
 
LASER INTERFEROMETER GRAVITATIONAL WAVE 

OBSERVATORY 
- LIGO – 

CALIFORNIA INSTITUTE OF TECHNOLOGY 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

 
 
 
 
 
 

Technical Note LIGO-T030112-00-D 04/22/2003 

 
A study of the cross-correlation coefficient distribution in the presence 

of additive signals 
 

S. Mohanty, R. Rahkola, Sz. Márka, S. Mukherjee, R. Frey 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Max Planck Institut für 
Gravitationsphysik 

Am Mühlenberg 1, D14476, 
Germany 

Phone +49-331-567-7220 
Fax +49-331-567-7298 

E-mail: office@aei.mpg.de 

California Institute of 
Technology 

LIGO Laboratory - MS 18-34 
Pasadena CA 91125 
Phone (626) 395-212 
Fax (626) 304-9834 

E-mail: info@ligo.caltech.edu 

Massachusetts Institute of 
Technology 

LIGO Laboratory - MS 16NW-145
Cambridge, MA 01239 
Phone (617) 253-4824 
Fax (617) 253-7014 

E-mail: info@ligo.mit.edu 
 

www: http://www.ligo.caltech.edu/ 

http://www.ligo.caltech.edu/


This note is a continuation of [1], which should be read for background in-
formation.

1 Statement of problem

In order to use the cross-correlation coefficient, r, for confidence interval es-
timation, we need to know its probability density function, p(r;hx, hy), given
additive signals hx[i] and hy[i], i = i0, . . . , i0 +M−1, in the two IFO time series
x[k] and y[k], k = 0, . . . , N − 1, respectively. In the following, 0 ≤ i0 ≤ N − 1
and 0 ≤ i0 +M − 1 ≤ N . We report a study of p(r;hx, hy) in the context of its
use in a triggered search.

2 Analytical results

For simplicity, we consider only the identical signal case hx[k] = hy[k] = h[k]
here. Let the noise in each detector be a Gaussian, zero mean, white random
process.

First, we explore how the signal waveform influences the distribution p(r;h)
of r. The main result is that there are only three gross quantities associated
with a waveform that are relevant to this problem. The three quantities are,

1. The signal mean µh,

µh =
1
M

M−1∑

i=0

h[i+ i0] . (1)

2. The signal duty cycle ε,

ε =
M

N
. (2)

3. The norm ρh of the signal after mean removal,

ρ2
h =

M−1∑

i=0

(h[i+ i0]− µh)2
. (3)

Theorem – The distribution p(r;h) depends only on a single quantity, ρr,

ρ2
r = ρ2

h +Mµ2
h(1− ε) . (4)

Proof – Let nx[k] and ny[k] denote the noise components of x[k] and y[k]
respectively. Let s[k] be the signal component, s[k] = h[k], k = i0, . . . , i0+M−1
and zero otherwise. Then,

r =
∑N−1
i=0 (nx[i] + s[i]− ν̂x − εµh)(ny[i] + s[i]− ν̂y − εµh)
||nx + s− ν̂x − εµh||||ny + s− ν̂y − εµh|| ,
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ν̂x =
1
N

N−1∑

i=0

nx[i] , (5)

ν̂y =
1
N

N−1∑

i=0

ny[i] , (6)

Temporarily redefine nx[i]→ nx[i]− ν̂x, ny[i]→ ny[i]− ν̂y and s[i]→ s[i]− εµh.
Then,

r =
〈nx, ny〉+ ||s|| (||s||+ 〈nx, ŝ〉+ 〈ny, ŝ〉)√

||nx||2 + ||s|| (||s||+ 〈nx, ŝ〉)
√||ny||2 + ||s|| (||s||+ 〈ny, ŝ〉)

, (7)

ŝ =
s

||s|| . (8)

Consider the terms 〈nx, ŝ〉 and 〈ny, ŝ〉. Reverting back to the original definitions
for nx and ny,

〈nx, ŝ〉 → 〈nx, ŝ〉 − ν̂x
N−1∑

i=0

ŝ[i] . (9)

But
∑N−1
i=0 ŝ[i] = 0 and the remaining term is the projection of nx on some fixed

unit vector. However, nx, being a white noise sequence will have an isotropic
distribution in an N dimensional vector space. Therefore, the distribution of
its projection on a fixed unit vector will not depend on the direction of the
unit vector. (The same argument goes through for 〈ny, ŝ〉. ) Hence, examining
Eq. 7, we see that none of the random variables, 〈nx, ny〉, ||nx||, ||ny||, 〈nx, ŝ〉
and 〈ny, ŝ〉, depend on the signal in their distribution. The distribution of r,
therefore, only depends on ||s||,

||s||2 =
M−1∑

i=0

(h[i]− εµh)2 +
N−1∑

i=M

(εµh)2

= ρ2
h +Mµ2

h(1− ε) . (10)

Q.E.D.
The above result means that the r statistic is as efficient for Gaussians

as for sine-Gaussians or for any other signal as long as they have the same
ρr. It also means that an interval/point estimate of ρr is independent of signal
waveform, within random errors, even if the estimation is done using signal
injection with specific waveform types. The only way we can tune ourselves
to one signal type versus another is to first pre-process the data such that only
one type of signal survives. For example, band pass filtering the data can
choose between sine-Gaussians with different carrier frequencies. However, even
with pre-processing, the estimate of ρr applies to whatever signal survives the
processing.

Thus, the purpose of using signal injection for estimating ρr is not to arrive
at different limits for different signal types but to arrive at a limit on ρr for
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whatever signal is present in the conditioned data, albeit with a different treat-
ment of noise and a different set of assumptions about the data. For instance,
the systematic errors may be different for methods that use signal injections
from the ones that do not or the response to non-stationarity may be different.
The astrophysical interpretation of the signal injection derived limit on ρr will
not be any different from waveform independent methods for limiting ρr.

3 Numerical results for identical signals

The proof that p(r;h) depends only on ρr is demonstrated using MC simulation
with different signal types. The MC simulation consists of generating pairs,
x[k] and y[k], k = 0, . . . , N − 1, of white Gaussian noise sequences. Each
sequence is zero mean and each sample has unit variance. The same signal
waveform h[k], k = 0, . . . ,M − 1, (M ≤ N) is injected into each sequence and r
is calculated repeatedly over Ntrials independent trials. The distribution p(r;h)
is then estimated from this set of r values. Signals are injected with amplitude
A such that ρr has some prescribed value.

The signal types used are,

Gaussian pulse

DFM waveforms From the Dimmelmeier, Font, Müller catalog [2, 3].

Figure 1 shows the result. As can be seen, p(r;h) depends only on ρr within
statistical error.
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Figure 1: The probability density of r for different signal types as a function of
ρr. The top panel is for a Gaussian pulse that is 50 msec wide. The bottom
panel is for a signal (A4B4G5 R) from the DFM catalog [2, 3]. The signals are
shown in Fig. 2.
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Figure 2: The signals used in the simulation (c.f. Fig. 1).fig2)
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