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Change Record:

Revision –00: initial release.

Revision –01: The calculations (in version –00) for the internal modes based upon cantilevered, linearly tapered beams from referenced papers from Mabie & Rogers were in error by a factor of 
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, where g is the gravitational acceleration. (This factor is only needed when using weight density instead of mass density.) In addition, the conclusion drawn from the wire transmissibility regarding the appropriate blade spring tip boundary condition was incorrect. For the typical blade spring, wire and mass parameters in LIGO suspensions, there is still enough coupled mass to enforce a simply supported blade tip boundary condition. Equations for the frequencies of a linearly tapered beam with clamped root and simply supported tip are incorporated and shown to be the asymptotic solution when the coupled tip mass is a large multiple of the blade spring mass.

1 Introduction

The advanced LIGO suspension design
 achieves vertical isolation through the use of passive multiple stages of cantilevered blade springs which low pass filter the vibration. The frequencies of the rigid body modes of the coupled mass-spring system are designed to be set below the desired band of isolation, at about one to a few Hz. In addition to the rigid body modes, one must insure that the internal mode frequencies of the blade springs are high enough (and/or have enough damping) that they do not compromise isolation performance and so that thermal excitation does not exceed the displacement noise requirements
;
. The minimum internal mode frequency, calculated from one-dimensional considerations
 is about 40 Hz; As a design goal the internal modes should be greater than 100 Hz, otherwise detailed modeling and/or measurement would be required to confirm acceptability.

Consider the quadruple pendulum suspension depicted in Figure 1. We wish to determine the bending mode frequencies of the cantilevered, blade springs. Much work has already been done to establish the internal blade spring modal frequencies. The finite element method has been used to establish
,
 that:

· a simply supported blade tip boundary condition is a reasonable approximation for our typical parameters (i.e. that to a good approximation the first blade spring modal frequency is independent of the supported mass, the tip mass and the first rigid body bounce frequency)

· the first blade spring internal mode frequency is to a good approximation independent of the blade shape factor (or aspect ratio)

In the following, a theoretical formulation is presented which explicitly includes the shape factor and the effective tip mass as a function of frequency.

Figure 1: Quadruple Suspension
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2 Boundary conditions

Each blade spring is rigidly clamped to its associated mass (or in the case of the top blade spring, to the upper structure). Each of the suspended masses (from 22 to 40 kg) far exceeds the mass of the blade springs (which have masses on the order of 0.5 kg) and so the clamped end (root) of the blade spring can be approximated as an idealized clamped boundary condition (zero vertical displacement and zero slope).

At the beam tip end it might seem at first that the large supported mass ensures a simply supported boundary condition (zero vertical displacement but no applied moment due to the flexibility of the wire). However, the first vertical-bounce mode of the suspension stages is set by design at about ~1 Hz. The ETM/ITM parameters are given in N. Robertson's paper
, where the parameter definitions are given in M. Perreur-Lloyd's paper
. The value of the transmissibility (for motion at the blade root to motion at the supported mass) at ~100 Hz (the lowest intended frequency of the internal modes of the blade springs) is about 1%; See for example Figure 1 of T010174-00. The mass that the blade spring supports would seem then to be largely decoupled from the dynamics of the blade spring internal modes. However, from the formulation presented in the following section, we find that the first mode frequency is within ~10% of a simply supported end condition case if the effective tip mass is at least 30% of the blade mass. So the effective mass can be as little as ~0.1% of the supported mass before the simply supported boundary condition is no longer a good approximation.

3 Theoretical modal frequencies

The blade spring designs used in GEO and adv. LIGO have constant thickness and a linearly tapered width. The geometry also generally includes a tip region with a deviation from a idealized trapezoidal geometry, as shown in Figure 2.

In the literature there are solutions for the elastic modal frequencies for a cantilevered beam with linearly tapered width, with
 and without
 a discrete of point tip mass (i.e. a mass with no rotary inertia). Results are also available for a linearly tapered beam width of constant thickness with a clamped root and simply supported end. In all three cases the frequency, fi, for the ith mode is calculated as follows:
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is the numerical solution to the eigenvalue problem for the ith mode and is listed in tabular form as a function of the aspect ratio, 
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, in the appendices.

Figure 2: Blade Spring Geometry (drawings have a common scale)
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M = mass of the tip point mass 

m = mass of the blade spring

h = thickness of the blade-spring (h0 is the thickness at the blade root, h1 is the thickness at the blade tip; for LIGO suspension blades the thickness is constant, so h0 = h1)

l = length of the blade-spring (taken as the distance from the clamp at the base to the point where the wire detaches from the clamp at the tip of the blade

E = elastic modulus of the blade spring material

 = mass density of the blade spring material

To date the suspension design has stuck to aspect ratios of the blade designs that are close to the ratio used in GEO ( = 5.125) and have scaled the first internal mode frequency
 from the GEO blade by l 2/h.

The effect on the first frequency of changing the aspect ratio of the blade spring is indicated in Figure 3. The two curves represent the limiting cases of:

· clamped root – free tip boundary condition: no effective tip mass (when the supported mass is very low compared to the blade mass or when the supported mass is decoupled due to a high internal mode frequency and a low vertical bounce mode), and

· clamped root – simply supported tip boundary condition: large effective tip mass (when the supported mass is high compared to the blade mass or when the internal blade frequency is low in comparison to the vertical bounce mode)

As noted by J. Greenhalgh (T040024) based on finite element analysis, there is very little variation in the first mode frequency with shape factor changes for the clamped root – simple support boundary condition.

Figure 3: Variation of 1st frequency with aspect ratio, 
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The appendices A, B, and C give eigenvalues (coefficients of the frequency equation) for three boundary condition cases, all with clamped blade roots: (i) free tip, (ii) simply supported tip and (iii) tip loaded with a discrete mass. When the tip mass is very small in comparison to the blade mass, the frequencies asymptote to the free tip boundary condition case. When the tip mass is very large in comparison to the blade mass, the frequencies asymptote to the simply supported boundary condition case.

4 Comparison with experimental results

The simply supported tip formulation above compares well with available experimental results
,
 as indicated in Table 1. In each case the beam length used in the calculation is the length from the base clamp to the wire break-away from the wire clamp at the tip, and the tip width is taken as the minimum width of the blade.

For the upper blade of the Mode Cleaner triple suspension, the mass of the wire clamp at the tip was varied by adding mass, as indicated in Table 1. Note that the mass loaded tip formulation (appendix A) does not match these experimental results (for any reasonable assumed parameter values). It seems likely that the rotary inertia of the added tip mass is responsible for the observed decrease in first frequency, and not the added translational inertia.

Table 1: Comparison of theory to experiment

	Blade Spring
	Tip Mass (g)
	Experiment (Hz)
	Theory (Hz)
	% Error

	GEO Original design
	0(
	55
	53.9
	-2.0%

	Mode Cleaner triple suspension upper blade (D020205)
	0
	90
	88.4
	-1.8%

	
	12
	84
	NA
	

	
	17
	82
	NA
	

	
	22
	80
	NA
	

	
	32
	77
	NA
	

	ETM Top Blade
	0
	
	69.3
	

	ETM Middle Blade
	0
	95
	96.6
	1.7%

	ETM Bottom Blade
	0
	111
	113.7
	2.4%


Unfortunately the eigenvalues listed in the literature (and the appendices) are limited to  < 5 and have rather coarse sampling for R < 0.3. To compare with these experimental results, the values in the literature were extrapolated and interpolated. A refined set of numerical solutions to extend the solution set to parameter ranges of interest to LIGO and to provide a more accurate estimation would be of use. In the interim, the tabular results in the appendix or the eigenvalue coefficient fits in Table 2 can be used.

Table 2: Frequency Coefficient Fits

	Tip Boundary Condition
	1st Frequency Coefficient Fit, c1 = (l k1)2

	Simply Supported

(best fit with experiment)
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	Tip Mass
	for  = 5 and 0 < R < ~4: 
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	Free
	for R = 0 and 1 <  < ~6:
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Appendix A: Eigenvalues for Varying Tip Mass and Beam Aspect Ratio
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Appendix B: Eigenvalues for Cantilevered Beam Aspect Ratio and Thickness Ratio Variation
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Appendix C: Eigenvalues for Cantilevered Beam with a Simply Supported End and Varying Aspect Ratio


Appendix D: Parameters for Blade Spring Internal Mode Frequency Calculations














Table from H. Mabie, C. Rogers, Transverse Vibrations of Tapered Cantilever Beams with End Support, J. Acoustical Soc. Am., v44, n6, 1968.





Table from H. Mabie, C. Rogers, Transverse Vibrations of Double-Tapered Cantilever Beams, J. Acoustical Soc. Am., v51, n5, 1972.


N.B.: For LIGO SUS,  = 1 (constant thickness)





Table from H. Mabie, C. Rogers, Transverse Vibrations of Tapered Cantilever Beams with End Loads, J. Acoustical Soc. Am., v36, n3, Mar 1964, p 463-469.
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