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Introduction
LIGO is currently in the commissioning phase. The scientists and engineers at the sites are
constantly finetuning the interferometers. Despite the high demanding of precision and sen-
sitivity, LIGO, composed of six mirrors, has various innate defects; one of them is the imper-
fection of the mirror surfaces. As designed, all mirrors should have perfectly smooth surfaces.
However, as manufactured, mirror surfaces have a roughness of the order of nanometer. No
one knows what kind of noise will this surface roughness introduces. Yet the people at the sites
have observed some mysterious noises, which they suspect are attribute to the imperfection of
mirror surfaces.

To assist the efforts at the sites, several computer programs are wrote to simulate the oper-
ation of LIGO. FFT program [1] is one of such programs, which staticly simulate the steady
state of the E&M fields within the interferometer. Thus, FFT program is an ideal tool to
test the effects of the imperfection of mirror surfaces. In order to model actual mirrors at
LIGO, FFT program needs the input of reflective phase-maps and transmissive phase-maps.
However, due to techniqual issues, transmissive phase-maps are very difficult, if not impossi-
ble, to measure. Only the reflective phase-maps have been measured at Caltech [2]. Yet, we
guess that the effects of transmissive phase-maps have the same order of magnitude as that of
reflective ones. Therefore, the reflective phase-maps are of great importance to the estimation
of noises caused by mirror surface aberration.

Data Conversion
For each mirror, reflective phase-map of the central region, a disc with diameter

���������	��

,

has been measured. The measured phase-maps can be represented by �� �	�������
matrices1.

The size of every cell of the matrices is
���������  �������������������������	��� 


. Since, FFT program
uses Fast Fourier Transformation, the input data must be square matrix with dimensions of
powers of 2, such as matrices of dimensions

���  �	���  or
�����!�"�����

. Therefore, the measured
data need to be converted into the required format.

As indicated by Fig 1, the scheme which converts an # �$�
matrix, with a cell size % �&� %�# ,

to a coarser ' � ' matrix, with cell size %(' � %)' , is as follows [3]:

1. Impose the coarser matrix onto the finer one with the reference of a coordinate system.
1The data outside the measured circular region are marked as “Bad”. Before processing the data conversion,

all values marked as “Bad” are substituted by zero.
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Figure 1: The Schematic Diagram of Conversion of Input Matrices

Figure 2: Example of Data conversion
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2. If a cell of the coarser matrix is completely inside the finer matrix, such as cell 1 in Fig
1, then the value assigned to this cell is the weighted average of the values of the finer
matrix enclosed by this cell. The weight of each value of the finer matrix is proportional
to the area of this value which is within the boundary of the cell of the coarser matrix.

3. If a cell of the coarser matrix is partially or completely outside the finer matrix, such
as cell 2 in Fig 1, then set the value of the area outside the finer matrix to be zero, and
assign the cell weighted average of the values enclosed by it.

By such method, the measured phase-maps, �� �*�+�����
matrices with cell size

���,�����  ���-����������������.���	� � 

, have been converted to the required formats,

���  �&���  matrices with cell
size

�/�,��� � �����0�1�/�,��� � �����2���	� � 
 2 (Fig 2).

Extrapolation
In order to model an actual mirror with the coated circular area with

� � ��3 ��

diameter, the

measured data within a circular area with
���.�435��


diameter need to be extrapolated. Strictly
speaking, there is no way to predict the phasemap in the unmeasured region. The best one can
do is to extrapolate reasonably based on an educated guess3.

Zernike Fit
The basic assumption is that the smooth structures of the phasemap up to 2nd order, i.e.,
piston, x-tilt, y-tilt, power, astigmatisms, are universal on the entire mirror surface. The mea-
sured phasemap is fit by using the 37 Wyko polynomials, and the coefficient of the first 6
Wyko polynomials [4] are used to smoothly extrapolate the phasemap. The Wyko polynomi-
als is a particular set of the Zernike Polynomials [4], which are commonly used to describe
the surface aberration of optics. The fitting coefficients can be found by minimizing 6 �

, that’s
to minimize the following:

6 �87:9�;<9>=@?�A ��B ;DCFEG= 
IH�JK�LB ;MCFEN= 
O �;P= Q � C
with (1)

2The converted matrix covers a RNSUT!RNSWVYX[Z]\_^ area.
3The systematic errors of simualtion results are estimated by comparing results using phasemaps based on this

extrapolation and results using phasemaps based on another assumption. This will be discussed in a separated
document LIGO-T040173-00-E [7].
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A ��B ;DCFEG= 
 7:9F`&a `Nb8` �dcB ;MC cEG= 
 C
(2)cB ; 7 B ;e C cEN= 7 EN=e C
(3)

where
��f CMg 


is the index of measured data points,
JK�LB CFE 


is the measured data, A ��B CFE 

is

the fitting function with h a `�i the fitting coefficient, O ;j= is the standard deviation of each
measurement,

bk` ��cB C cE 

is the Wyko Polynomials serving as the basis of the fitting, and e is

the radius of the measured phasemap, ie.
�/�,�l�435��


.
Differentiate equation (1) with respect to h a `�i , it becomesm 6 �m a ` 7n9�;o9>= � b8p �qcB ;MC cEN= 
 ?�A �LB ;rCFEN= 
IH�JK��B ;MC>EG= 
O �;P= Q �

(4)

To minimize 6 � , equation (4) is set to equal zero. Thus,9�;o9>= b8p �scB ;DC cEG= 
 ?�A ��B ;rCFEG= 
IHtJK�LB ;[CFEG= 
O �;P= Q 7 �
(5)

u 9�;<9_= b8p �scB ;rC cEG= 
 A ��B ;MC>EG= 
O �;P= 7n9�;o9>= b8p �dcB ;MC cEN= 
vJK��B ;rCFEG= 
O �;P= (6)

Plug equation (2) into equation (6),9 ; 9 =xw 9 ` a `yb8` �dcB ;MC cEN= 
Mz b8p �dcB ;rC cEG= 
O �;j= 7 9 ; 9 = b8p �dcB ;MC cEN= 
vJK��B ;rCFEG= 
O �;P= (7)u 9 ` a ` w 9 ; 9 = b8p �dcB ;MC cEG= 
 b8` �scB ;MC cEG= 
O �;P= z 7 9 ; 9 = b8p �dcB ;MC cEN= 
vJK��B ;rCFEG= 
O �;P= (8)

u
{|||||||} |||||||~

� ` a ` w � ; � =W�K�r�,�5�L� ���v���/�5�G��5���_����_��y�� � z 7 � ; � =$�K�r���5��� ���v�Y�F���5��� ���_��N�� �
...� ` a ` w � ; � = �)������5�L�v����v���/�5�G��5���_����_��y�� � z 7 � ; � = �)������5�L�_����v�������5�L� ���_��N�� �
...

(9)

Equation system (9) can be represented in a matrix form,��� 7�� C
(10)

where � 7����� ���M����� � �G�G�� � ��� �M� �G�G�
...

... . . .

�v  ¡ C
with (11)
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� p¢` 7 9�;<9>= b � ��B ;MC>EG= 
 b8` �scB ;MC cEG= 
O �;P= £
(12)

� 7 ���� a �a �
...

�   ¡ £
(13)

and ��7 ���� ¤¥�¤ �
...

�   ¡ C
with (14)

¤ p 7:9 ; 9 = b8p �scB ;MC cEG= 
vJK��B ;[C>EG= 
O �;P= �
(15)

Solve matrix equation (10), one can obtain the fitting coefficient h a `¦i .
There is one small complication for the Livingston4K beam splitter(LLO BS). Since it

was tilted � ��§ on the yaw direction when measured, when processing this mirror, one need to
rotate it back, that’s to stretch the x axis ¨ �

times. Thus for this mirror, substitute all
B ;

in the
above formulae with ¨ �¦B ;

.
After obtaining the smooth structure of the phasemap, extrapolate it to the full extension

of a mirror, (Fig 3). This is the base of extrapolation; the extrapolated high frequency surface
aberrations will be built onto it later.

High Spatial Frequency Surface Aberration Modeling
After the separation of the low spacial frequency structure, the remaining high spacial fre-
quency components of the measured phasemaps need to be extrapolated. There are two issues
to supplement this extrapolation. One is a smoothness of the connection between the measured
region and the extrapolated region. The other is the generation of the high spacial frequency
component, or random noise, in the extrapolated region.

Noise Smearing

In the final phasemap with extrapolation, the measured data are retained when available. To
ensure a smooth extrapolation, these measured data within

���©�435��

diameter are extended to�]��3 ��


to outer side using the following algorithm (Fig 4):
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Figure 3: Example of Separation of base and noise and Smear of the noise
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Figure 4: Scheme of smearing the noise

1. Set a radius e�ª�«I¬4v® so that the value of the extrapolated datum will be a weighted average
of the values fall in to the circular region of e¦ª�«I¬4v® .

2. Say the distance from the extrapolation to an existed datum block is e , then the weight
assigned to the value of this datum block is

�� ® �M¯ � � � .

3. After adding up all the weighted values, normalize the sum, that’s to divide the weighted

sum by the sum of all weights,

� �±°M²P³ �Y´²P³ ��vµ � ´ �� � �²P³ �� µ � ´ � .

4. Apply a weight on to the smeared noise so that the noise gradually fades to zero while
extending into the extrapolated region.

In that region, 1cm ring, this extraoplation based on the data averaging will have the effect
that after superpose to the Zernike fit of the low frequency component, at the boundary of the
measured data, the extrapolation is almost equal to the data and, at the outer boundary of the
1cm ring, it is almost equal to the Wyko polynomial based extrapolation. One resultant profile
of smeared noise is shown in Fig 3.

7



Figure 5: Example of Extrapolation of noise
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Random Noise Generation

The random noise was estimated as follows. In the measured region, the residual of the data
after subtracting the Wyko fit using 37 terms were fit by a gaussian form to find the width
(Fig 5). The spacial frequency distribution in the frequency space is flat if random noises
with this width are assigned to the data cell. By the assumption that the random noise in the
extrapolated region is of the same distribution, the extrapoltated random noise is produced by
a normally distributed random number generator with the mean zero and standard deviation
the width obtained from above (Fig 5).

However, when comparing the extrapolated noise to the measured noise, it’s apparant that
the extrapolation is of much higher frequency than the measured one (Fig 6). In order to

Figure 6: Example of the final noise extrapolation
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Figure 7: Scheme of integrating the noise

Figure 8: Example of final extrapolation and conversion
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enhance the low frequency component of the extrapolation, the noise is integrated twice4 as is
described below (Fig 7):

1. For each cell in a phase-map, form a
�+�t�

matrix with this cell as the center and its
immediate  neighbouring cells as the boundary.

2. Assign the mean of the values of the nine cells of the
�����

matrix to the cell in the
center.

After this process, the extrapolation becomes much closer to the measurement (Fig 6).
After superposing the extended base, the smeared measurment, and the extrapolated ran-

dom noise, and setting all values outside the mirror range to be zero, the final extrapolation
of the measured phase-map (Fig 8) is accomplished. After the convertion of the extrapolation
by the process indicated in Fig 1, the phasemaps are but one step from being done.

Tilt Removal
The beam profile of incident laser of LIGO is Guassian, so most of the beam’s power is
concentrated in the central region, characterized by the diameter of this region, or Spot Size
(Fig 9). Therefore, the central region, characterized by spot size, of the mirror surface is
of uncomparable importance. Thus the final step of preparing a phasemap is to maximally
reduce the tilts on its central region, together with piston. This task is accomplished by a Tilt
Removal program, developed by B.Bochner [1].

4Integration has an effect to smooth function out. We can consider an simple 1-D case. For a random function¹ VYº�^ , after Fourier decomposition, it becomes¹ V�º�^d» 95¼<½ ¼�¾F¿ ¼MÀ Á
where Â is the wave number, or spatial frequncy. After integration, it becomesÃ ¹ VYº�^�Äyº-» 95¼ ½ ¼Å Â ¾ ¿

¼MÀUÆ
Observe that Â comes to the denominator, and therefore the smaller the frequency is, the larger the weight of this
frequency becomes. Thus, the high frequency components are subdued and the low frequency components are
enhanced.
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Figure 9: Profile of incident beam with its spot size

Reflection
To obtain the information of piston and tilts, first, one creates a beam of perfect TEM ÇMÇ mode
[6], characterized by the interested spot size

b Ç and wavelength È 7 ���,��� � ��ÉÊ��

. This

beam will be impinged onto a phasemap, and the reflected beam will contain the desired
information. Before that, the phasemap needs modification. Originally, the value of every cell
of the phasemap is the depth,

J
, at this location respect to a reference plain. To accomodate

the calculation of reflection, the depth
J

needs to be converted to phase Ë by the following
formula, Ë ��B CFE 
 7ÍÌ�Î ; � ` �F�,�G� �>� C

with (16)Ï 7 �¦ÐÈ �
(17)

Multiply the modified phasemap to the incident beam, one can obtain the reflected beam
profile.

Modal Decomposition
To extract the information of piston and tilts from the reflected beam profile, Ñ Ì AqÒ , one needs
to apply the technique of modal decomposition [5][6]. The basic idea is that any beam profile

12



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

z

Resultant Profile
TEM

00
 Component

TEM
10

 Component

Figure 10: Example of the modal decomposition

can be described as a superposition of the Gauss-Hermite Modes, TEM «ÔÓ , as in Fig 10. Since
TEM «ÕÓ is an orthonormal base, any superposition of these modes can be decomposed by the
manner similar to Fourier Decomposition.

The reflection of the incident beam can be considered as an operation on the beam. Any
operation can be expressed by an operation matrix [6]:

Ö�×ÙØ 7 ������
Ú ÇMÇ � ÇMÇ Ú�� Ç � ÇMÇ Ú Ç � � ÇMÇ �G�G�Ú ÇMÇ � � Ç Ú�� Ç � � Ç Ú Ç � � � Ç �G�G�Ú ÇMÇ � Ç �ÛÚ�� Ç � Ç �ÜÚ Ç � � Ç � �G�G�

...
...

... . . .

�     ¡ C
with (18)

Ú Óy« � `Fp 7 ÃÞÝÎ Ýàß!á Ú ÓN« ��B C>EdC J�
_â ã.äæå ß!á Ú `Fp ��B C>EdC J�
[ç % B % EsC (19)

where è â
is the complex conjugate of è . Since the misalignments are very slight, the greatest

effect are in the modes of the lowest order. Thus, all one needs to do is to check the first
�

modes, TEM ÇMÇ , TEM Ç � , and TEM
� Ç . And therefore, the operation matrix will be simplified

to, Ö�×ÙØ 7 ��� Ú ÇMÇ � ÇMÇ Ú�� Ç � ÇMÇ Ú Ç � � ÇMÇÚ ÇMÇ � � Ç Ú�� Ç � � Ç Ú Ç � � � ÇÚ ÇMÇ � Ç ��Ú�� Ç � Ç �ÛÚ Ç � � Ç �
�v ¡ �

(20)
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When one apply the matrix in (20) to an incident beam of TEM ÇMÇ mode, the following will
be obtained, ã.äæå ßéá Ú ÇMÇ ç 7 ��� Ú ÇMÇ � ÇMÇ Út� Ç � ÇMÇ Ú Ç � � ÇMÇÚ ÇMÇ � � Ç Út� Ç � � Ç Ú Ç � � � ÇÚ ÇMÇ � Ç �ÜÚt� Ç � Ç �ÛÚ Ç � � Ç �

�  ¡ ��� a ÇMÇa � Ça Ç �
�  ¡

7 ��� Ú ÇMÇ � ÇMÇ Út� Ç � ÇMÇ Ú Ç � � ÇMÇÚ ÇMÇ � � Ç Út� Ç � � Ç Ú Ç � � � ÇÚ ÇMÇ � Ç �ÜÚt� Ç � Ç �ÛÚ Ç � � Ç �
�  ¡ ��� ���

�  ¡
7 ��� 3 ÇMÇ3 � Ç3 Ç �

�  ¡ C
(21)

where
a ÓN« is the coefficient of TEM Óy« component in the incident beam;

3 Óy« is the coefficient
of TEM ÓN« component in the reflected beam.

Piston

The information of piston, % , can be extracted from the coefficient of TEM ÇMÇ mode. Suppose
one can write the phasemap

JK��B CFE 

as the superposition of a series Zernike Polynomials,h ¤ Óy« ��B CFE 
 i

[4] as JK�LB CFE 
 7�9Ó � « a Óy« ¤ ÓN« �LB CFE 
 C
(22)

where
a ÇMÇ ¤ ÇMÇ 7:a ÇMÇ �±� 7Ía ÇMÇ 7 % . Then by equation (16), the reflection beam isÑ Ì AqÒ 7 ßéá Ú ÇMÇ Ì Î ; � ` �F�,�G� �>� 7 ßéá Ú ÇMÇ Ì Î ; � ` �+ê5ë ì  ê_ìÙí�ê_ì ���G� �F� �

(23)

Assume that the dominant effect comes from the lowest order of Zernike polynomials, then
equaiton (23) can be simplified asÑ Ì AqÒÊî ß!á Ú ÇMÇ Ì Î ; � ` vïLï í ïLï ���G� �>� 7 ßéá Ú ÇMÇ Ì Î ; � `Fð � (24)

Thus, in order to extract information of piston, we need to do the following,3 ÇMÇ 7 Ã Ñ Ì AqÒqñ ß!á Ú âÇMÇ % B % E7 Ã ßéá Ú ÇMÇ Ì Î ; � `Fð ñ ßéá Ú âÇMÇ % B % E7 Ì�Î ; � `Fð Ã ßéá Ú ÇMÇ ñ ßéá Ú âÇMÇ % B % E7 è Ì ;óò
(25)u % 7 ôH-� Ï (26)
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where
Ï

is the wave number which defined in equation (17).

Tilts

The information of tilts, tilt on the pitch direction õ�ö and tilt on the yaw direction õ�÷ , can
be extracted from the TEM Ç � and TEM

� Ç respectively. Say if the mirror tilts õ�ö on the pitch
direction and õ�÷ on the yaw direction, when the incident beam impinges from the front surface
of the mirror, the operational matrix for the reflected beam is [5]:Ö ×øØ 7 ���� � H-��f cù ÷ ��f cù öH!��f cù ÷ � ��¦f cù ö � �

�   ¡ 5

C
(27)

with � cù ö � ÷ � 7 ��Ð bàú>û�ü õ ö � ÷ �4ý È 7 b Ï ú>û�ü õ ö � ÷ � C (28)

where

b
is the spot size and

Ï
is the wave number. Apply matrix (27) to the incident TEM ÇMÇ

beam, one will obtain���� � H!��f cù ÷ �¦f cù öH!��f cù ÷ � ���f cù ö � �
�   ¡ ��� ���

�  ¡ 7 ��� �H-�¦f cù ÷��f cù ö
�  ¡ (29)

Clearly, the information of the tilts will be contained in the imaginary part of the coefficients
of the reflected beam’s TEM ÓN« components.

Thus, õNö and õ�÷ , can be extracte by the following fomulae:3 Ç � 7 Ã Ñ Ì AqÒqñ ßéá Ú âÇ � % B % E 7 Ñ Ì Ç �Ùþ fDÿ(� Ç � (30)u õNö 7 ú_û ü Î � ÿ(� Ç �b Ï (31)3 � Ç 7 Ã Ñ Ì AqÒqñ ßéá Ú â� Ç % B % E 7 Ñ Ì � Ç þ fDÿ(� � Ç (32)u õG÷ 7 ú_û ü Î � ÿ(� � ÇH b Ï 6 (33)

where

b
is the spot size.

5In expression (27), all higher order terms of
��������
	

are neglected.
6In the Tilt Removal program,the calculation of � � uses a slightly different formula, � � » �� ���

��� ������
¼
��� ��� � . That’s

because while untilting the mirror on the pitch direction, the amount of tilt on the yaw direction is changed, since
the hight function ! at VYº Á#" ^ due to the tilt is !�VYº Á#" ^ »+º%$'&)(*� �,+ V ".-0/ $1� � ^1$'&)(*� � [1].

However, with � � being so small, the extra -0/ $1� � hardly contribute any substantial difference from the results
calculated by equation (33).
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Figure 11: Example of the effect of tilt removal
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Figure 12: Example of final input phasemap to FFT program
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After obtaining the piston and tilts, one can adjust the phasemap accordingly. The effect of
the Tilt Removal process is indicated in Fig 11. The plots in the first row are the comparison
of the phasemaps’ x crosssection, which indicate that the piston is indeed somewhat removed.
The plots in the second row are the comparison of the x crosssection of the odd components
of the phasemaps. The plot in the first column seems to indicated that after tilt removal, the
entire phasemap seems to tilt even more than the original; however, as the plot in the second
column indicated, the surface within the range characterized by spot size has less tilt, or its
odd components are minimized.

After this last step (Fig 12), the phasemaps are finally ready to be input to the FFT Pro-
gram.
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