

Laurent RUET MIT LASTI

MODAL CONTROL and ESTIMATOR

TRIPLE PENDULUM

TRIPLE PENDULUM

Vertical direction

INTRODUCTION

- Resonances to damp : 0-10Hz
- 2 sources of noise :
 - Seismic noise
 - Re-injected sensor noise
- Challenge : damp the resonances & reduce the sensor noise re-injection

CLASSIC FEEDBACK CONTROL

- Motion of mass 1 is measured, filtered, and reinjected as a force into mass 1.
- Drawbacks of the classic filtering feedback method :
 - Time consuming and complex work to design filters
 - Not flexible
 - Performances are not very good

9/27/2005

T050196-00-R

MODAL CONTROL : MATHEMATICS

• Goal : write the equations of dynamic in a new basis so that the equations are uncoupled $M\ddot{x} + Kx = 0$

 $x = Xe^{i\omega t}$

LIGO

 $M^{-1}KX = X\omega^2$ Where ω^2 are the eigenvalues and X are the eigenvectors of inv(M)*K. In the new basis Φ formed by the vectors X :

 $x = \phi.q$

 $\ddot{q} + \phi^{-1}M^{-1}K\phi \cdot q = \phi^{-1}F$ Matrix is now diagonal, equations are **decoupled**

9/27/2005

T050196-00-R

MODAL CONTROL : DECOMPOSITION

- We can design a control filter for each mode very easily because the transfer function is very simple
 - In practice, we use a parameterized filter (the shape is the same for every filter but the frequencies of poles/zero change depending on the frequency of the mode)
 - Makes the filter design very simple : do the design once and use it for all modes

MODAL CONTROL : CHOICE OF THE GAINS

- Modal controller gains :
 - K1=80
 - K2=3
 - K3=0

• Simple filter parameterized with the mode frequency

MODAL CONTROL : CONCLUSION

- How does modal control help?
 - Equations decoupled => easy to choose gain and filter for each mode
 - Lowest modes are easy to damp and filter => good damping
 - Highest modes can have lower gains => reduce noise transmission
- But

LIGO

 It needs as many measurement as DoF (needs to know the full state), this is not possible with the triple pendulum => estimator

ESTIMATOR LAYOUT

ESTIMATOR INTRODUCTION

- The estimator reconstructs the full state of the system
- It compares the estimated output with the real measurement to converge
- It can also filter the noisy measurements

$$x = \left[\frac{C.M.P + E.M.P - P}{C.M + E.M - 1 - E.M.C.P}\right] w + \left[\frac{E.M.C.P}{C.M + E.M - 1 - E.M.C.P}\right] v$$
Closed loop

$$E \rightarrow \infty$$

$$x = \left[\frac{P}{1 - C.P}\right] \cdot w + \left[\frac{C.P}{1 - C.P}\right] \cdot v$$

Equation of loop with no estimator

 $E \rightarrow 0$

 $x \rightarrow [P]w + [0]v$

no control

9/27/2005

T050196-00-R

ESTIMATOR : FEEDBACK CONTROL

Priority is stability

LIGO

- Need to design a controller
 - Filtered feedback
 - MIMO (LQR, ...)
- Design of a filter and choice of the gain
- Choice of a very simple filter shape to optimize stability and reduce HF noise

CHOICE OF ESTIMATOR FEEDBACK GAIN

LIGO

- Pole map of the closed loop
- The color represents the estimator gain
- System is unstable if the real part of the poles>=0

- X is sensor noise transmission at 20Hz (in dB)
- Y is settling time (in sec)
- Color is the estimator gain

13

٠

INFLUENCE OF EACH MODE ON SENSOR NOISE TRANSMISSION

- Transfer function between sensor noise and bottom mass motion, each modal controller turned on one by one
 - Shows the influence of each modal controller on the sensor noise injection
 - As expected, the lowest mode doesn't transmit a lot of noise
 - All the noise is carried by the 2nd mode
- Tells you how to improve the controller
 - Increase lower mode gain to keep a good damping
 - Decrease highest mode gain to lower noise injection

RESULTS

- Very good noise reduction with a simple filter shape
- More efficient than classic feedback for noise filtering
- Conclusion
 - Easy to design
 - Flexible
 - Good performances
 - Easy to improve

EXPERIMENTS

- successful
- Noise test is difficult in LASTI
 - Need to inject artificial sensor noise
 - Relative sensors limit the experimentation
 - => optical cavity between 2 triple pendulums

Artificial sensor noise is injected to compensate for big seismic noise

Expected noise on the bottom mass (X direction)

BETTER PERFORMANCES

- Improving the modal control filters is an easy way to improve performances (example in Z here)
- Work on MIMO estimator in progress, gain of few dB expected

9/27/2005

STABILITY WITH MODEL MISMATCH

- 1dof : easy to simulate by adding +/- 10% to the resonance (see document)
- Multi dof : hard to quantify the mismatch, Monte-Carlo on closed loop pole map
- The parameters to know
 - The resonances need to be well known (within 10%)
 - The Q doesn't need to be well known

LIGO

CONCLUSION

- The modal control has many advantages
 - Easy to design
 - Flexible
 - Good performances in sensor noise re-injection minimization
- The estimator enables us to use modal control by generating unknown states
- The stability is easy to study and bad modeling can be anticipated
- Model could be adjusted to match the plant even better (gradient minimization)