* #define DEBUG_BUILDDEMODFRAMEOUTPUT_CODE */
/* #define DEBUG_TEST_CODE */
/* #define DEBUG_FRACREMAINING_CODE */
/* #define DEBUG_TIMEDELAY_CODE */
/* #define DEBUG_QUALITYCHANNEL_CODE */
/* #define DEBUG_INPUTSFT_CODE */
/* #define DEBUG_LALWRAPPERINITBARYCENTER */

/* UNCOMMENT ONLY ONE OF INCLUDE_LALINITBARYCENTER OR INCLUDE_LALWRAPPERINITBARYCENTER AT A TIME */
/* #define INCLUDE_LALINITBARYCENTER */
#define INCLUDE_LALWRAPPERINITBARYCENTER

1.3.4 LALWRAPPERInitBarycenter.c

The function in LALWRAPPERInitBarycenter.c transfers ephemeris data from LDAS structures
into LAL structures. It is necessary to use this function when inputing ephemeris data from LDAS
using the -responsefiles option, for example like this:

-responsefiles { file:/ldas_outgoing/jobs/responsefiles/earth01.ilwd,pass
file:/ldas_outgoing/jobs/responsefiles/sun01.ilwd,pass }

1.4. Filter Parameters Pg 12

Note that for now that this function is hard coded into KnownPularDemod.c.
In stand-alone mode it is possible to input ephemeris data from LAL using the LALInitBarycen-

ter function, by uncommenting the INCLUDE LALINITBARYCENTER flag and commenting the
INCLUDE LALWRAPPERINITBARYCENTER flag.

1.4 Filter Parameters

The knownpulsardemod DSO performs a coherent analysis of time series data for continuous grav-
itational waves for a single template of the signal in two steps. Step 1 is to split the total time
series to be analyzed into M segments with N data points each. Standard FFT routines in LAL
are used to create Discrete Fourier Transforms of the segments; the output of the FFTs are called
SFTs (for Short-time Fourier Transforms.) Step 2 is to send SFT data to the LALDemod function
to coherently stitch together the SFTs and output statistics that indicate the likelihood of signal
detection. Step 1 need to be done just once; Step 2 is repeated for each source to be investigated. A
more complete explanation is given above in the introductory section and references cited therein.

Below are the parameters that must be defined by the user and passed through to the knownpul-
sardemod DSO via the -filterparams option. This option is included in a dataPipeline command that
is sent to LDAS, or in a schema file used with the wrapperAPI in stand-alone mode. All parameters
must be given, even if unused, in the given order, except unused parameters can be left off at the
end of the list.

1.4.1 The Mode Parameter

INT2 doDemod:

A flag that determines the mode the knownpulsardemod DSO will run in.

Case 0: Input is time series data; DSO just computes SFTs; output is SFTs.

Case 1: Input is time series data; DSO computes SFTs and runs LALDemod on them; output is
results based on the F-statistic.

Case >1: Input is SFTs; DSO run LALDemod on them; output is results based on the F-statistic.

1.4.2 Time Series Parameters

The following parameters define the input time series when SFTs are generated, or the time series
that was used to generate SFTs when SFT data is input.

INT4 mObsCoh:

Number of coherent searches to perform within the observation time. Currently this must be
set equal to 1. (The reason for this parameter is that LALDemod allows an observation time to
be split into several coherence times. However, for now, the knownpulsardemod DSO assumes the
entire input observation time is to be used in the coherent search.)

UINT4 gpsStartTime:

The GPS start time from which to begin the calculation (a whole number of seconds).

REAL8 deltaT:

The time step in seconds = 1/sample rate.

UINT4 inputN:

1.4. Filter Parameters Pg 13

If doDemod < 2 this is the total number of input data points in the input time series. If doDemod
≥ 2 this is the total number of input data points in the input time series that were used to generate
the SFTs. For example if M SFTS are input, then this parameter is M*nSFT (nSFT is defined
below).

REAL8 tSFT:

Duration in seconds of time series data used to generate 1 SFT.

INT4 nSFT:

The number of time domain data points used to compute one SFTs (must equal tSFT/deltaT).

UINT4 mCohSFTPerCall:

When computing SFTs, number of SFTs to compute during each call to LALApplySearch. Nor-
mally this should be set to inputN/nSFT. However, if mCohSFTPerCall is less than inputN/nSFT
then the DSO will exist from LALApplySearch and report partial progress in the generation of SFTs;
the wrapperAPI will call LALApplySearch repeatedly until all SFTs are generated.

1.4.3 Template Parameters

The Template Parameters describe a single source. If just SFTs are being computed, i.e., if doDemod
= 0, then the values of the template parameters do not matter (but values must be given as place
holders).

Otherwise, if doDemod > 0 the source to use with LALDemod and its auxilary functions must
be defined. A source is defined by a single sky position, its frequency parameters. These are the
initial frequency and the first five derivatives of the frequency, all measured at the Solar System
barycenter at the start of the observation time.

REAL8 templateRA:

Right Ascension of the source.

REAL8 templateDec:

Declination of the source.

REAL8 templatePhase0:

Initial phase of source. This is not used with LALDemod and can always be set to 0.

REAL8 templateFreq0:

Frequency of the source at the start of the observation time, called f0

REAL8 templateFreq0Band:

Band around f0 to compute the F-statistic.

REAL8 templateFreqDeriv0:

First derivivative of frequency at the start of the observation time.

REAL8 templateFreqSecondDeriv0:

Second derivivative of frequency at the start of the observation time.

REAL8 templateFreqThirdDeriv0:

Third derivivative of frequency at the start of the observation time.

REAL8 templateFreqFourthDeriv0:

Fourth derivivative of frequency at the start of the observation time.

REAL8 templateFreqFifthDeriv0:

Fifth derivivative of frequency at the start of the observation time.

1.4. Filter Parameters Pg 14

1.4.4 Test Parameters

Test Parameters are used to generate test data within the knownpulsardemod DSO. The values of
the Test Parameters are used only if generateTestData is ’y’. Otherwise these parameters do not
matter (but values must be given as place holders).

CHAR generateTestData:

Generate test data: y = yes, n = no.

UINT2 testType:

The type of test data to generate:

0 = sinusoidal test signal only

1 = 0 + gaussian noise (mean = 0, std dev = 1)

2 = add test signal of type 0 to input data

3 = same as 0 but without phase or amplitude modulation due to Earth’s motion

4 = same as 1 but without phase or amplitude modulation due to Earth’s motion

Note that currently amplitude modulation is not included in any test data generated within the
DSO.

REAL8 testRA:

Right Ascension of test source.

REAL8 testDec:

Declination of the test source.

REAL8 testAmplitude:

Amplitude of the test signal.

REAL8 testPhase0:

Initial phase of the test signal.

REAL8 testFreq0:

Initial frequency of test signal.

REAL8 testFreqDeriv0:

Initial first derivative of frequency of the test signal.

REAL8 testFreqSecondDeriv0:

Initial second derivative of frequency of the test signal.

REAL8 testFreqThirdDeriv0:

Initial third derivative of frequency of the test signal.

REAL8 testFreqFourthDeriv0:

1.4. Filter Parameters Pg 15

Initial fourth derivative of frequency of the test signal.

REAL8 testFreqFifthDeriv0:

Initial fifth derivative of frequency of the test signal.

REAL8 testPolarization:

Polarization of the test signal. Currently this is not used.

INT4 testDeletions:

If testDeletions > 1 then gaps are put in the time stamps between SFTs to simulate times of
lock loss in an IFO.

1.4.5 Interferometer and Source Designation Parameters

The following parameters designate which site, which interferometer, which channel, and which
source are used in the analysis.

CHAR *ifoNickName:

This is a two character nickname of the interfereometer the data came from, e.g., H2, H1, or L1.

CHAR *IFO:

This is really the site of the interferometer, e.g., LHO, LLO, GEO, etc....

CHAR *targetName:

A name that identifies the target of the search (e.g., Crab Pulsar).

CHAR channel[dbNameLimit]:

The channel the input time series data came from. For example, for input time series data this
should be e.g., H2:LSC-AS Q, H1:LSC-AS Q, or L1:LSC-AS Q . When inputing SFT data it is best
to set channel[dbNameLimit] = “NA”, for not applicable. The reason is that the DSO code thinks
any data it finds with a name that matches channel[dbNameLimit] came from a time series. Input
SFT data is handled differently by the DSO and is recognized by setting the paramters below.

1.4.6 Input SFT Parameters

These parameters are used when the input data to the DSO is SFT data.

INT4 inputSFTm:

Number of input SFTs. Normally this is the same as inputN/nSFT, but could be smaller if gaps
are present in the data.

INT4 inputSFTn:

Number of data points in the input SFT in the input frequency band. This is the input band
width inputSFTband (see below) divided by the frequency resolution of a SFT = 1/tSFT. Thus,
inputSFTn = inputSFTband*tSFT.

REAL8 inputSFTf0:

Start frequency of the input SFT data.

REAL8 inputSFTband:

Band width of the input SFTs.

1.5. dataPipeline Commands Pg 16

1.4.7 Output Option Parameter

INT2 outputDeFT:

This parameter applies only if doDemod > 0. If doDemod > 0 then the output statistical analysis
for the template signal is always written to the database. Furthermore, if the above parameter,
outputDeFT, is > 0 then the F-statistic (defined in the introductory section) is also output, for the
requested frequency band, in either ilwd or frame format (depending on the -mddapi option sent to
LDAS). (Note on the name of this parameter: in the code, historically the output of LALDemod is
called a DeFT, for Demodulated Fourier Transform. Currently this is really the F-statistic, which
is related to the DeFTs for the two polarizations of the signal.)

1.5 dataPipeline Commands

1.5.1 dataPipeline commands for creating SFTs

SFTs are generated by setting doDemod = 0 in the -filterparams list (see the Filter Parameteres
section above).

To generate SFTs, first to pick the beginning of the observation, tObsStart, and the SFT time,
tSFT, and make these mod 16 equal to zero. (Making these mod 16 equal to zero is not absolutely
necessary, but it simplifies understanding which raw frame files LDAS will use to generate an SFT
since each LIGO raw frame file contains 16 seconds of data.) Let M equal the number of SFTs to
generate: M = To/tSFT, where To is the observation time we wish to analyze. The gpsStartTime
filter parameter for the α’th SFT then is tObsStart + α*tSFT, for α = 0 to M − 1. However, since
SFTs are generated on resampled data which involves filtering, extra data is brought in on either side
of the time series. Thus, in the -framequery option of the dataPipeline commands given below, the
time interval requested is from gpsStartTime - 16 seconds to gpsStartTime + tSFT + 15 seconds.
A slice action is used in the dataconAPI to slice out the desired time series after resampling, and
the knownpulsardemod DSO checks to make sure that the final input time series starts at the time
given by the gpsStartTime filter parameter and has the correct length.

To generate all the SFTs in an observation time, the process of generating one SFT must be put
into a loop over the observation time with time step tSFT. Scripts that do this are described in the
next section.

The following examples are three ways to generate an SFT using a dataPipeLine command. All
three examples generate 1 SFT on the H2:LSC-AS Q channel for gpsStartTime = 693601392 and
tSFT = 2048 seconds. The input data is resampled to 4096 Hz.

Example 1, no quality channel

This is useful if the input data is test data or already known to be good and one does not need to
bother with generating a quality channel. (However, note that the DSO in this case will write a -1
into a column it will label “percent clean lock” in the SEARCH SUMVARS table, since it did not
have information about the locked state of the IFO for this data.)

cmd = { dataPipeline
-returnprotocol file:/H-P_SFT_H2-693601392_2048.gwf
-subject { sftJob }
-mddapi frame
-database ldas_tst
-dynlib libldasknownpulsardemod.so.0.0.0
-np 2
-filterparams (0,1,693601392,2.44140625e-4,8388608,2048,8388608,1,0.0,0.0,
0.0,1,0.5,0.0,0.0,0.0,0.0,0.0,’n’,3,0.0,0.0,2.0,0.0,1,0.0,0.0,0.0,0.0,0.0,
0.0,1,"H2","LHO","NA","H2:LSC-AS_Q")
-datacondtarget wrapper

1.5. dataPipeline Commands Pg 17

-aliases {rgw=_ch0}
-algorithms { srgw = slice(rgw,65546,8388608,1);
output(srgw, _,_,srgw, slice rgw); }
-framequery { R H {} 693601376-693603455 Adc(H2:LSC-AS_Q!resample!4!) }
}

Example 2, quality channel generated on local disk

In this example, a quality channel sampled at 1 Hz for the SFT duration of 2048 seconds was
generated and put in the frame file

ascii2frame-P_SegToQC_clean_locks_H2_seg.txt-693601392-2048.gwf

This was done using the script SegToQC.tclsh (see below) which uses an input of clean lock GPS
segments and ascii2frame (from ligotools). Thus, this file has be created on the local disk before the
dataPipeline command is sent to LDAS. Furthermore, the %FILE syntax in the -framequery option
requires that the cmd string be sent to LDAS via LJrun from the ligotools LDAS job package, which
handles getting the file to LDAS.

cmd = { dataPipeline
-returnprotocol file:/H-P_SFT_H2-693601392_2048.gwf
-subject { sftJob }
-mddapi frame
-database ldas_tst
-dynlib libldasknownpulsardemod.so.0.0.0
-np 2
-filterparams (0,1,693601392,2.44140625e-4,8388608,2048,8388608,1,0.0,0.0,
0.0,1,0.5,0.0,0.0,0.0,0.0,0.0,’n’,3,0.0,0.0,2.0,0.0,1,0.0,0.0,0.0,0.0,0.0,
0.0,1,"H2","LHO","NA","H2:LSC-AS_Q")
-datacondtarget wrapper
-aliases {rgw=_ch0; qc1=_ch1}
-algorithms { sqc1 = slice(qc1,0,2048,1); output(sqc1,_,_,sqc1,slice qc1);
srgw = slice(rgw,65546,8388608,1); output(srgw, _,_,srgw, slice rgw); }
-framequery { { R H
%FILE(ascii2frame-P_SegToQC_clean_locks_H2_seg.txt-693601392-2048.gwf)
{} Adc(H2:qc1) }
{R H {} 693601376-693603455 Adc(H2:LSC-AS_Q!resample!4!) } }
}

Example 3, quality channel generated by LDAS

The dataPipeline command also has an option, -dbqualitychannel, to created a quality channel
based on segments in the database. The example below shows this. (Note that the example below
pushes the quality channel to the dataconAPI; the pass option can be used to send it directly to the
wrapperAPI.) Long term, either this option should be used, or driver script shoulds get and handle
this information from the database.

Note that the example below has NOT been used or tested with LDAS release > 0.1.0. See the
LDAS documentation for futher information.

cmd = { dataPipeline
-returnprotocol file:/H-P_SFT_H2-693601392_2048.gwf
-subject { sftJob }
-mddapi frame
-database ldas_tst

1.6. Scripts Pg 18

-dynlib libldasknownpulsardemod.so.0.0.0
-np 2
-filterparams (0,1,693601392,2.44140625e-4,8388608,2048,8388608,1,0.0,0.0,
0.0,1,0.5,0.0,0.0,0.0,0.0,0.0,’n’,3,0.0,0.0,2.0,0.0,1,0.0,0.0,0.0,0.0,0.0,
0.0,1,"H2","LHO","NA","H2:LSC-AS_Q")
-dbqualitychannel {{ 1 693601392 0 693603440 0 {SELECT start_time as StartSec,
start_time_ns as StartNanoSec, end_time as StopSec, end_time_ns as
StopNanoSec FROM SEGMENT WHERE ((start_time >= 693601392 AND start_time <= 693603440)
OR (end_time <= 693603440 AND end_time >= 693601392)) AND
(segment_group LIKE ’H2:Locked’) } push qc1} }
-datacondtarget wrapper
-aliases {rgw=_ch0; qc1=_ch1}
-algorithms { sqc1 = slice(qc1,0,2048,1); output(sqc1,_,_,sqc1,slice qc1);
srgw = slice(rgw,65546,8388608,1); output(srgw, _,_,srgw, slice rgw); }
-framequery { R H {} 693601376-693603455 Adc(H2:LSC-AS_Q!resample!4!) }
}

1.5.2 dataPipeline commands for creating F-statistic

The F-statistic is generated by setting doDemod > 0 in the -filterparams list (see the Filter Param-
eteres section above).

This dataPipeline command request data from 3 SFTs and runs the knownpulardemod DSO to
generate the F-statistic in a 0.0004 Hz band centered on 59.5 Hz. The time interval given in the
-framequery option covers the observation time to get SFT data from. The Proc(0!59!1!) syntax in
this option means that LDAS should read in the 59 to 60 Hz band from each SFT. Note that in
general that the -aliases section must be expanded to include an alias for each input SFT and the
-algorithms section must be expanded to include an output action for each SFT.

cmd = { dataPipeline
-returnprotocol http://sftRequestTest.out
-subject { sftRequestTest }
-mddapi ligolw
-database ldas_tst
-dynlib libldasknownpulsardemod.so.0.0.0
-np 2
-filterparams (2,1,693601392,2.44140625e-4,25165824,2048,8388608,
3,0.0,0.0,0.0,59.5,0.0004,0.0,0.0,0.0,0.0,0.0,’n’,3,0.0,0.0,2.0,
0.0,1,0.0,0.0,0.0,0.0,0.0,0.0,1,"H2","LHO","NA",input,3,2048,59,
1,0)
-datacondtarget wrapper
-responsefiles { file:/ldas_outgoing/jobs/responsefiles/earth01.ilwd,pass
file:/ldas_outgoing/jobs/responsefiles/sun01.ilwd,pass }
-aliases {sft1=_ch0; sft2=_ch1; sft3=_ch2;}
-algorithms { output(sft1,_,_,sft1:primary,sft1 data);
output(sft2,_,_,sft2,sft2 data); output(sft3,_,_,sft3,sft3 data); }
-framequery { P_LDAS_KPD_SFT_H2 H {} {693601392-693607535} Proc(0!59!1!) }
}

1.6 Scripts

Scripts that drive the knownpulsardemod DSO and/or that perform auxilary actions are in CVS
repository: :pserver:username@gravity.phys.uwm.edu:/usr/local/cvs/ldasmdc, under the knownpul-
sardemod/scripts directory.

1.6. Scripts Pg 19

1.6.1 Driver Scripts

This script can be used to run a single LDAS job, or loop over time through jobs. The script requires
tcl and that the ligotools job package be installed. The job to be run is defined in a separate job file
that is sourced. The job file must set the cmd variable which hold the command to send to LDAS.

DriveKPDJobs.tclsh

Syntax: ./DriveKPDJobs.tclsh [-v] [-s <site>] [-ft <frametype>]
[-ifo <interferometer>] [-ch <channel>]
[-db <database>] [-seg <seggroup>]
[-segfile <segfile> -scol <num> -ecol <num> -qch <chname> -rmqc]
[-st <startTime>] [-dt <deltaT>] [-et <endTime>] [-e <emailaddress>]
-log <logfile> [-alog] [-blog] [-rec <recordfile>] [-arec] [-brec]
[-run] -job <jobfile>

-v Print output to stdout.
-s LDAS site to run job. Allowed sites are lho, llo, mit, uwm, sw, dev, and test.
-ft Frame type name to substitute for FRAME_TYPE in job file (e.g., R).
-ifo Interferometer to substitute for INTERFEROMETER in job file (e.g., H, L, or LH).
-ch Channel name to substitute for CHANNEL_NAME in job file (e.g., H2:LSC-AS_Q).
-db LDAS database to use, e.g., lho_test, llo_test. (Set -database DATABASE in job file.)
-seg Database segment group to use, e.g., with -dbqualitychannel. (Sets SEGMENT_GROUP in job file.)
-segfile File with GPS segments (intervals) to use with SegToQC.tclsh to generate quality channel.

If this option is given, output will be ascii2frame-P_SegToQC_segfile-gpsTime-deltaT.gwf.
To load this file into a job use \%FILE(QC_FILE) in the job file framequery.

-scol Column in segfile with GPS segment start time.
-ecol Column in segfile with GPS segment end time.
-qch Channel name to give to the quality channel generated by SetToQC.
-rmqc Remove the file, ascii2frame-P_SegToQC_segfile-gpsTime-deltaT.gwf, after the job finishes
-st GPS time to start the analysis. Set to "now" to start now (not yet implemented).
-dt Duration in seconds to run each job on, and next job has start time st = st + dt.
-et GPS time to end the analysis. Ends when time >= this time.

Set to "endless" to run continuously. Do not set to run job once.
-e Email address for messages from this script.
-log Print output to specified log file.
-alog Append to an existing log file. (Otherwise if logfile exists it is overwritten.)
-blog Create a backup copy the logfile upon exit. Backup name is logfile.timestamp.
-rec Print 1 line record for each job run to specified record file.
-arec Append to an existing record file. (Otherwise if logfile exists it is overwritten.)
-brec Create a backup copy the record file upon exit. Backup name is recordfile.timestamp.
-run Run a command as LDAS job.
-job File that sets up the command to run.

To see the command without running it, leave out the -run option.
If the run option is not given, the command is written to the log file,
but the job is not started or recorded. This is noted in the log file.

To stop the script run the command: "touch stopjobdriver" from the script’s pwd.
The script will stop after the next job finishes.

To restart the script from where it left off after the last record in a record file, use this syntax:

Syntax: ./DriveKPDJobs.tclsh [-v] [-run] -restart <recordfile> [-e <emailaddress>]

1.6. Scripts Pg 20

-log <logfile> [-alog] [-blog] [-rec <recordfile>] [-arec] [-brec]

The site, frametype, interferometer, channel, database, seggroup, jobfile, deltaT, and endTime
fields will be read from the last record in the file given following the -restart option.
The startTime will be set to start time of last record + deltaT. Any of these field are
overwritten if you give the command line option for that field after the -restart option.

To redo jobs in a record file that finished with an error, use this syntax:

Syntax: ./DriveKPDJobs.tclsh [-v] [-run] -redo <recordfile> [-e <emailaddress>]
-log <logfile> [-alog] [-blog] [-rec <recordfile>] [-arec] [-brec]

All jobs in the record file given after the redo option that finished with an error will be rerun.

Example of how to run the script to generate SFTs (note that the sftLocalQCFile.job and
clean locks H2 seg.txt files and SegToQC.tclsh are also needed):

nohup ./DriveKPDJobs.tclsh -s lho -ft R -ifo H -ch H2:LSC-AS_Q
-db lho_beta -segfile clean_locks_H2_seg.txt
-scol 1 -ecol 2 -qch H2:qc1 -rmqc -st 693601392 -dt 2048 -et 695048835
-log e7h2.log -alog -rec e7h2.rec -arec -job sftLocalQCFile.job >& h2.out &

Example of how to run the script to generate the F-statistic (note the requestSFTtest.job file is
also needed):

./DriveKPDJobs.tclsh -v -s lho -ft P_LDAS_KPD_SFT_H2 -ifo H
-ch input -db ldas_tst -st 693601392 -dt 6144 -log testsftreq.log -alog
-rec testsftreq.rec -arec -job requestSFTtest.job

1.6.2 SegToQC script

The SegToQC.tclsh script creates a quality channel of 1’s and 0’s from a list of clean locked GPS
segments for an IFO; it uses ascii2frame to convert the quality channel from ascii into a frame file.

Syntax: ./SegToQC.tclsh [-v] -i <segmentinfile> -scol <colnum>
-ecol <colnum> -o <qcoutfile> -ch <qcchannelname>
-d <detector> -st <startTime> -dt <deltaT>

-v Print information to stdout.
-i File with GPS intervals of locked segments.
-scol Column segment start time is in.
-ecol Column segment end time is in.
-o Name of the output frame file.
-ch The quality channel name; must start with H1:, H2:, or L1:.
-d The detector name to use with ascii2frame (e.g., LIGO_HANFORD_2K,).
-st GPS time to start generating quality channel from.
-dt Duration in seconds to generate quality channel.

Note that for now the quality channel is always generated with a sample rate of 1 Hz and is
output in a framefile using ascii2frame. Depending on the ifo nickname given, the channel name in
the output file is H1:qc1, H2:qc1, or L1:qc1.

The final number printed is the percent of zeros in the quality channel.

1.7. Schema Files Pg 21

1.6.3 Auxilary scripts

These are other scripts available. Usually just running the script with no command line options
displays a help screen, or the script is just a few lines long and hopefully easy to understand.

CreateDataRequestFiles.tcl (Convert files to startime endtime GPS intervals)
CheckTimeIntervals.tcl (Check that intervals are sequential)
TotalTimeIntervals.tcl (Find total time in all intervals)
MvSftToDir.tclsh (Move SFTs from job directories to one directory)
SegToQCtxt.tclsh (Like SegToQC.tclsh, but outputs an ascii quality channel)
ExtractXMLdata.tclsh (Extract data in XML file; sent to std out in ascii)
getsftdata.tclsh (Get SFT from LDAS; return in iwld format.)
ExtractILWDdata.tclsh (Extract data in ilwd file; sent to std out in ascii)
FitHist2.m (Matlab script to fit histograms of Rayleigh type)
FitHist1.m (Matlab script to fit histograms of Chi-2 type)

1.7 Schema Files

Below is a basic schema file used for testing the knownpulsardemod DSO in stand-alone mode. The
-filterparams section can be modfied as described in the Filter Parameters sections above as long as
the necessary data is in the file given after the -inputFile option.

#
lam boot schema for knownpulsardemod shared object
#
h -np 2 wrapperAPI -mpiAPI="(marfik.ligo.caltech.edu,10000)"
-nodelist="(1-1)"
-dynlib="/home/gmendell/searchcode/lib/lalwrapper/libldasknownpulsardemod.so"
-dataAPI="(datahost,5678)" -resultAPI"=(reshost, 9101)"
-filterparams="(1,1,62348734,9.765625e-4,4617,1.126953125,1154,4,
0.0,0.0,0.0,400,0.5,-2.0e-10,0,0,0,0,n,0,0.0,0.0,2.0,0.0,400,
-2.0e-10,0,0,0,0,0,1,NA,LHO,NA)" -realTimeRatio=0.9
-doLoadBalance=FALSE -dataDistributor=W -jobID=8
-inputFile="/home/gmendell/searchcode/share/lalwrapper/wrapper.ilwd"

1.8 References

[1] S. Berukoff and M. A. Papa, LAL Software Documentation, Pulsar Package, Chapter 4; available
from http://www.lsc-group.phys.uwm.edu/lal/lsd.pdf

[2] P. Jaranowski, A. Krolak, and B. F. Schutz, gr-qc/9804014.

[3] B. F. Schutz and M. A. Papa, gr-qc/9905018.

[4] P. R. Williams and B. Schutz, gr-qc/9912029.

l.1

KnownPulsarDemod.cAuthor: Mendell, Greg A.

$Id: KnownPulsarDemod.c,v 1.15 2002/09/18 22:08:49 gmendell Exp $

Index

DemodPowerStats, 9
DemodSearchParams, 7

22

	knownpulsardemod.pdf
	Package: knownpulsardemod
	Introduction
	Overview
	F-statistic, SFTs, and LALDemod

	Header KnownPulsarDemod.h
	Structures
	Error Codes

	Module KnownPulsarDemod.c
	Dependencies
	Static Functions
	Flags
	LALWRAPPERInitBarycenter.c

	Filter Parameters
	The Mode Parameter
	Time Series Parameters
	Template Parameters
	Test Parameters
	Interferometer and Source Designation Parameters
	Input SFT Parameters
	Output Option Parameter

	dataPipeline Commands
	dataPipeline commands for creating SFTs
	dataPipeline commands for creating F-statistic

	Scripts
	Driver Scripts
	SegToQC script
	Auxilary scripts

	Schema Files
	References

