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This note deals with the maximization over the amplitude parameter, α, and the orbital phase
φ, in the non-precessing BCV template bank. It is based on existing methods of maximization over
two angles simultaneously, which has been used in the F-statistic technique for pulsar searches. The
additional feature we add here is that we allow the range of α to be specified. We also study false
alarm rate in the case of Gaussian noise.

I. THE TEMPLATE BANK

The Fourier-domain BCV templates are of the form

h(f) = f−7/6(1 − αf2/3)
︸ ︷︷ ︸

A(f)

eiφ

eiψ(f)

︷ ︸︸ ︷

e2πift0+f
−5/3(ψ0+ψ1/2f

1/3+...) , f > 0 , (1)

with h(f) = h∗(−f) for f < 0. Here we denote by A(f) the amplitude part of the template. All through this note,
we focus on the two extrinsic parameters, φ and α.

We first construct an orthonormal basis {ĥj} for the 4-dimensional linear subspace of templates with φ ∈ [0, 2π)
and α ∈ (−∞,+∞) but with other parameters fixed. This can be done by constructing two real functions, A1(f) and
A2(f), which are linear combinations of f−7/6 and f−1/2 (with real coefficients) and satisfy

4

∫ +∞

0

df
Ai(f)Aj(f)

Sh(f)
= δij . (2)

Subsequently, by defining ĥ1,2(f) ≡ A1,2(f)eiψ , ĥ3,4 ≡ iA1,2(f)eiψ for f > 0 and ĥk(f) = ĥ∗k(−f) for f < 0, we will
have

〈ĥi|ĥj〉 = δij , (3)

and hence {ĥj} is the desired basis. Note that {f−7/6, f−1/2} being real is crucial in the construction of this orthonor-
mal basis. For definiteness, we can choose the following basis functions

[
A1(f)
A2(f)

]

=

[
a11 0
a21 a22

] [
f−7/6

f−1/2

]

(4)

with

a11 = I
−1/2
7/3 , a21 = −I5/3

I7/3

[

I1 −
I2
5/3

I7/3

]−1/2

, a22 =

[

I1 −
I2
5/3

I7/3

]−1/2

. (5)

where

Ik ≡ 4

∫ +∞

0

df
f−k

Sh(f)
. (6)

Now, we can parametrize the normalized template using two angles, the orbital phase φ and an angle θ [see Eq. (3)],

ĥ(θ, φ; f) = ĥ1(f) cos θ cosφ+ ĥ2(f) sin θ cosφ+ ĥ3(f) cos θ sinφ+ ĥ4(f) sin θ sinφ , (f > 0) (7)

where θ is related to α by

tan θ = − a11α

a22 + a21α
. (8)

For any given signal s, the overlap is (since normalization of template has already been taken care of)

ρ = 〈s|ĥ〉 = x1 cos θ cosφ+ x2 sin θ cosφ+ x3 cos θ sinφ+ x4 sin θ sinφ , (9)
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FIG. 1: The angular interval |D| as functions of fcut, for S2 and design-goal noise curves, see Eq. (10).

where xk ≡ 〈s|ĥk〉, k = 1, 2, 3, 4, are the only four overlaps we need to compute.
Since φ is intended for the orbital phase, we must search over the entire [0, 2π), while θ does not need to go through

the entire range of [0, π), instead, since we have an initial constraint on α, namely 0 < α < f
−2/3
cut , θ will be restricted

inside an interval, given by Eq. (8), which we denote by D. We now argue that the length |D| of this interval must

be smaller than π/2. Imagine that we continuously increase α from 0 to f
−2/3
cut , the representation of the template

amplitude A(f) in the A1,2 space will then continuously rotate by |D| (with its modulus varying continuously). Were
the rotation angle in this space to pass through π/2, say at α = α∗, then we must have a vanishing inner product
between Aα=0(f) and Aα=α∗

(f) — yet this should never happen, because we maintain Aα(f) > 0 all through our
range of α. As a consequence, |D| < π/2. In Eq. (8), this means the denominator a22 + a21α does not go through 0

when α varies from 0 to f
−2/3
cut . We then have

D =

[

− arctan
a11f

2/3
cut

a22 + a21f
2/3
cut

, 0

]

⊂ (−π/2, 0] . (10)

In Fig. 1, we plot |D| as a function fcut ranging from 100Hz to 2000Hz, using S2 and design-goal noise curves.

II. ALGEBRAIC MAXIMIZATION OVER α

Maximizing (9) over (θ, φ) ∈ D × [0, 2π), we have

ρD = max
θ∈D

[
(x1 cos θ + x2 sin θ)2 + (x3 cos θ + x4 sin θ)2

]1/2

= max
θ∈D

1√
2

[V0 + V1 cos 2θ + V2 sin 2θ]1/2 , (11)

where

V0 ≡ (x2
1 + x2

2 + x2
3 + x2

4) ,

V1 ≡ (x2
1 + x2

3 − x2
2 − x2

4) ,

V2 ≡ (2x1x2 + 2x3x4) . (12)

From Eq. (11), we note that θ → θ + π leaves ρD unchanged, so we only need to work with θ in an interval with
length π.

The maximization of (11) has a geometrical meaning, and is rather straightforward. Suppose D = [θa, θb], −π/2 <
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θa < θb ≤ π/2, then

ρD =







1√
2

[V0 + |V|]1/2 θV ∈ [2θa, 2θb]

1√
2

[V0 + V · (cos 2θa, sin 2θa)]
1/2

θV ∈ [θa + θb − π, 2θa]

1√
2

[V0 + V · (cos 2θb, sin 2θb)]
1/2

θV ∈ [2θb, θa + θb + π]

, (13)

where have defined

V ≡ (V1, V2) , θV ≡ arg(V1 + i V2) . (14)

In the special (but nonphysical) case of unconstrained α, we have D = (−π/2, π/2], and Eq. (13) always takes the
first case:

ρ[0,π) =
1√
2

[V0 + |V|]1/2 . (15)

III. FALSE ALARM PROBABILITY

In order to estimate the false-alarm probability due to this search, suppose there is only Gaussian noise in s,
then x1, x2, x3, x4 are independent Gaussian random variables with zero mean and unit variance. The false alarm
probability, with a threshold ρ∗, can be written as the following:

F(ρ∗) = P

[

V0 + max
θ∈D

(V1 cos 2θ + V2 sin 2θ) > 2ρ2
∗

]

= P
[

V0 + |V| > 2ρ2
∗, θV ∈ [2θa, 2θb]

]

+ P
[

V0 + |V| cos(θV − 2θa) > 2ρ2
∗, θV ∈ [θa + θb − π, 2θa)

]

+ P
[

V0 + |V| cos(θV − 2θb) > 2ρ2
∗, θV ∈ (2θb, θa + θb + π)

]

. (16)

From Appendix A, we know that θV is statistically independent from both V0 and |V|, and is uniformly distributed
over [0, 2π), so

P
[

V0 + |V| > 2ρ2
∗, θV ∈ [2θa, 2θb]

]

=
θb − θa
π

P
[

V0 + |V| > 2ρ2
∗

]

=
|D|
π
e−ρ

2
∗
/2

[√
π

2
ρ∗ erf

[
ρ∗√
2

]

+ e−ρ
2
∗
/2

]

. (17)

[See Appendix B for detailed calculations.] Using results in Appendix A, we can combine the last two lines of Eq. (16)
into

P
[

V0 + |V| cos θV > 2ρ2
∗, θV ∈ [−π − θa + θb, π + θa − θb)]

]

. (18)

[In particular, we apply sample-space transformations Tθa and Tθb, respectively, for these two terms, and then use
Eqs. (A7), (A8) and (A4).] We have not been able to integrate this analytically, and we give an upper bound here,

P
[

V0 + |V| cos θV > 2ρ2
∗, θV ∈ [−π − θa + θb, π + θa − θb)]

]

< P
[

V0 + |V| cos θV > 2ρ2
∗

]

= e−ρ
2
∗
/2 , (19)

and we can write

P
[

V0 + |V| cos θV > 2ρ2
∗, θV ∈ [−π − θa + θb, π + θa − θb)]

]

= [1 − ε(ρ∗, θb − θa)]e
−ρ2

∗
/2 , (20)

where ε(ρ∗, θb− θa) > 0 is a correction factor. As we shall see in Appendix C, this correction will always be negligible
(<∼ 10−6) for all cases of our interest, with ρ∗ > 5 and θb − θa < π/2. Summarizing Eqs. (17) and (20) , we have

F(ρ∗) = [1 − ε(ρ∗, θb − θa)]e
−ρ2

∗
/2 +

|D|
π
e−ρ

2
∗
/2

[√
π

2
ρ∗ erf

[
ρ∗√
2

]

+ e−ρ
2
∗
/2

]

≈ e−ρ
2
∗
/2

[

1 +
|D|
π

√
π

2
ρ∗

]

, (ρ∗ > 5, θb − θa < π/2) . (21)
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Here the first term correspond to the false-alarm probability with only maximization over orbital phase, the second
term comes from α maximization. Again, the approximate result in Eq. (21) will have relative error less than the
order of 10−6.

As comparisons, we are also interested in the false-alarm probability with uncontrainted α, which can be readily
obtained from Eq. (17) by setting |D| = π. Now we can put together false-alarm probabilities with unmaximized α,
physically constrained α [see Eq. (10) and Fig. 1], and unconstrained α (assuming ρ∗ > 5):

F(ρ∗) = e−ρ
2
∗
/2 ·







1 unmaximized, |D| = 0

1 +
|D|
π

√
π

2
ρ∗ physically constrainted α, 0 < |D| < π/2

√
π

2
ρ∗ unconstrained α, |D| = π

. (22)

Suppose a threshold of ρ
(0)
∗ = 8.1 is needed before α is introduced, in order to achieve a certain single-template

(i.e., for a single set of intrinsic parameters ψ0,1/2,... and arrival time t0) false-alarm probability, P (0). Now suppose

we search through α in a physical range of |D| = 0.7 [see Fig. 1]. Were the threshold to remain the same [ρ
(0)
∗ =

8.1], then adding templates (with non-zero α) would give a higher single-template false-alarm probability, 3.26P (0).
[Alternatively, one could also regard the constrained search over α as effectively placing 2.26 extra independent
templates along the α direction.] In order to drive the single-template false-alarm probability back to P (0), ρ∗ has to
be increased by 1.8%. As a consequence, a 1.8% increase in overlap is required to such a constrained α search. For

comparison, an unconstrained α search with the same threshold [ρ
(0)
∗ = 8.1] will yield a single-template false-alarm

probability of 10.2P (0), and would require a threshold increase of 3.5% to drive it back.

APPENDIX A: STATISTICAL INDEPENDENCE BETWEEN {V0, |V|} AND θV

Here we show that θV is statistically independent with the set {V0, |V|}, and that θV is distributed uniformly. We
denote

(x1, x2) ≡ rA(cos θA, sin θA) , (x3, x4) = rB(cos θB, sin θB) , (A1)

with 0 ≤ θA, θB < 2π. It is easy to show that the random variables {rA, rB , θA, θB} are mutually independent, and
that θA and θB are uniformly distributed over [0, 2π). For any set S, we have

P
[
S

]
=

∫

S

prArBθAθB (rA, rB , θA, θB)drAdrBdθAdθB

=

∫

S

prA(rA)prB (rB)drAdrBdθAdθB , (A2)

due to the independence between {rA, rB, θA, θB} and the uniformity of distributions of θA and θB. We can apply a
one-to-one smooth coordinate transformation,

Tδ : θA,B → θA,B + δ , (A3)

in the last integral of Eq. (A2) and obtain, by noting that the Jacobian of Tδ is identity, and that the probability
density does not depend on θA,B:

P
[
S

]
=

∫

Tδ(S)

prA(rA)prB (rB)drAdrBdθAdθB = P [Tδ(S)] . (A4)

where Tδ is the image of S under Tδ.
We can express V0, V, and |V| in terms of {rA, rB, θA, θB},

V0 = r2A + r2B , (A5)

V = (r2A r2B)

(
cos 2θA sin 2θA
cos 2θB sin 2θB

)

, |V| =
√

r4A + r4B + 2r2Ar
2
B cos(2θA − 2θB) . (A6)

and it is easy to verify that

T (V0) = V0, Tδ(V) = V

(
cos 2δ sin 2δ

− sin 2δ cos 2δ

)

, (A7)
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and that

Tδ(|V|) = |V|, Tδ(θV ) = θV + 2δ . (A8)

In order to prove independence of θV from {V0, |V|}, the set of our interest is

S ≡ {V0 ∈ SA, |V| ∈ SB, θV ∈ [α, β)} . (A9)

From Eqs. (A7) and (A8),

Tδ(S) = {V0 ∈ SA, |V| ∈ SB, θV ∈ [α− 2δ, β − 2δ)} , (A10)

so from Eq. (A4), we have

P
[
V0 ∈ SA, |V| ∈ SB, θV ∈ [α, β)

]
= P

[
V0 ∈ SA, |V| ∈ SB , θV ∈ [α− 2δ, β − 2δ)

]
, ∀α, β, δ , (A11)

which leads to

P
[
V0 ∈ SA, |V| ∈ SB, θV ∈ [α, β)

]
= P

[
θV ∈ [α, β)

]
P

[
V0 ∈ SA, |V| ∈ SB

]
=
β − α

2π
P

[
V0 ∈ SA, |V| ∈ SB

]
, (A12)

and hence the independence of θV from {V0, |V|}.

APPENDIX B: DISTRIBUTION FUNCTIONS OF V0 + |V| AND V0 + |V| cos θV

In order to calculate the probability density of V0 + |V|, we write

x1,4 =
y1 ± y2√

2
, x2,3 =

y3 ± y4√
2

, (B1)

and

A ≡
√

y2
1 + y2

4 , B ≡
√

y2
2 + y2

3 , V0 + |V| = (A+B)2 . (B2)

This means

P
[

V0 + |V| > 2ρ2
∗

]

= P
[

A+B >
√

2ρ∗

]

. (B3)

For A and B, we have the joint probability density of

pAB(A,B) = AB exp

(

−A
2 +B2

2

)

, A,B ≥ 0 . (B4)

From this, we deduce

P
[

V0 + |V| > 2ρ2
∗

]

= e−ρ
2
∗
/2

[√
π

2
ρ erf

[
ρ√
2

]

+ e−ρ
2
∗
/2

]

. (B5)

On the other hand, because V0 + |V| cos θV = V0 + V1 = 2x2
1 + 2x2

3, it is obvious that

P
[

V0 + |V| cos θV > 2ρ2
∗

]

= P [x2
1 + x2

3 > ρ2
∗] = e−ρ

2
∗
/2 . (B6)

APPENDIX C: FULL CALCULATION OF THE PROBABILITY (18)

From Eqs. (B2) and (B4), it is straightforward to obtain the joint probability density of {V0, |V|}:

p{V0,|V|}(x, y) =
ye−x/2

4
√

x2 − y2
, x > y > 0 . (C1)
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FIG. 2: The correction factor ε(ρ∗, γ) for 0 < γ < π/2 and ρ = 5 (solid curve) and 6 (dashed curve).

We then have

(18) = P
[

V0 + |V| cos θV > 2ρ2
∗, θV ∈ [−π − θa + θb, π + θa − θb)]

]

=

∫ π−γ

−π+γ

dθ

2π

∫

x>y
x+y cos θ>2ρ2

∗

dxdy
ye−x/2

4
√

x2 − y2
(C2)

where γ ≡ θb − θa. For γ > 0, we have not been able to evaluate the above integral analytically. However, because of
the factor e−x/2, it does seem that the integral over θ should get most of its contributions from θ < π/2, so for small
γ this integral should not be so different from its value at γ = 0, which has been given by Eq. (B6). To parametrize
the error made by assuming γ = 0, we have defined a relative error ε in Eq. (20). Here we express it in terms of
numerical integrations:

ε(ρ∗, θb − θa) = ε(ρ∗, γ) = 1 −
∫ π−γ

−π+γ

dθ

2π

∫

x>y
x+y cos θ>2ρ2

∗

dxdy
ye(ρ

2
∗
−x)/2

4
√

x2 − y2
(C3)

= 1 −
∫ π−γ

−π+γ

dθ

2π



(1 + ρ2
∗)e

−ρ2
∗
/2 +

∫ 2ρ2
∗

2ρ2
∗

1+cos θ

dx
e(ρ

2
∗
−x)/2

4

√

x2 −
(
x− 2ρ2

∗

cos θ

)2


 (C4)

In Fig. 2, we plot ε(ρ∗, γ) for 0 < γ < π/2 in the cases of ρ = 5 and 6. This suggests that in regimes of our interest
we can safely ignore ε.
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