LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
 - LIGO -
 CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type \quad LIGO-T030020-00-Z	$2003 / 02 / 15$
S2 Playground Selection	
Lee Samuel Finn and Peter Saulson	

Distribution of this draft:

LIGO I Collaboration

California Institute of Technology
LIGO Project - MS 51-33
Pasadena CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu
Massachusetts Institute of Technology
LIGO Project - MS 20B-145
Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu
WWW: http://www.ligo.caltech.edu/

Abstract

We describe the playground selection criteria and final selection for the S 2 run. The principle $S 2$ playground data will consist of a set of 600 s samples of data choosen every 6370 s throughout the course of the S 2 run. In addition to this data, several longer segments will be choosen randomly from triple coincidence time, several longer segments from double coincidence time involving at least L1, and representative 10 minute samples from the extremes of detector behavior based on DMT/glitchmon trigger rate.

\$Id: T030020.tex,v 1.2 2003/02/16 00:09:34 1sf Exp \$

Contents

1 Introduction 2
2 Playground components 2
3 Setting the sampling parameters M and N 3
3.1 Overview 3
3.2 Analysis group requirements 3
3.3 S2 choices 4

1 Introduction

Cuts and thresholds for LIGO data analysis need to be evaluated on a set of data representative of that analyzed. The data set used for choosing these cuts is referred to as the Playground data.

The LIGO detectors are still in a state of rapid evolution; so, data from previous runs is not useful for the detailed choices that need to be made for the analysis of data from a particular run. Complicating matters further, LIGO detector data quality varies significantly over and between lock segments. This memo describes the procedure and final choices for the selection of Playground data for the S 2 run, which attempts to meet the goal of providing a representative sample of data for the S2 data analyses approved at the beginning of the S2 run.

2 Playground components

The S2 Playground data consists of four components:

1. Every M seconds, starting at the beginning of the run and continuing to the end of the run, N seconds of data are set-aside from all three interferometers for the playground;
2. From the set of all triple-coincidence science mode lock segments longer than 2 h in duration a total of three 30 minutes data segments will be set-aside as playground;
3. From all double-coincidence science mode lock segments involving L1 and longer than 2 h in duration, exactly three 30 m segments will be set-aside as playground;
4. From the science mode data in each IFO choose the 10 m of data with the highest 10 m average DMT/glitchmon trigger rate and the 10 m of data with the lowest trigger rate.

Data selected by criterion 1 will, by definition, be representative of the entire run. Should an analysis group desire to work with only the triple time, the triple time included in this subset will be representative of the whole triple time, etc. The choice of parameters M and N are discussed in section 3 below.

Data selected by criterion 2 and 3 give a few long, contiguous stretches to exercise on.
Data selected by criterion 4 provides examples of the "extremes" of detector performance, beyond that found in the representative samples in the subset selected by criterion 1 .

Data selected by criterion 2, 3 and 4 are not determined until after the $S 2$ run has completed. This document will be updated after the run is completed to complete the specification of the S2 Playground data set.

3 Setting the sampling parameters M and N

3.1 Overview

In this section we discuss the sampling parameters M and N that determine how frequently data samples are set-aside for playground (M) and how long each playground sample is (N).

There are several constraints on the choice of M and N :

- The sample duration N must be sufficiently long that the analysis groups can use them for tuning their analysis. Tuning involves simulations and background estimation. To be useful for simulations the playground segments should be many times longer than a signal duration and the minimum size data segment that is meaningfully used in the analysis. These constraints are determined by the analysis groups.
- The sampling period (M) should be incommensurate with "human" or "natural" timescales: e.g., the sampling period should not be commensurate with a a minute, hour, day or week period.
- For this purpose it is useful to note that $86400=2^{6} 3^{3} 5^{2}$ s and that many long-period anthropogenic noise sources tend to have start and stop times that align with hours ($3600=2^{4} 3^{2} 5^{2}$ s), half-hours, quarter-hours, or even multiples of 10 m periods within an hour.
- The ratio of sample duration to sampling period (N / M) should be in the range $7 \%<$ $N / M<10 \%$: i.e., no less than 7% and no more than 10% of the full data set should be playground.

3.2 Analysis group requirements

The four analysis groups (Bursts, Inspiral, Pulsar and Stochastic), the run manager (Whitcomb), the head of the detector characterization group (Riles) and the MIT lab head (Shoemaker) were all queried regarding the playground plans and any special playground data requirements they might have:

- Burst: time domain burst group analyses impose no significant constraints on the duration of a playground data segment. In S1 frequency domain analyses (TFCLUSTERS, POWER) worked with data in 360 s segments. For $S 2$ segments lengths will be longer up to an undetermined length, but not shorter.
- IULGroup: no response.
- Pulsar: the pulsar search currently estimates its noise on 60 s intervals and plans to work with short Fourier transforms (SFTs) of 10m duration. Playground data segments should match this goal.
- Stochastic: no response.
- Run manager: no response.
- MIT lab head: commented that data segments (N) not be so short that our ability to detect longer-lived sources is compromised.

3.3 S2 choices

Bearing the above requirements in mind we choose

- the sampling period M to be 6370s $\left(2 \times 5 \times 7^{2} \times 13 \mathrm{~s}\right.$; also 1 h 46 m 10 s$)$
- the sample duration N to be $600 \mathrm{~s}\left(2^{3} 35^{2} \mathrm{~s}\right.$ or 10 min$)$.

The factorization of the sample period and the sample duration is chosen so that the the greatest common divisor between a natural period for anthropogenic noise and the sampling time is less than the sample duration. With these choices

- Playground constitutes 9.42% of the total run;
- The maximum length of an analysis data segment is 5770s;
- No second in the solar day is covered by less than 5 playground samples;
- No second in the solar day is covered by more than 7 playground samples;
- A sample begins in each solar hour twice every three days.

This choice of M and N distribute the sampling quite evenly throughout the 24 h day. Figure 3.3 shows, the number of seconds sampled in the playground of each ten minute interval in a 24 h solar day, while figure 3.3 shows the coverage, by second, of the playground during each day of the S2 run. In both figures time is measured from the beginning of the run and not from, e.g., 0h GMT.

Figure 1: The number of seconds covered by the playground in each ten minute period of the solar day. The mean time spent in a ten minute segment beginning on the ten minute mark since the run beginning is 3389 s and the minimum and maximum time spent is 3095 s and 3706 s .

Figure 2: The coverage by the playground of each second of the solar day for each day of the S2 run.

