Using α as extrinsic parameter in the template family

Alessandra Buonanno, Yanbei Chen and Michele Vallisneri

(Dated: February 4, 2005)
This note deals with the maximization over the amplitude parameter, α, and the orbital phase ϕ, in the non-precessing BCV template bank. It is based on existing methods of maximization over two angles simultaneously, which has been used in the \mathcal{F}-statistic technique for pulsar searches. The additional feature we add here is that we allow the range of α to be specified. We also study false alarm rate in the case of Gaussian noise.

I. THE TEMPLATE BANK

The Fourier-domain BCV templates are of the form

$$
\begin{equation*}
h(f)=\underbrace{f^{-7 / 6}\left(1-\alpha f^{2 / 3}\right)}_{\mathcal{A}(f)} e^{i \phi} \overbrace{e^{2 \pi i f t_{0}+f^{-5 / 3}\left(\psi_{0}+\psi_{1 / 2} f^{1 / 3}+\ldots\right)}}^{e^{i \psi(f)}}, \quad f>0 \tag{1}
\end{equation*}
$$

with $h(f)=h^{*}(-f)$ for $f<0$. Here we denote by $\mathcal{A}(f)$ the amplitude part of the template. All through this note, we focus on the two extrinsic parameters, ϕ and α.

We first construct an orthonormal basis $\left\{\hat{h}_{j}\right\}$ for the 4-dimensional linear subspace of templates with $\phi \in[0,2 \pi)$ and $\alpha \in(-\infty,+\infty)$ but with other parameters fixed. This can be done by constructing two real functions, $\mathcal{A}_{1}(f)$ and $\mathcal{A}_{2}(f)$, which are linear combinations of $f^{-7 / 6}$ and $f^{-1 / 2}$ (with real coefficients) and satisfy

$$
\begin{equation*}
4 \int_{0}^{+\infty} d f \frac{\mathcal{A}_{i}(f) \mathcal{A}_{j}(f)}{S_{h}(f)}=\delta_{i j} \tag{2}
\end{equation*}
$$

Subsequently, by defining $\hat{h}_{1,2}(f) \equiv \mathcal{A}_{1,2}(f) e^{i \psi}, \hat{h}_{3,4} \equiv i \mathcal{A}_{1,2}(f) e^{i \psi}$ for $f>0$ and $\hat{h}_{k}(f)=\hat{h}_{k}^{*}(-f)$ for $f<0$, we will have

$$
\begin{equation*}
\left\langle\hat{h}_{i} \mid \hat{h}_{j}\right\rangle=\delta_{i j} \tag{3}
\end{equation*}
$$

and hence $\left\{\hat{h}_{j}\right\}$ is the desired basis. Note that $\left\{f^{-7 / 6}, f^{-1 / 2}\right\}$ being real is crucial in the construction of this orthonormal basis. For definiteness, we can choose the following basis functions

$$
\left[\begin{array}{l}
\mathcal{A}_{1}(f) \tag{4}\\
\mathcal{A}_{2}(f)
\end{array}\right]=\left[\begin{array}{cc}
a_{11} & 0 \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
f^{-7 / 6} \\
f^{-1 / 2}
\end{array}\right]
$$

with

$$
\begin{equation*}
a_{11}=I_{7 / 3}^{-1 / 2}, \quad a_{21}=-\frac{I_{5 / 3}}{I_{7 / 3}}\left[I_{1}-\frac{I_{5 / 3}^{2}}{I_{7 / 3}}\right]^{-1 / 2}, \quad a_{22}=\left[I_{1}-\frac{I_{5 / 3}^{2}}{I_{7 / 3}}\right]^{-1 / 2} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{k} \equiv 4 \int_{0}^{+\infty} d f \frac{f^{-k}}{S_{h}(f)} \tag{6}
\end{equation*}
$$

Now, we can parametrize the normalized template using two angles, the orbital phase ϕ and an angle θ [see Eq. (3)],

$$
\begin{equation*}
\hat{h}(\theta, \phi ; f)=\hat{h}_{1}(f) \cos \theta \cos \phi+\hat{h}_{2}(f) \sin \theta \cos \phi+\hat{h}_{3}(f) \cos \theta \sin \phi+\hat{h}_{4}(f) \sin \theta \sin \phi, \quad(f>0) \tag{7}
\end{equation*}
$$

where θ is related to α by

$$
\begin{equation*}
\tan \theta=-\frac{a_{11} \alpha}{a_{22}+a_{21} \alpha} \tag{8}
\end{equation*}
$$

For any given signal s, the overlap is (since normalization of template has already been taken care of)

$$
\begin{equation*}
\rho=\langle s \mid \hat{h}\rangle=x_{1} \cos \theta \cos \phi+x_{2} \sin \theta \cos \phi+x_{3} \cos \theta \sin \phi+x_{4} \sin \theta \sin \phi \tag{9}
\end{equation*}
$$

FIG. 1: The angular interval $|\mathcal{D}|$ as functions of $f_{\text {cut }}$, for S 2 and design-goal noise curves, see Eq. (10).
where $x_{k} \equiv\left\langle s \mid \hat{h}_{k}\right\rangle, k=1,2,3,4$, are the only four overlaps we need to compute.
Since ϕ is intended for the orbital phase, we must search over the entire $[0,2 \pi)$, while θ does not need to go through the entire range of $[0, \pi)$, instead, since we have an initial constraint on α, namely $0<\alpha<f_{\text {cut }}^{-2 / 3}, \theta$ will be restricted inside an interval, given by Eq. (8), which we denote by \mathcal{D}. We now argue that the length $|\mathcal{D}|$ of this interval must be smaller than $\pi / 2$. Imagine that we continuously increase α from 0 to $f_{\text {cut }}^{-2 / 3}$, the representation of the template amplitude $\mathcal{A}(f)$ in the $\mathcal{A}_{1,2}$ space will then continuously rotate by $|\mathcal{D}|$ (with its modulus varying continuously). Were the rotation angle in this space to pass through $\pi / 2$, say at $\alpha=\alpha_{*}$, then we must have a vanishing inner product between $\mathcal{A}_{\alpha=0}(f)$ and $\mathcal{A}_{\alpha=\alpha_{*}}(f)$ - yet this should never happen, because we maintain $\mathcal{A}_{\alpha}(f)>0$ all through our range of α. As a consequence, $|\mathcal{D}|<\pi / 2$. In Eq. (8), this means the denominator $a_{22}+a_{21} \alpha$ does not go through 0 when α varies from 0 to $f_{\text {cut }}^{-2 / 3}$. We then have

$$
\begin{equation*}
\mathcal{D}=\left[-\arctan \frac{a_{11} f_{\mathrm{cut}}^{2 / 3}}{a_{22}+a_{21} f_{\mathrm{cut}}^{2 / 3}}, 0\right] \subset(-\pi / 2,0] . \tag{10}
\end{equation*}
$$

In Fig. 1, we plot $|\mathcal{D}|$ as a function $f_{\text {cut }}$ ranging from 100 Hz to 2000 Hz , using S 2 and design-goal noise curves.

II. ALGEBRAIC MAXIMIZATION OVER α

Maximizing (9) over $(\theta, \phi) \in \mathcal{D} \times[0,2 \pi)$, we have

$$
\begin{align*}
\rho_{\mathcal{D}} & =\max _{\theta \in \mathcal{D}}\left[\left(x_{1} \cos \theta+x_{2} \sin \theta\right)^{2}+\left(x_{3} \cos \theta+x_{4} \sin \theta\right)^{2}\right]^{1 / 2} \\
& =\max _{\theta \in \mathcal{D}} \frac{1}{\sqrt{2}}\left[V_{0}+V_{1} \cos 2 \theta+V_{2} \sin 2 \theta\right]^{1 / 2}, \tag{11}
\end{align*}
$$

where

$$
\begin{align*}
V_{0} & \equiv\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
V_{1} & \equiv\left(x_{1}^{2}+x_{3}^{2}-x_{2}^{2}-x_{4}^{2}\right) \\
V_{2} & \equiv\left(2 x_{1} x_{2}+2 x_{3} x_{4}\right) . \tag{12}
\end{align*}
$$

From Eq. (11), we note that $\theta \rightarrow \theta+\pi$ leaves $\rho_{\mathcal{D}}$ unchanged, so we only need to work with θ in an interval with length π.

The maximization of (11) has a geometrical meaning, and is rather straightforward. Suppose $\mathcal{D}=\left[\theta_{a}, \theta_{b}\right],-\pi / 2<$
$\theta_{a}<\theta_{b} \leq \pi / 2$, then

$$
\rho_{\mathcal{D}}= \begin{cases}\frac{1}{\sqrt{2}}\left[V_{0}+|\mathbf{V}|\right]^{1 / 2} & \theta_{V} \in\left[2 \theta_{a}, 2 \theta_{b}\right] \tag{13}\\ \frac{1}{\sqrt{2}}\left[V_{0}+\mathbf{V} \cdot\left(\cos 2 \theta_{a}, \sin 2 \theta_{a}\right)\right]^{1 / 2} & \theta_{V} \in\left[\theta_{a}+\theta_{b}-\pi, 2 \theta_{a}\right] \\ \frac{1}{\sqrt{2}}\left[V_{0}+\mathbf{V} \cdot\left(\cos 2 \theta_{b}, \sin 2 \theta_{b}\right)\right]^{1 / 2} & \theta_{V} \in\left[2 \theta_{b}, \theta_{a}+\theta_{b}+\pi\right]\end{cases}
$$

where have defined

$$
\begin{equation*}
\mathbf{V} \equiv\left(V_{1}, V_{2}\right), \quad \theta_{V} \equiv \arg \left(V_{1}+i V_{2}\right) \tag{14}
\end{equation*}
$$

In the special (but nonphysical) case of unconstrained α, we have $\mathcal{D}=(-\pi / 2, \pi / 2$], and Eq. (13) always takes the first case:

$$
\begin{equation*}
\rho_{[0, \pi)}=\frac{1}{\sqrt{2}}\left[V_{0}+|\mathbf{V}|\right]^{1 / 2} \tag{15}
\end{equation*}
$$

III. FALSE ALARM PROBABILITY

In order to estimate the false-alarm probability due to this search, suppose there is only Gaussian noise in s, then $x_{1}, x_{2}, x_{3}, x_{4}$ are independent Gaussian random variables with zero mean and unit variance. The false alarm probability, with a threshold ρ_{*}, can be written as the following:

$$
\begin{align*}
\mathcal{F}\left(\rho_{*}\right) & =P\left[V_{0}+\max _{\theta \in \mathcal{D}}\left(V_{1} \cos 2 \theta+V_{2} \sin 2 \theta\right)>2 \rho_{*}^{2}\right] \\
& =P\left[V_{0}+|\mathbf{V}|>2 \rho_{*}^{2}, \theta_{V} \in\left[2 \theta_{a}, 2 \theta_{b}\right]\right] \\
& +P\left[V_{0}+|\mathbf{V}| \cos \left(\theta_{V}-2 \theta_{a}\right)>2 \rho_{*}^{2}, \theta_{V} \in\left[\theta_{a}+\theta_{b}-\pi, 2 \theta_{a}\right)\right] \\
& +P\left[V_{0}+|\mathbf{V}| \cos \left(\theta_{V}-2 \theta_{b}\right)>2 \rho_{*}^{2}, \theta_{V} \in\left(2 \theta_{b}, \theta_{a}+\theta_{b}+\pi\right)\right] . \tag{16}
\end{align*}
$$

From Appendix A, we know that θ_{V} is statistically independent from both V_{0} and $|\mathbf{V}|$, and is uniformly distributed over $[0,2 \pi)$, so

$$
\begin{equation*}
P\left[V_{0}+|\mathbf{V}|>2 \rho_{*}^{2}, \theta_{V} \in\left[2 \theta_{a}, 2 \theta_{b}\right]\right]=\frac{\theta_{b}-\theta_{a}}{\pi} P\left[V_{0}+|\mathbf{V}|>2 \rho_{*}^{2}\right]=\frac{|\mathcal{D}|}{\pi} e^{-\rho_{*}^{2} / 2}\left[\sqrt{\frac{\pi}{2}} \rho_{*} \operatorname{erf}\left[\frac{\rho_{*}}{\sqrt{2}}\right]+e^{-\rho_{*}^{2} / 2}\right] \tag{17}
\end{equation*}
$$

[See Appendix B for detailed calculations.] Using results in Appendix A, we can combine the last two lines of Eq. (16) into

$$
\begin{equation*}
\left.P\left[V_{0}+|\mathbf{V}| \cos \theta_{V}>2 \rho_{*}^{2}, \theta_{V} \in\left[-\pi-\theta_{a}+\theta_{b}, \pi+\theta_{a}-\theta_{b}\right)\right]\right] \tag{18}
\end{equation*}
$$

[In particular, we apply sample-space transformations $T_{\theta_{a}}$ and $T_{\theta_{b}}$, respectively, for these two terms, and then use Eqs. (A7), (A8) and (A4).] We have not been able to integrate this analytically, and we give an upper bound here,

$$
\begin{equation*}
\left.P\left[V_{0}+|\mathbf{V}| \cos \theta_{V}>2 \rho_{*}^{2}, \theta_{V} \in\left[-\pi-\theta_{a}+\theta_{b}, \pi+\theta_{a}-\theta_{b}\right)\right]\right]<P\left[V_{0}+|\mathbf{V}| \cos \theta_{V}>2 \rho_{*}^{2}\right]=e^{-\rho_{*}^{2} / 2} \tag{19}
\end{equation*}
$$

and we can write

$$
\begin{equation*}
\left.P\left[V_{0}+|\mathbf{V}| \cos \theta_{V}>2 \rho_{*}^{2}, \theta_{V} \in\left[-\pi-\theta_{a}+\theta_{b}, \pi+\theta_{a}-\theta_{b}\right)\right]\right]=\left[1-\epsilon\left(\rho_{*}, \theta_{b}-\theta_{a}\right)\right] e^{-\rho_{*}^{2} / 2} \tag{20}
\end{equation*}
$$

where $\epsilon\left(\rho_{*}, \theta_{b}-\theta_{a}\right)>0$ is a correction factor. As we shall see in Appendix C , this correction will always be negligible $\left(\lesssim 10^{-6}\right)$ for all cases of our interest, with $\rho_{*}>5$ and $\theta_{b}-\theta_{a}<\pi / 2$. Summarizing Eqs. (17) and (20), we have

$$
\begin{align*}
\mathcal{F}\left(\rho_{*}\right) & =\left[1-\epsilon\left(\rho_{*}, \theta_{b}-\theta_{a}\right)\right] e^{-\rho_{*}^{2} / 2}+\frac{|\mathcal{D}|}{\pi} e^{-\rho_{*}^{2} / 2}\left[\sqrt{\frac{\pi}{2}} \rho_{*} \operatorname{erf}\left[\frac{\rho_{*}}{\sqrt{2}}\right]+e^{-\rho_{*}^{2} / 2}\right] \\
& \approx e^{-\rho_{*}^{2} / 2}\left[1+\frac{|\mathcal{D}|}{\pi} \sqrt{\frac{\pi}{2}} \rho_{*}\right], \quad\left(\rho_{*}>5, \theta_{b}-\theta_{a}<\pi / 2\right) \tag{21}
\end{align*}
$$

Here the first term correspond to the false-alarm probability with only maximization over orbital phase, the second term comes from α maximization. Again, the approximate result in Eq. (21) will have relative error less than the order of 10^{-6}.

As comparisons, we are also interested in the false-alarm probability with uncontrainted α, which can be readily obtained from Eq. (17) by setting $|\mathcal{D}|=\pi$. Now we can put together false-alarm probabilities with unmaximized α, physically constrained α [see Eq. (10) and Fig. 1], and unconstrained α (assuming $\rho_{*}>5$):

$$
\mathcal{F}\left(\rho_{*}\right)=e^{-\rho_{*}^{2} / 2} \cdot \begin{cases}1 & \text { unmaximized, }|\mathcal{D}|=0 \tag{22}\\ 1+\frac{|\mathcal{D}|}{\pi} \sqrt{\frac{\pi}{2}} \rho_{*} & \text { physically constrainted } \alpha, 0<|\mathcal{D}|<\pi / 2 \\ \sqrt{\frac{\pi}{2}} \rho_{*} & \text { unconstrained } \alpha,|\mathcal{D}|=\pi\end{cases}
$$

Suppose a threshold of $\rho_{*}^{(0)}=8.1$ is needed before α is introduced, in order to achieve a certain single-template (i.e., for a single set of intrinsic parameters $\psi_{0,1 / 2, \ldots}$ and arrival time t_{0}) false-alarm probability, $P^{(0)}$. Now suppose we search through α in a physical range of $|\mathcal{D}|=0.7$ [see Fig. 1]. Were the threshold to remain the same $\left[\rho_{*}^{(0)}=\right.$ 8.1], then adding templates (with non-zero α) would give a higher single-template false-alarm probability, $3.26 P^{(0)}$. [Alternatively, one could also regard the constrained search over α as effectively placing 2.26 extra independent templates along the α direction.] In order to drive the single-template false-alarm probability back to $P^{(0)}, \rho_{*}$ has to be increased by 1.8%. As a consequence, a 1.8% increase in overlap is required to such a constrained α search. For comparison, an unconstrained α search with the same threshold $\left[\rho_{*}^{(0)}=8.1\right]$ will yield a single-template false-alarm probability of $10.2 P^{(0)}$, and would require a threshold increase of 3.5% to drive it back.

APPENDIX A: STATISTICAL INDEPENDENCE BETWEEN $\left\{V_{0},|\mathbf{V}|\right\}$ AND θ_{V}

Here we show that θ_{V} is statistically independent with the set $\left\{V_{0},|\mathbf{V}|\right\}$, and that θ_{V} is distributed uniformly. We denote

$$
\begin{equation*}
\left(x_{1}, x_{2}\right) \equiv r_{A}\left(\cos \theta_{A}, \sin \theta_{A}\right), \quad\left(x_{3}, x_{4}\right)=r_{B}\left(\cos \theta_{B}, \sin \theta_{B}\right) \tag{A1}
\end{equation*}
$$

with $0 \leq \theta_{A}, \theta_{B}<2 \pi$. It is easy to show that the random variables $\left\{r_{A}, r_{B}, \theta_{A}, \theta_{B}\right\}$ are mutually independent, and that θ_{A} and θ_{B} are uniformly distributed over $[0,2 \pi)$. For any set S, we have

$$
\begin{align*}
P[S] & =\int_{S} p_{r_{A} r_{B} \theta_{A} \theta_{B}}\left(r_{A}, r_{B}, \theta_{A}, \theta_{B}\right) d r_{A} d r_{B} d \theta_{A} d \theta_{B} \\
& =\int_{S} p_{r_{A}}\left(r_{A}\right) p_{r_{B}}\left(r_{B}\right) d r_{A} d r_{B} d \theta_{A} d \theta_{B} \tag{A2}
\end{align*}
$$

due to the independence between $\left\{r_{A}, r_{B}, \theta_{A}, \theta_{B}\right\}$ and the uniformity of distributions of θ_{A} and θ_{B}. We can apply a one-to-one smooth coordinate transformation,

$$
\begin{equation*}
\mathcal{I}_{\delta}: \theta_{A, B} \rightarrow \theta_{A, B}+\delta, \tag{A3}
\end{equation*}
$$

in the last integral of Eq. (A2) and obtain, by noting that the Jacobian of \mathcal{T}_{δ} is identity, and that the probability density does not depend on $\theta_{A, B}$:

$$
\begin{equation*}
P[S]=\int_{\mathcal{T}_{\delta}(S)} p_{r_{A}}\left(r_{A}\right) p_{r_{B}}\left(r_{B}\right) d r_{A} d r_{B} d \theta_{A} d \theta_{B}=P\left[\mathcal{I}_{\delta}(S)\right] \tag{A4}
\end{equation*}
$$

where \mathcal{T}_{δ} is the image of S under \mathcal{T}_{δ}.
We can express V_{0}, \mathbf{V}, and $|\mathbf{V}|$ in terms of $\left\{r_{A}, r_{B}, \theta_{A}, \theta_{B}\right\}$,

$$
\begin{align*}
& V_{0}=r_{A}^{2}+r_{B}^{2} \tag{A5}\\
& \mathbf{V}=\left(\begin{array}{ll}
r_{A}^{2} & r_{B}^{2}
\end{array}\right)\left(\begin{array}{cc}
\cos 2 \theta_{A} & \sin 2 \theta_{A} \\
\cos 2 \theta_{B} & \sin 2 \theta_{B}
\end{array}\right), \quad|\mathbf{V}|=\sqrt{r_{A}^{4}+r_{B}^{4}+2 r_{A}^{2} r_{B}^{2} \cos \left(2 \theta_{A}-2 \theta_{B}\right)} \tag{A6}
\end{align*}
$$

and it is easy to verify that

$$
\mathcal{T}\left(V_{0}\right)=V_{0}, \quad \mathcal{I}_{\delta}(\mathbf{V})=\mathbf{V}\left(\begin{array}{rr}
\cos 2 \delta & \sin 2 \delta \tag{A7}\\
-\sin 2 \delta & \cos 2 \delta
\end{array}\right)
$$

and that

$$
\begin{equation*}
\mathcal{T}_{\delta}(|\mathbf{V}|)=|\mathbf{V}|, \quad \mathcal{T}_{\delta}\left(\theta_{V}\right)=\theta_{V}+2 \delta . \tag{A8}
\end{equation*}
$$

In order to prove independence of θ_{V} from $\left\{V_{0},|\mathbf{V}|\right\}$, the set of our interest is

$$
\begin{equation*}
S \equiv\left\{V_{0} \in S_{A},|\mathbf{V}| \in S_{B}, \theta_{V} \in[\alpha, \beta)\right\} \tag{A9}
\end{equation*}
$$

From Eqs. (A7) and (A8),

$$
\begin{equation*}
\mathcal{T}_{\delta}(S)=\left\{V_{0} \in S_{A},|\mathbf{V}| \in S_{B}, \theta_{V} \in[\alpha-2 \delta, \beta-2 \delta)\right\} \tag{A10}
\end{equation*}
$$

so from Eq. (A4), we have

$$
\begin{equation*}
P\left[V_{0} \in S_{A},|\mathbf{V}| \in S_{B}, \theta_{V} \in[\alpha, \beta)\right]=P\left[V_{0} \in S_{A},|\mathbf{V}| \in S_{B}, \theta_{V} \in[\alpha-2 \delta, \beta-2 \delta)\right], \quad \forall \alpha, \beta, \delta \tag{A11}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
P\left[V_{0} \in S_{A},|\mathbf{V}| \in S_{B}, \theta_{V} \in[\alpha, \beta)\right]=P\left[\theta_{V} \in[\alpha, \beta)\right] P\left[V_{0} \in S_{A},|\mathbf{V}| \in S_{B}\right]=\frac{\beta-\alpha}{2 \pi} P\left[V_{0} \in S_{A},|\mathbf{V}| \in S_{B}\right] \tag{A12}
\end{equation*}
$$

and hence the independence of θ_{V} from $\left\{V_{0},|\mathbf{V}|\right\}$.

APPENDIX B: DISTRIBUTION FUNCTIONS OF $V_{0}+|\mathbf{V}|$ AND $V_{0}+|\mathbf{V}| \cos \theta_{V}$

In order to calculate the probability density of $V_{0}+|\mathbf{V}|$, we write

$$
\begin{equation*}
x_{1,4}=\frac{y_{1} \pm y_{2}}{\sqrt{2}}, \quad x_{2,3}=\frac{y_{3} \pm y_{4}}{\sqrt{2}} \tag{B1}
\end{equation*}
$$

and

$$
\begin{equation*}
A \equiv \sqrt{y_{1}^{2}+y_{4}^{2}}, \quad B \equiv \sqrt{y_{2}^{2}+y_{3}^{2}}, \quad V_{0}+|\mathbf{V}|=(A+B)^{2} \tag{B2}
\end{equation*}
$$

This means

$$
\begin{equation*}
P\left[V_{0}+|\mathbf{V}|>2 \rho_{*}^{2}\right]=P\left[A+B>\sqrt{2} \rho_{*}\right] \tag{B3}
\end{equation*}
$$

For A and B, we have the joint probability density of

$$
\begin{equation*}
p_{A B}(A, B)=A B \exp \left(-\frac{A^{2}+B^{2}}{2}\right), \quad A, B \geq 0 \tag{B4}
\end{equation*}
$$

From this, we deduce

$$
\begin{equation*}
P\left[V_{0}+|\mathbf{V}|>2 \rho_{*}^{2}\right]=e^{-\rho_{*}^{2} / 2}\left[\sqrt{\frac{\pi}{2}} \rho \operatorname{erf}\left[\frac{\rho}{\sqrt{2}}\right]+e^{-\rho_{*}^{2} / 2}\right] \tag{B5}
\end{equation*}
$$

On the other hand, because $V_{0}+|\mathbf{V}| \cos \theta_{V}=V_{0}+V_{1}=2 x_{1}^{2}+2 x_{3}^{2}$, it is obvious that

$$
\begin{equation*}
P\left[V_{0}+|\mathbf{V}| \cos \theta_{V}>2 \rho_{*}^{2}\right]=P\left[x_{1}^{2}+x_{3}^{2}>\rho_{*}^{2}\right]=e^{-\rho_{*}^{2} / 2} \tag{B6}
\end{equation*}
$$

APPENDIX C: FULL CALCULATION OF THE PROBABILITY (18)

From Eqs. (B2) and (B4), it is straightforward to obtain the joint probability density of $\left\{V_{0},|\mathbf{V}|\right\}$:

$$
\begin{equation*}
p_{\left\{V_{0},|\mathbf{V}|\right\}}(x, y)=\frac{y e^{-x / 2}}{4 \sqrt{x^{2}-y^{2}}}, \quad x>y>0 \tag{C1}
\end{equation*}
$$

FIG. 2: The correction factor $\epsilon\left(\rho_{*}, \gamma\right)$ for $0<\gamma<\pi / 2$ and $\rho=5$ (solid curve) and 6 (dashed curve).

We then have

$$
\begin{align*}
(18) & \left.=P\left[V_{0}+|\mathbf{V}| \cos \theta_{V}>2 \rho_{*}^{2}, \theta_{V} \in\left[-\pi-\theta_{a}+\theta_{b}, \pi+\theta_{a}-\theta_{b}\right)\right]\right] \\
& =\int_{-\pi+\gamma}^{\pi-\gamma} \frac{d \theta}{2 \pi} \int_{\substack{x>y \\
x+y \cos \theta>2 \rho_{*}^{2}}} d x d y \frac{y e^{-x / 2}}{4 \sqrt{x^{2}-y^{2}}} \tag{C2}
\end{align*}
$$

where $\gamma \equiv \theta_{b}-\theta_{a}$. For $\gamma>0$, we have not been able to evaluate the above integral analytically. However, because of the factor $e^{-x / 2}$, it does seem that the integral over θ should get most of its contributions from $\theta<\pi / 2$, so for small γ this integral should not be so different from its value at $\gamma=0$, which has been given by Eq. (B6). To parametrize the error made by assuming $\gamma=0$, we have defined a relative error ϵ in Eq. (20). Here we express it in terms of numerical integrations:

$$
\begin{align*}
\epsilon\left(\rho_{*}, \theta_{b}-\theta_{a}\right)=\epsilon\left(\rho_{*}, \gamma\right) & =1-\int_{-\pi+\gamma}^{\pi-\gamma} \frac{d \theta}{2 \pi} \int_{\substack{x>y \\
x+y \cos \theta>2 \rho_{*}^{2}}} d x d y \frac{y e^{\left(\rho_{*}^{2}-x\right) / 2}}{4 \sqrt{x^{2}-y^{2}}} \tag{C3}\\
& =1-\int_{-\pi+\gamma}^{\pi-\gamma} \frac{d \theta}{2 \pi}\left[\left(1+\rho_{*}^{2}\right) e^{-\rho_{*}^{2} / 2}+\int_{\frac{2 \rho_{*}^{2}}{1+\cos \theta}}^{2 \rho_{*}^{2}} d x \frac{e^{\left(\rho_{*}^{2}-x\right) / 2}}{4} \sqrt{x^{2}-\left(\frac{x-2 \rho_{*}^{2}}{\cos \theta}\right)^{2}}\right] \tag{C4}
\end{align*}
$$

In Fig. 2, we plot $\epsilon\left(\rho_{*}, \gamma\right)$ for $0<\gamma<\pi / 2$ in the cases of $\rho=5$ and 6 . This suggests that in regimes of our interest we can safely ignore ϵ.

