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Partly to provide an independent cross check of a small part of the GRB-
triggered analysis, and mostly just to educate myself as a reviewer of that
analysis, I’ve put together the following notes on relating sine-Gaussian wave-
forms to astrophysical source strengths. (To make it easier for others to check
these calculations, some details of the integral formulae used are included
here.)

Within the burst working group, it is customary to quantify analysis sen-
sitivity in terms of hrss (root sum square strain), which is defined generically
by[1]

hrss =

√

∫ +∞

−∞

|h|2dt (1)

The sine-Gaussian waveform is defined by[1]

hSG(t + t0) = h0 sin(2πf0t) e−t2/τ 2

(2)

where it’s convenient to define a parameter Q =
√

2πτf0. The Fourier tran-
form of hSG is Gaussian and centered on f = f0 with standard deviation
σf = f0/Q.

It is straightforward to compute hrss for the sine-Gaussian (define t0 = 0
for simplicity):

h2
rss = h2

0

∫ +∞

−∞

sin2(2πf0t) e−2t2/τ 2

dt (3)
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=
1

2
h2

0

∫ +∞

−∞

[1 − cos(4πf0t)]e
−2t2/τ 2

dt (4)

where one can use Gradshteyn & Ryzhik[2] formulae 3.321.3 and 3.896.4:

∫ +∞

0
e−q2x2

dx =

√
π

2q
(5)

∫ +∞

0
e−βx2

cos(bx)dx =
1

2

√

π/βe−b2/(4β) (6)

to obtain

h2
rss = h2

0

[

Q

4
√

πf0
(1 − e−Q2

)

]

(7)

where the last factor in parentheses can be accurately approximated as unity
for Q >∼ 2. Define a “High-Q” hHQ

rss by the dominant term:

(hHQ
rss )2 ≡ h2

0

[

Q

4
√

πf0

]

(8)

Now let’s address energy associated with this waveform. From Shapiro &
Teukolsky[3] equation 16.1.12 (see also Misner, Thorne & Wheeler[4], equa-
tion 37.30), the instantaneous energy flux associated with a strain waveform
propagating along the z direction is given by

T 0z =
1

16π

c3

G
< (ḣ+)2 + (ḣ×)2 > (9)

where the angle brackets denote a spatial average over several wavelengths.
In the following, I will compute the total wave energy under the following

(admittedly artificial) assumptions:

• The gravitational wave is polarized wit h+(t) = hSG(t)

• The gravitational wave emission is isotropic in its magnitude

• The wave energy passing through a small area can be computed from
∫

(ḣ)2dt without local spatial averaging

With these assumptions, the wave energy passing through a sphere of radius
r centered upon the source is

EGW = (4πr2) × 1

16π

c3

G

∫

∞

−∞

(ḣSG)2dt (10)
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Given the nearly sinusoidal (central frequency f0) behavior of the sine-
Gaussian waveform for high-Q, a quick ’n dirty estimate of the wave energy
is

EGW = (4πr2)
1

16π

c3

G
(2πf0)

2
∫ +∞

−∞

(hSG)2dt (11)

=
r2

4

c3

G
(2πf0)

2 (hHQ
rss )2 (12)

Plugging in some numbers, the quick ’n dirty expression becomes

EGW = (3.8 × 1047J )

(

r

100Mpc

)2 (
f0

100Hz

)2 (
hHQ

rss

10−21Hz−1/2

)2

(13)

= (2.1Msunc
2)

(

r

100Mpc

)2 (
f0

100Hz

)2 (
hHQ

rss

10−21Hz−1/2

)2

(14)

For reference, an upper limit on hHQ
rss of 6 × 10−21 Hz−1/2 at f0 = 250 Hz

for a source at 800 Mpc gives an upper limit on EGW of about 3 × 104 solar
masses. If one assumes that there is comparable energy in h× polarization,
then these energy values must be roughly doubled for a given hrss sensitivity.

Just to be on the safe side in regard to low-Q waveforms, let’s evaluate
the integral Iḣ ≡ ∫

(ḣSG)2dt explicitly:

Iḣ =
∫ +∞

−∞

[

d

dt

(

h0 sin(2πf0t)e
−t2/τ 2

)

]2

dt (15)

= h2
0

∫ +∞

−∞

e−2t2/τ 2

[

(2πf0) cos(2πf0t) − (
2t

τ2
) sin(2πf0t)

]2

dt(16)

= h2
0

{

4π2f2
0

∫ +∞

−∞

e−2t2/τ 2

cos2(2πf0t)dt (17)

−8πf0

τ2

∫ +∞

−∞

e−2t2/τ 2

t cos(2πf0t) sin(2πf0t)dt (18)

+
4

τ4

∫ +∞

−∞

e−2t2/τ 2

t2 sin2(2πf0t)dt
}

(19)

= h2
0

{

4π2f2
0

∫ +∞

−∞

e−2t2/τ 2 1

2
(1 + cos(4πf0t))dt (20)

−8πf0

τ2

∫ +∞

−∞

e−2t2/τ 2

t
1

2
sin(4πf0t)dt (21)

+
4

τ4

∫ +∞

−∞

e−2t2/τ 2

t2
1

2
(1 − cos(4πf0t)dt

}

(22)
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where the first integral can be evaluated from the formulae used above for
evaluating h2

rss, and the second and third integrals can be evaluated from
Gradshteyn & Ryzhik[2] formulae 3.952.1, 3.461.2, and 3.952.4:

∫ +∞

0
xe−p2x2

sin(ax)dx =
a
√

π

4p3
e−a2/(4p2) (23)

∫ +∞

0
x2ne−px2

dx =
(2n− 1)!!

2(2p)n

√
π

√
p

(24)

∫ +∞

0
x2e−p2x2

cos(ax)dx =
√

π
(2p2 − a2)

8p5
e−a2/(4p2) (25)

(Note that the parameter p has differing meanings in the above expressions
taken directly from Gradshteyn & Ryzhik.)

One obtains:

Iḣ = h2
0

{

4π2f2
0

[ √
π

2
√

2
τ (1 + e−Q2

)

]

(26)

−8πf0

τ2

[

π3/2f0τ
3

2
√

2
e−Q2

]

(27)

+
4

τ4

[√
πτ3

8
√

2
[1 − (1 − 2Q2) e−Q2

]

]

}

(28)

= (2πf0)
2 (hHQ

rss )2 × [1 +
1

2Q2
(1 − e−Q2

)] (29)

The correction factor in square brackets, which approaches 3/2 as Q → 0
and 1 as Q →∞, is plotted in figure 1 for Q values ranging from 0 to 10
and is important for Q values less than ∼ 2. The wave energy expression in
equation 14 is affected proportionately.
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Figure 1: Energy correction factor vs. Q
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