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Static and simple dynamic analysis of BTF blades 
Justin Greenhalgh, RAL, May/July 2004 

 
Aim: To compare FEA, blade equations, and measured results of the BTF blades. To 
extend this to the controls prototype blades in order to arrive at a suitable bend radius. 
 
This continues work reported in T040115, which explained how the parameters were 
chosen for the BTF blades. 
 

1. Basic model 
 
The dimensions of the model have been taken from the drawings used to produce the 
BTF blades, reproduced in appendix 2. The blades are near-triangles (not trapezoidal), 
with a truncated triangular portion and a plain section near the tip of the blade to 
allow fixing of the wire clamp. The wire break-off point is at the tip of the triangle. 
Key dimensions are (in metres): 
 
trilength=.48 Length of triangle to wire breakoff 

point 
blength=0.469 Length of blade 
rootwidth=0.095 Width at root 
tipwidth=0.013 Width of plain portion at tip 
bthick=0.0044 Thickness of blade 
bendrad=0.4278 Radius of bend at neutral axis of 

blade (differs from band radius on 
drawing by half the thickness). 

tipload=61.936*9.81 Nominal load is 61.936 kg 
 
For the reasoning behind this choice of dimensions see T040115. 
 
The basic model uses a cylindrical co-ordinate system to specify the blade shape. It 
includes a thick portion at the tip, beyond the end of the blade, to simulate the wire 
clamp and to allow loading at the wire break-off point. This extra piece is shown in 
blue in the diagram below. 
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The bend radius is 427.8mm, giving a theoretical undeflected tip height of, from the 
ANSYS geometry, (428-186)=242mm. ANSYS can be used to calculate the 
deflection under the nominal load of 61.936 kg. See macro in appendix 1 for a 
calculation including geometric nonlinearity. The maximum deflection is 250.84mm. 
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By updating the geometry to reflect the distorted shape and then plotting the co-
ordinates of the nodes we can see the distorted shape with respect to a theoretical flat 
blade: 
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Note that in the region near the root the blade develops a curvature across its width 
due to Poisson effects. This is expected in a relatively thin, wide beam. The classic 
“curl-up” near the tip, due to the fact that the blade is wider than a triangle there, is 
also clearly to be seen. 

2. Comparison with blade equations 
 
This is a pseudo-triangular blade. By that I mean, a blade of a basically triangular 
shape, and with the load applied at the tip of the triangle, but with the tip cut away and 
with a rectangular portion near the tip - both changes being made to allow to for the 
wire clamp. Given this, I would expect the blade equations, if applied with the same 
young’s modulus as the FEA and with alpha=1.5 (see, eg, T030285) should give a 
deflection slightly higher than the FEA. The FEA will be stiffer because it includes 
the stiffness of the rectangular portion of the blade near the tip. 
 
Method E (GPa) alpha Result 
Blade eqns 186 1.36 242.9 (design 

value) 
FEA, nonlinear 176 n/a 250.84 
Blade eqns 176 1.5 283.1 
FEA, nonlinear 186 n/a 236.1 
FEA, nonlinear 165 n/a 268.3 
FEA, nonlinear 195 n/a 223.7 
 
The exact numbers used in the blade equations fro the first line are shown in this 
extract from the spreadsheet: 
 
constants Value Units 
   
l (length) 0.48 m 
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a (root width) 0.095 m 
h (thickness) 0.0044 m 
E (young's modulus) 1.86E+11 Mpa 
alpha (shape factor) 1.36  
mt (total mass on spring) 61.936 kg 
m (mass of next stage, per spring) 10.95 kg 
g (gravitational acceleration) 9.81 m/s^2 
elastic limit of Marval 18 1.60E+09 Mpa 
   
calculated values   
 I (2nd moment of area) 6.74373E-10  
   
lambda (tip deflection) 2.429E-01 m 
   
k (spring constant) 2501.911637 n/m 
   
f (uncoupled vertical frequency) 2.40574203 hz 
   
SigmaMAX (max blade stress) 9.51E+08 Mpa 
   
does SigmaMAX exceed elastic limit? NO  
   
ratio of elastic limit to SigmaMAX 0.59  
   
undeflected radius (read from graph) 0.426323713 m 

 
 
For the blade equations, the result will vary simply as (alpha/E). The FEA result does 
not quite vary as (1/E). Summarising in a graph: 

Modulus vs deflection
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Interestingly, the “geometrical” value of alpha=1.5 is a long way from the FE results – 
too much to be explained by the added stiffness of the rectangular portion near the tip. 
The well-tried value of alpha = 1.36 is much closer. 
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3. Comparison with experimental results 

 
Tests have been made to measure the Young’s modulus of samples of material cut 
from the same plate as the springs. 
 
The results are tabulated below 
 
Samples cut near midplane of sheet Samples cut near surface of sheet 
1 178 1 187 
2 200 2 196 
3 192 3 188 
4 204 4 197 
5 186 

 

5 183 
Ave +/- 1SD 192+/-10.5   190.2+/-6.1 
 
We intend to remeasure the moduli of all the samples to check for experimental error, 
but results taken on a the same machine with a similar method on a cast aluminium 
alloy were much less spread, suggesting that at most of the spread seen above is a real 
material variability. If this is the case, it will not be possible to predict the stiffness of 
a blade with any great accuracy. (The failure stress was between 1766 and 1811 
MPa). 
 
A measurement has been made of one blade in the blade test facility, loaded with a 
mass of 61.478 +/-.035 kg. The deflection was 241+/-2 mm. Scaling this up for the 
nominal load of 61.936 kg gives a deflection of 243+/-2mm. 
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Natural frequency was measured at 100 oscillations in 103 seconds +/-1 sec, giving a 
frequency of 0.97 +/-0.01 Hz. 
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4. Commentary and conclusions so far 
• The blade equations with alpha=1.5 do not match the nonlinear FEA very 

well. This could be explained by the fact that there are large deflections 
involved or that the blade, having width and curling laterally, is not behaving 
as a perfect beam. 

• The blade equations with alpha=1.36 match the nonlinear FEA much better. 
Alpha=1.36 has been found empirically to be a “good” value. 

• The measurements of modulus are variable and the mean value is higher than 
we were expecting. With the measured modulus value, the measured 
deflection matches alpha=1.36 more closely than any other method. 

 
We now need to decide how to proceed with the design of the CP blades. Given 
the results above, we may choose to ignore the odd measured modulus result and 
instead decide what modulus would have had to be used to give the observed 
deflection result. We can then apply that method to the CP blades. The results are 
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Method Modulus to give 
observed 
deflection in BTF 
blades 

Corrected bend 
radius to give a 
flat blade under 
load 

Derived 
“COUPLED” 
frequency 
with 
61.478kg 

Nonlinear FEA 181.31 See below See below 
Blade equations, alpha = 1.36 185.92 426.1mm 1.015 Hz 
Blade equations, alpha = 1.5 205.06 426.1mm 1.015 Hz 

 
Blade equations: Both the blade equation methods should give the same result as 
we are in fact only adjusting the ratio alpha/E to match the measured result. The 
blade equations with the tried and trusted formula of E=186, alpha=1.36 give 
almost exactly the right answer in this case. 
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FEA: A modulus of 181.31 gave a deflection of 242.9mm as expected. Using that 
value I reran the analysis reported in the start of T040114 to find the natural 
frequency, with these parameters: 
 
! values of parameters 
trilength=.48 
blength=0.469 
rootwidth=0.095 
hroot=rootwidth/2 
tipwidth=0.013 
htip=tipwidth/2 
inter=trilength*tipwidth/rootwidth 
taperl=trilength-inter 
tipmass=61.478 
bthick=0.0044 
maryoung=1.8131e11 
marpoiss=0.3 
mardens=7800 
 
Frequency was 0.679 Hz which is clearly too low by a significant amount. I do not 
understand this result. 
 

5. Implications for controls prototype blades 
 

Some aspects of the above are puzzling, but it seems to me that the best 
combination of accuracy and simplicity is to use the blade equations with E=186 
and alpha=1.36. 
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Appendix. Basic macro for nonlinear statics. 
!Macro for nonlinear 
statics on BTF blade 
 
finish 
/CLEAR,START 
*abbr,doit,doit 
 
/PREP7   
!* 
! values of parameters 
trilength=.48 
blength=0.469 
rootwidth=0.095 
hroot=rootwidth/2 
tipwidth=0.013 
htip=tipwidth/2 
inter=trilength*tipwidt
h/rootwidth 
taperl=trilength-inter 
 
bthick=0.0044 
maryoung=1.76e11 
marpoiss=0.3 
mardens=7800 
dampratio=5e-5 
tipload=61.936*9.81 
bendrad=0.4278 
!* 
raddeg=180/3.1415926 
thtip=blength/bendrad*
raddeg 
thwaist=taperl/bendrad
*raddeg 
thtri=trilength/bendrad
*raddeg 
 
!*   
ET,1,SHELL93 
R,1,bthick, , , , , , 

R,2,bthick*10 
!*   
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,mary
oung 
MPDATA,PRXY,1,,m
arpoiss   
MPTEMP,1,0   
MPDATA,DENS,1,,m
ardens 
 
/VIEW,  1, -
0.370848664746    , -
0.543743333662    ,  
0.752870808940 
/ANG,   1,  -
84.2975399159   
 
csys,1 
k,1,bendrad,0,-hroot 
,2,bendrad,thwaist,-htip 
,3,bendrad,thtip,-htip 
,4,bendrad,thtip,htip 
,5,bendrad,thwaist,htip 
,6,bendrad,0,hroot 
,7,bendrad,thtri,-htip 
,8,bendrad,thtri,htip 
 
L,1,2 
,2,3 
,3,4 
,4,5 
,5,6 
,6,1 
,3,7 
,7,8 
,8,4  
   

AL,1,2,3,4,5,6 
 
AL,3,7,8,9 
 
aplot 
ESIZE,hroot/4,0 
 
real,1 
amesh,1 
 
real,2 
amesh,2 
 
eplot 
!AATT, MAT, REAL, 
TYPE, ESYS, SECN 
 
csys,0 
 
DL,6,,all,0 
FK,7,FX,tipload/2 
FK,8,FX,tipload/2 
 
FINISH   
/SOL 
!*   
ANTYPE,0 
ANTYPE,0 
NLGEOM,1 
NSUBST,10,0,0 
/STATUS,SOLU 
SOLVE    
FINISH   
/POST1   
PLDISP,0 
PLDISP,1 
:end 
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Appendix 2 – drawings of blades 
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