LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T050078-01-D

Advanced LIGO

Suspension Blade Spring Internal Modes
(Advanced LIGO)

Dennis Coyne

Distribution of this document: SUS subsystem group

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125

Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

P.O. Box 1970
Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106

Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW17-161 175 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

P.O. Box 940
Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

Change Record:

Revision -00: initial release.

Revision -01: The calculations (in version -00) for the internal modes based upon cantilevered, linearly tapered beams from referenced papers from Mabie & Rogers were in error by a factor of \sqrt{g} , where g is the gravitational acceleration. (This factor is only needed when using weight density instead of mass density.) In addition, the conclusion drawn from the wire transmissibility regarding the appropriate blade spring tip boundary condition was incorrect. For the typical blade spring, wire and mass parameters in LIGO suspensions, there is still enough coupled mass to enforce a simply supported blade tip boundary condition. Equations for the frequencies of a linearly tapered beam with clamped root and simply supported tip are incorporated and shown to be the asymptotic solution when the coupled tip mass is a large multiple of the blade spring mass.

1 Introduction

The advanced LIGO suspension design¹ achieves vertical isolation through the use of passive multiple stages of cantilevered blade springs which low pass filter the vibration. The frequencies of the rigid body modes of the coupled mass-spring system are designed to be set below the desired band of isolation, at about one to a few Hz. In addition to the rigid body modes, one must insure that the internal mode frequencies of the blade springs are high enough (and/or have enough damping) that they do not compromise isolation performance and so that thermal excitation does not exceed the displacement noise requirements^{2;3}. The minimum internal mode frequency, calculated from one-dimensional considerations⁴ is about 40 Hz; As a design goal the internal modes should be greater than 100 Hz, otherwise detailed modeling and/or measurement would be required to confirm acceptability.

Consider the quadruple pendulum suspension depicted in Figure 1. We wish to determine the bending mode frequencies of the cantilevered, blade springs. Much work has already been done to establish the internal blade spring modal frequencies. The finite element method has been used to establish^{5,6} that:

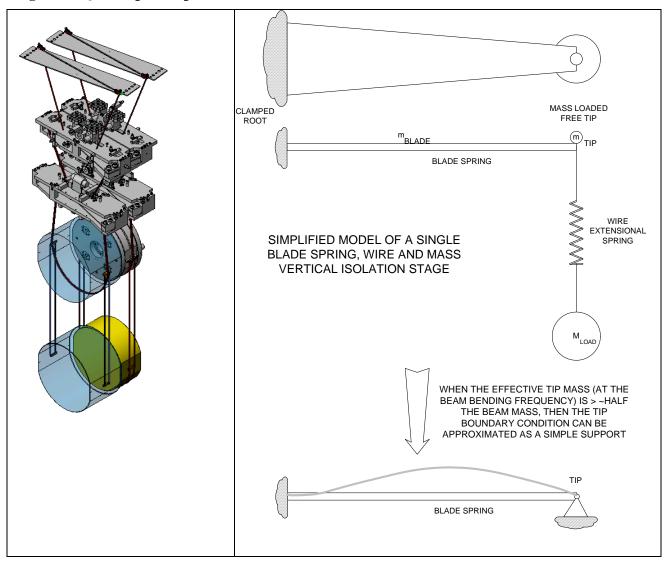
o a simply supported blade tip boundary condition is a reasonable approximation for our typical parameters (i.e. that to a good approximation the first blade spring modal frequency is independent of the supported mass, the tip mass and the first rigid body bounce frequency)

¹ N. Robertson, et. al., Advanced LIGO Suspension System Conceptual Design, 21 Oct 2003, LIGO-T010103-03

² N. Robertson, Seismic and Thermal Noise Peaks from Blade Internal Modes in an ETM/ITM Quadruple Pendulum, 24 Mar 2005, LIGO-T050046-01.

³ N. Robertson, Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO, T010174-00, 25 Oct 2001

⁴ K. Strain, Estimate of the minimum frequency for resonances associated with blade-spring stages in quadruple pendulums for Advanced LIGO, 16 July 2003, ALUKGLA0007aJUL03


⁵ J. Greenhalgh, Initial Exploration of Transmissibility by FEA of Blades, LIGO-T040024-00

⁶ R. Jones, C. Torrie, Case Study: Using ANSYS to Predict the Lowest Flexural Internal Mode Frequency of the MC and RM Upper Blades, 3 Nov 2003, LIGO-T030273-04

the first blade spring internal mode frequency is to a good approximation independent of the blade shape factor (or aspect ratio)

In the following, a theoretical formulation is presented which explicitly includes the shape factor and the effective tip mass as a function of frequency.

Figure 1: Quadruple Suspension

2 Boundary conditions

Each blade spring is rigidly clamped to its associated mass (or in the case of the top blade spring, to the upper structure). Each of the suspended masses (from 22 to 40 kg) far exceeds the mass of the blade springs (which have masses on the order of 0.5 kg) and so the clamped end (root) of the blade

spring can be approximated as an idealized clamped boundary condition (zero vertical displacement and zero slope).

At the beam tip end it might seem at first that the large supported mass ensures a simply supported boundary condition (zero vertical displacement but no applied moment due to the flexibility of the wire). However, the first vertical-bounce mode of the suspension stages is set by design at about ~1 Hz. The ETM/ITM parameters are given in N. Robertson's paper⁷, where the parameter definitions are given in M. Perreur-Lloyd's paper⁸. The value of the transmissibility (for motion at the blade root to motion at the supported mass) at ~100 Hz (the lowest intended frequency of the internal modes of the blade springs) is about 1%; See for example Figure 1 of T010174-00. The mass that the blade spring supports would seem then to be largely decoupled from the dynamics of the blade spring internal modes. However, from the formulation presented in the following section, we find that the first mode frequency is within ~10% of a simply supported end condition case if the effective tip mass is at least 30% of the blade mass. So the effective mass can be as little as ~0.1% of the supported mass before the simply supported boundary condition is no longer a good approximation.⁹

3 Theoretical modal frequencies

The blade spring designs used in GEO and adv. LIGO have constant thickness and a linearly tapered width. The geometry also generally includes a tip region with a deviation from a idealized trapezoidal geometry, as shown in Figure 2.

In the literature there are solutions for the elastic modal frequencies for a cantilevered beam with linearly tapered width, with and without a discrete of point tip mass (i.e. a mass with no rotary inertia). Results are also available for a linearly tapered beam width of constant thickness with a clamped root and simply supported end. In all three cases the frequency, f_i , for the i^{th} mode is calculated as follows:

$$f_i = \left(\frac{1}{2\pi}\right) \left(\frac{h}{l^2}\right) (lk_i)^2 \sqrt{\frac{E}{12\rho}}$$

where

⁷ N. Robertson, Investigation of Wire Lengths in Advanced LIGO Quadruple Pendulum Design for ETM/ITM, 26 Jan 2005, LIGO-T040028-00.

⁸ M. Perreur-Lloyd, Pendulum Parameter Descriptions and Naming Convention, 20 Jul 2004, LIGO-T040072-01

⁹ The boundary conditions assumed in the suspension design reports to date are clamped (or approaching a clamp, or fixed support at the root) and a simple support at the tip, e.g. see:

J. Greenhalgh, Initial Exploration of Transmissibility by FEA of Blades, LIGO-T040024-00

R. Jones, C. Torrie, Case Study: Using ANSYS to predict the Lowest Flexural Internal Mode Frequency of the MC and RM Upper Blades, 3 Nov 2003, LIGO-T030273-04

¹⁰ H. Mabie, C. Rogers, Transverse Vibrations of Tapered Cantilever Beams with End Loads, J. Acoustical Soc. Am., v36, n3, Mar 1964, p 463-469.

¹¹ H. Mabie, C. Rogers, Transverse Vibrations of Double-Tapered Cantilever Beams, J. Acoustical Soc. Am., v51, n5, 1972.

 $(lk_i)^2$ is the numerical solution to the eigenvalue problem for the ith mode and is listed in tabular form as a function of the aspect ratio, $\beta = \frac{b_0}{b_1}$, thickness ratio $\alpha = \frac{h_0}{h_1}$, and the mass ratio, R = M/m, in the appendices.

Figure 2: Blade Spring Geometry (drawings have a common scale)

M = mass of the tip point mass

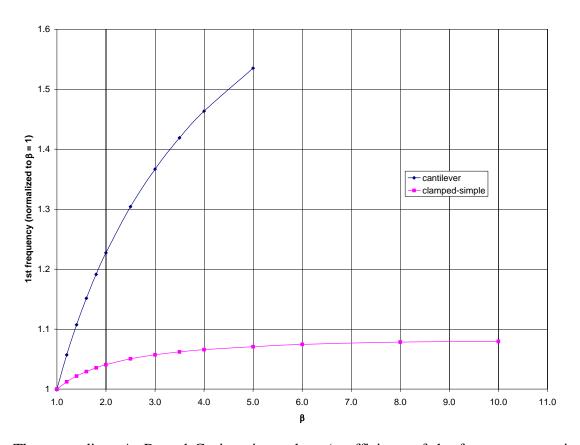
m = mass of the blade spring

h = thickness of the blade-spring (h_0 is the thickness at the blade root, h_1 is the thickness at the blade tip; for LIGO suspension blades the thickness is constant, so $h_0 = h_1$)

 ℓ = length of the blade-spring (taken as the distance from the clamp at the base to the point where the wire detaches from the clamp at the tip of the blade

E = elastic modulus of the blade spring material

 ρ = mass density of the blade spring material


To date the suspension design has stuck to aspect ratios of the blade designs that are close to the ratio used in GEO ($\beta = 5.125$) and have scaled the first internal mode frequency¹² from the GEO blade by ℓ^2/h .

The effect on the first frequency of changing the aspect ratio of the blade spring is indicated in Figure 3. The two curves represent the limiting cases of:

- o clamped root free tip boundary condition: no effective tip mass (when the supported mass is very low compared to the blade mass or when the supported mass is decoupled due to a high internal mode frequency and a low vertical bounce mode), and
- o clamped root simply supported tip boundary condition: large effective tip mass (when the supported mass is high compared to the blade mass or when the internal blade frequency is low in comparison to the vertical bounce mode)

As noted by J. Greenhalgh (T040024) based on finite element analysis, there is very little variation in the first mode frequency with shape factor changes for the clamped root – simple support boundary condition.

Figure 3: Variation of 1^{st} frequency with aspect ratio, β

The appendices A, B, and C give eigenvalues (coefficients of the frequency equation) for three boundary condition cases, all with clamped blade roots: (i) free tip, (ii) simply supported tip and

¹² For example, this is the formulation used in the current Matlab code for calculation of the suspension dynamics.

(iii) tip loaded with a discrete mass. When the tip mass is very small in comparison to the blade mass, the frequencies asymptote to the free tip boundary condition case. When the tip mass is very large in comparison to the blade mass, the frequencies asymptote to the simply supported boundary condition case.

4 Comparison with experimental results

The simply supported tip formulation above compares well with available experimental results^{13,14} as indicated in Table 1. In each case the beam length used in the calculation is the length from the base clamp to the wire break-away from the wire clamp at the tip, and the tip width is taken as the minimum width of the blade.

For the upper blade of the Mode Cleaner triple suspension, the mass of the wire clamp at the tip was varied by adding mass, as indicated in Table 1. Note that the mass loaded tip formulation (appendix A) does not match these experimental results (for any reasonable assumed parameter values). It seems likely that the rotary inertia of the added tip mass is responsible for the observed decrease in first frequency, and not the added translational inertia.

Table 1:	Comparison	of theory	to experiment
		0- 00-	

Blade Spring	Tip Mass (g)	Experiment (Hz)	Theory (Hz)	% Error
GEO Original design	0_{\otimes}	55	53.9	-2.0%
Mode Cleaner triple	0	90	88.4	-1.8%
suspension upper blade (D020205)	12	84	NA	
blade (D020203)	17	82	NA	
	22	80	NA	
	32	77	NA	
ETM Top Blade	0		69.3	
ETM Middle Blade	0	95	96.6	1.7%
ETM Bottom Blade	0	111	113.7	2.4%

Unfortunately the eigenvalues listed in the literature (and the appendices) are limited to $\beta < 5$ and have rather coarse sampling for R < 0.3. To compare with these experimental results, the values in the literature were extrapolated and interpolated. A refined set of numerical solutions to extend the solution set to parameter ranges of interest to LIGO and to provide a more accurate estimation

7

¹³ R. Jones, C. Torrie, Case Study: Using ANSYS to predict the Lowest Flexural Internal Mode Frequency of the MC and RM Upper Blades, 3 Nov 2003, LIGO-T030273-04

¹⁴ SUS Team, Blade Characterization for the ETM Controls Prototype, LIGO-T040229-11

 $^{^{\}otimes}$ The tip mass for the "original" GEO blade spring was not identified in the T030273-04 and is assumed here to be negligible.

would be of use. In the interim, the tabular results in the appendix or the eigenvalue coefficient fits in Table 2 can be used.

Table 2: Frequency Coefficient Fits

Tip Boundary Condition	1 st Frequency Coefficient Fit, c₁ = (ℓk₁)²
Simply Supported (best fit with experiment)	$\log[(lk_1)^2] = -0.0328\log(\beta)^2 + 0.0655\log(\beta) + 1.1883$ $\log[(lk_2)^2] = -0.009\log(\beta)^2 + 0.0195\log(\beta) + 1.6987$ $\log[(lk_3)^2] = -0.0029\log(\beta)^2 + 0.009\log(\beta) + 2.0181$
Tip Mass	for $\beta = 5$ and $0 < R < \sim 4$: $ (lk_2)^2 = 9.15e^{\left(-R^{0.67}/0.27\right)} + 16.507 $
Free	for R = 0 and 1 < β < ~6: $(lk_1)^2 = 2.7215\log(\beta) + 3.5014$ $(lk_2)^2 = 5.1833\log(\beta) + 21.987$ $(lk_3)^2 = 6.7725\log(\beta) + 60.996$

Appendix A: Eigenvalues for Varying Tip Mass and Beam Aspect Ratio

Table II. Factor $[lK]^2$.

				TABLE II.
β	R	Fundamental frequency	Second harmonic	Third harmonic
1.0	0	3.5160	22.035	61.70
	0.2	2.6127	18.208	53.55
	0.4	2.1680	17.176	52.06
	0.6	1.8926	16.701	51.44
	0.8	1.7007	16.428	51.11
	1.0	1.5573	16.250	50.89
	2.0	1.1582	15.861	50.45
	3.0	0.9628	15.720	50.30
	4.0	0.8416	15.647	50.21
1.2	0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0	3.7168 2.7202 2.2440 1.9527 1.7517 1.6017 1.1879 0.9862 0.8616	22.415 18.348 17.312 16.844 16.576 16.403 16.026 15.891 15.822	62.06 53.58 52.13 51.54 51.21 51.02 50.59 50.45 50.37
1.4	0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0	3. 8923 2. 8100 2. 3061 2. 0017 1. 7924 1. 6374 1. 2113 1. 0048 0. 8772	22.743 18.451 17.414 16.951 16.690 16.522 16.157 16.026 15.961	62.39 53.58 52.17 51.60 51.29 51.11 50.71 50.57
1.6	0	4. 0485	23.030	62.68
	0.2	2. 8863	18.530	53.57
	0.4	2. 3581	17.492	52.20
	0.6	2. 0418	17.035	51.64
	0.8	1. 8260	16.779	51.35
	1.0	1. 6664	16.614	51.17
	2.0	1. 2301	16.259	50.79
	3.0	1. 0197	16.134	50.67
	4.0	0. 8900	16.070	50.59
1.8	0	4.1873	23.286	62. 95
	0.2	2.9519	18.590	53. 55
	0.4	2.4019	17.552	52. 22
	0.6	2.0756	17.102	51. 68
	0.8	1.8540	16.849	51. 41
	1.0	1.6908	16.693	51. 22
	2.0	1.2457	16.344	50. 87
	3.0	1.0318	16.222	50. 74
	4.0	0.9002	16.159	50. 68
2.0	0	4.3152	23.520	63, 20
	0.2	3.0088	18.636	53, 54
	0.4	2.4395	17.601	52, 23
	0.6	2.1045	17.155	51, 71
	0.8	1.8777	16.908	51, 44
	1.0	1.7111	16.750	51, 28
	2.0	1.2589	16.414	50, 92
	3.0	1.0422	16.294	50, 81
	4.0	0.9090	16.233	50, 74
2.5	0	4.5852	24.021	63,74
	0.2	3.1244	18.715	.53,48
	0,4	2.5141	17.685	52,24
	0.6	2.1609	17.252	51,77
	0.8	1.9238	17.012	51,52
	1.0	1.7506	16.862	51,35
	2.0	1.2837	16.542	51,04
	3.0	1.0615	16.429	50,92
	4.0	0.9252	16.372	50,87
3,0	0	4.8057	24, 441	64.24
	0.2	3.2120	18, 760	53.44
	0.4	2.5690	17, 735	52.24
	0.6	2.2020	17, 312	51.80
	0.8	1.9569	17, 082	51.57
	1.0	1.7790	16, 937	51.42
	2.0	1.3014	16, 630	51.12
	3.0	1.0752	16, 522	51.02
	4.0	0.9367	16, 467	50.97

_		Fundamental	Second	Third
β	R	frequency	harmonic	harmoni
3,5	0	4.9894	24.802	64.66
0.0	0.2	3.2808	18.786	53.38
	0.4	2,6115	17.768	52.24
	0.6	2,2329	17.354	
	0.8	1,9822	17, 128	51.81 51.60
	1.0	1, 8002	16,988	51.45
	2.0	1, 3145	16,691	51.45
	3.0	1.0787	16,589	51.18
	4.0	0.9452	16,536	51.08
	4.0	0.0402	10.000	31.04
4.0	0	5, 1456	25,119	65.06
	0, 2	3,3365	18,800	53.33
	0.4	2,6452	17.788	52.23
	0.6	2,2575	17,381	51.83
	0.8	2.0017	17, 162	51.62
	1.0	1.8168	17.025	51.48
	2.0	1,3243	16.737	51.22
	3.0	1.0929	16,637	51, 12
	4.0	0.9516	16.586	51.08
				02.00
5.0	0	5.3977	25,655	65.74
	0.2	3,4210	18,810	53.25
	0.4	2.6948	17,810	52,22
	0.6	2,2934	17.415	51.84
	0.8	2.0301	17.203	51.64
	1.0	1.8406	17.072	51.52
	2.0	1.3386	16.798	51.28
	3.0	1.1038	16.703	51.19
	4.0	0.9606	16,655	51.15

Table from H. Mabie, C. Rogers, Transverse Vibrations of Tapered Cantilever Beams with End Loads, J. Acoustical Soc. Am., v36, n3, Mar 1964, p 463-469.

Appendix B: Eigenvalues for Cantilevered Beam Aspect Ratio and Thickness Ratio Variation

Table from H. Mabie, C. Rogers, Transverse Vibrations of Double-Tapered Cantilever Beams, J. Acoustical Soc. Am., v51, n5, 1972.

N.B.: For LIGO SUS, $\alpha = 1$ (constant thickness)

					Table I	. Factor (lk	$(a = h_0/h)^2$	ι, β=	$=b_0/b_1.$				
Martine American Control of the Cont	β	Funda- mental frequency	Second harmonic	Third harmonic	Fourth harmonic	Fifth harmonic		β	Funda- mental frequency	Second harmonic	Third harmonic	Fourth harmonic	Fifth harmonic
$\alpha = 1.0$	1.0 1.2 1.4 1.6 1.8 2.0	3.5160 3.7168 3.8927 4.0485 4.1886 4.3152	22.035 22.415 22.742 23.029 23.286 23.519	61.70 62.06 62.39 62.68 62.95 63.20 63.74	120.9 121.2 121.6 121.9 122.1 122.4	199.8 200.2 200.5 200.8 201.1 201.4	$\alpha = 2.0$	2.5 3.0 3.5 4.0 5.0	9.7925 10.2355 10.6061 10.9210 11.4291	39.931 40.637 41.247 41.785 42.700	98.09 98.88 99.60 100.24 101.36	184.6 185.4 186.2 186.9 188.2	299.7 300.6 301.5 302.2 303.6
	2.5 3.0 3.5 4.0 5.0	4.5852 4.8057 4.9894 5.1456 5.3977	24.021 24.440 24.802 25.123 25.656	63.74 64.24 64.67 65.06 67.54	123.0 123.5 124.0 124.4 125.2	202.0 202.5 203.0 203.5 204.4	$\alpha = 2.5$	1.0 1.2 1.4 1.6 1.8	9.8345 10.3388 10.7807 11.1723 11.5240	43.713 44.462 45.109 45.679 46.188	110.04 110.84 111.53 112.15 112.70	208.8 209.7 210.4 211.0 211.6	340.4 341.3 342.0 342.7 343.3
$\alpha = 1.2$	1.0 1.2 1.4 1.6 1.8 2.0 2.5	4.3089 4.5501 4.7607 4.9484 5.1162 5.2684 5.5928	25.032 25.466 25.837 26.163 26.455 26.719 27.289	68.56 68.99 69.36 69.71 70.01 70.29 70.91	133.5 133.9 134.3 134.7 135.0 135.3 136.0	220.2 220.6 221.0 221.4 221.7 222.0 222.7		2.0 2.5 3.0 3.5 4.0 5.0	11.8419 12.5217 13.0762 13.5402 13.9345 14.5710	46.652 47.656 48.501 49.234 49.880 50.982	113.21 114.34 115.28 116.14 116.90 118.24	212.1 213.3 214.3 215.3 216.1 217.6	343.8 345.0 346.1 347.1 348.0 349.5
	3.0 3.5 4.0 5.0	5.8574 6.0787 6.2665 6.5695	27.767 28.179 28.540 29.155	71.47 71.96 72.40 73.19	136.5 137.1 137.6 138.5	223.3 223.9 224.4 225.4	$\alpha = 3.0$	1.0 1.2 1.4 1.6 1.8 2.0	12.0798 12.6871 13.2183 13.6893 14.1120 14.4940	50.740 51.608 52.358 53.019 53.612 54.150	125.26 126.18 126.99 127.71 128.37 128.96	236.1 237.0 237.9 238.6 239.3 239.9	383.6 384.6 385.4 386.2 386.9 387.5
$\alpha = 1.4$	1.0 1.2 1.4 1.6 1.8 2.0 2.5	5.1207 5.4019 5.6482 5.8666 6.0629 6.2400 6.6193	27.982 28.463 28.878 29.241 29.566 29.862 30.500	75.22 75.72 76.14 76.53 76.88 77.19 77.90	145.7 146.2 146.7 147.1 147.4 147.8 148.5	239.8 240.3 240.8 241.2 241.6 241.9 242.7		2.5 3.0 3.5 4.0	15.3100 15.9768 16.5340	55.319 56.306 57.160 57.914 59.201	130.26 131.35 132.34 133.24 134.79	241.3 242.5 243.5 244.5 246.2	388.9 390.2 391.3 392.3 394.1
	3.0 3.5 4.0 5.0	6.9285 7.1867 7.4066 7.7612	31.036 31.498 31.904 32.594	78.52 79.07 79.57 80.42	149.2 149.8 150.3 151.3	243.4 244.0 244.6 245.7	$\alpha = 3.5$	1.0 1.2 1.4 1.6 1.8	15.0823 15.7030 16.2538 16.7477	57.739 58.725 59.577 60.329 61.004	140.23 141.30 142.23 143.04 143.78	262.7 263.8 264.8 265.6 266.4	425.7 426.8 427.8 428.7 429.5
$\alpha = 1.6$	1.0 1.2 1.4 1.6 1.8 2.0 2.5	5.9492 6.2705 6.5521 6.8022 7.0262 7.2291 7.6624	30.891 31.422 31.880 32.281 32.641 32.966 33.672	81.76 82.32 82.79 83.21 83.59 83.96 84.73	157.7 159.2 158.7 159.2 159.6 159.9 160.8	259.0 259.5 260.0 260.5 260.9 261.3 262.1		2.0 2.5 3.0 3.5 4.0 5.0	18.1476 18.9251 19.5753 20.1287	61.618 62.952 64.075 65.052 65.913 67.388	144.46 145.93 147.19 148.30 149.33 151.07	267.1 268.7 270.0 271.2 272.3 274.3	430.2 431.8 433.2 434.5 435.6 437.7
	3.0 3.5 4.0 5.0	8.0163 8.3123 8.5632 8.9694	34.265 34.776 35.227 35.992	85.41 86.03 86.56 87.52	161.5 162.2 162.8 163.9	262.9 263.6 264.2 265.4	$\alpha = 4.0$	1.0 1.2 1.4 1.6 1.8	16.7028 17.5167 18.2278 18.8582 19.4234	64.717 65.826 66.782 67.626 68.383	155.05 156.25 157.28 158.21 159.04	289.0 290.2 291.3 292.3 293.1	467.0 468.3 469.4 470.4 471.3
$\alpha = 1.8$	1.2 1.4 1.6 1.8 2.0 2.5	7.1535 7.4704 7.7518 8.0044 8.2329 8.7208	33.772 34.352 34.851 35.291 35.684 36.041 36.813	88.19 88.79 89.32 89.79 90.21 90.59 91.45	169.4 170.0 170.5 171.0 171.5 171.9 172.8	277.6 278.3 278.8 279.3 279.8 280.2 281.1		2.0 2.5 3.0 3.5 4.0 5.0	19.9344 21.0250 21.9146 22.6576 23.2893	69.071 70.568 71.832 72.074 73.900 75.560	159.79 161.44 162.87 164.12 165.23 167.21	293.9 295.7 297.2 298.5 299.7 301.9	472.1 473.9 475.4 476.8 478.1 480.4
	3.0 3.5 4.0 5.0	9.4526 9.7356	37.462 38.023 38.517 39.358	92.20 92.85 93.45 94.50	173.6 174.3 174.9 176.1	282.0 282.7 283.4 284.7	$\alpha = 5.0$	1.0 1.2 1.4 1.6	22.4790 23.3714 24.1621	78.682 80.026 81.186 82.212	184.33 185.80 187.06 188.18	340.5 342.1 343.4 344.5	547.9 549.5 550.8 552.0
$\alpha = 2.0$	1.0 1.2 1.4 1.6 1.8 2.0		36.632 37.260 37.803 38.278 38.705 39.092	94.52 95.18 95.75 96.26 96.73 97.14	180.8 181.5 182.1 182.6 183.1 183.6	295.9 296.6 297.2 297.8 298.3 298.7		1.8 2.0 2.5 3.0 3.5 4.0 5.0	24.8702 25.5096 26.8749 27.9873 28.9164 29.7047 30.9770	83.132 83.973 85.794 87.336 88.678 89.865 91.895	189.17 190.11 192.10 193.82 195.33 196.70 199.09	345.6 346.5 348.7 350.5 352.1 353.6 356.1	553.1 554.1 556.2 558.1 559.8 561.3 564.1

Appendix C: Eigenvalues for Cantilevered Beam with a Simply Supported End and Varying Aspect Ratio

Table from H. Mabie, C. Rogers, Transverse Vibrations of Tapered Cantilever Beams with End Support, J. Acoustical Soc. Am., v44, n6, 1968.

TABLE II. Factor (lK)2.

β	Fundamental frequency	Second harmonic	Third harmonic
1.0	15.417	49.964	104.24
1.2	15.604	50.139	104.43
1.4	15.751	50.275	104.55
1.6	15.867	50.386	104.67
1.8	15.963	50.477	104.78
2.0	16.044	50.555	104.86
2.5	16.195	50.702	105.00
3.0	16.299	50.807	105.12
3.5	16.374	50.884	105.23
4.0	16.431	50.944	105.29
5.0	16.507	51.024	105.39

kg/m^3 rhow

Appendix D: Parameters for Blade Spring Internal Mode Frequency Calculations

7800

Blade Spring Properties:

N/m^2	L	modulus of elasticity	1.86E+11
	nu	Poisson's ratio	0.3
kg/m^3	rho	density	7800
	Q	damping	1.00E+04
Wire P	roperties:		
N/m^2	Ew	modulus of elasticity	2.00E+11
	nuw	Poisson's ratio	0.25

density

									ETN	//ITM Controls Pro	totype
			GEO "original" blade	MC Upper Blade			Тор	Middle	Bottom		
Units	Symbol	Description	aka "Reference Blade"		D020	205-A			D040298	D040297	D040296
m	h	blade uniform thickness	0.002	0.0015					0.00429	0.0046	0.0042
m	lb	blade length	0.37	0.25					0.475	0.415	0.365
m	lt	wire clamp length	0.001	0.001					0.0058	0.0057	0.005
m	I	total blade length	0.371	0.251					0.4808	0.4207	0.37
m	а	blade root width	0.082	0.039878					0.095	0.059	0.049
m	b	blade tip width	0.016	0.007509					0.01	0.01	0.01
m		blade tip length	0.07	0.046455					0.0455	0.066	0.0705
kg	M	tip mass	0	0	0.012	0.017	0.022	0.032	0	0	(
	beta	ratio of tip to root widths	0.195121951	0.18829931					0.105263158	0.169491525	0.204081633
	alpha	shape factor	1.318011395	1.32268722					1.386483723	1.335966788	1.311978582
m	l^2/h	length^2/thickness	68.8205	42.0006667					53.88546387	38.4757587	32.5952381
kg	m	blade mass	0.2835924	0.0695807					0.844647804	0.520767702	0.3575754
	beta	ratio of root to tip widths	5.13	5.31					9.50	5.90	4.90
	alpha	ratio of root to tip thickness	1	1					1	1	1
Experir	nental resul	ts for frequency measureme	ents:								
hz	f1	1st internal frequency	55	90	84	82	80	77		95	111
				86							
Case 1:	: Beam with	linear taper in width, consta	ant thickness, clamped roo	t, simply sup	ported ti	р					
	(lk1)^2	1st mode eigenvalue	16.5297	16.5405					16.6336	16.5692	16.5152
	(lk2)^2	2nd mode eigenvalue	51.0512	51.0632					51.1873	51.0956	51.0354
	(lk3)^2	3rd mode eigenvalue	105.4452	105.4633					105.7127	105.5151	105.4218
hz	f1	1st mode frequency	53.9	88.4					69.3	96.6	113.7
hz	f2	2nd mode frequency	166.4	272.8					213.1	297.9	351.3
hz	f3	3rd mode frequency	343.8	563.4					440.1	615.3	725.6
		1st mode frequency error	-2.0%	-1.8%						1.7%	2.4%