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     At present several large-scale interferometric gravitational wave detectors including 

GEO, LIGO, TAMA and Virgo are operating or are being commissioned. A cooperative 

analysis by these observatories could be valuable for making confident detections of 

gravitational-waves and for extracting maximal information from them. This analytical 

pipeline is particularly useful for gravitational-wave bursts (GWBs) search, for which 

theoretical knowledge of the source and the resulting gravitational waveform is limited. 

Systems generating gravitational-wave bursts are core-collapse supernovae [8, 9,10, 11], 

black hole merger [12, 13], and gamma-ray bursters [14]. 

Such cooperative analysis presents several advantages. Coincident observations from 

interferometers placed in different sites cause a decreased background from random 

detector noise fluctuations, that is a decreased false alarm rate, an increase in the total 

observation time during which some minimum number of interferometer are operating 

and the possibility of locating a source on the sky and extracting polarization information. 

Independent observations using different detector hardware and software also decrease 

the possibility of error or bias. 

Joint search presents also some disadvantages. Most notably, in a straightforward 

coincidence analyses the sensitivity of a network is limited by the least sensitive detector. 

In addition, differences in alignment of the detectors (it means that different detector are 

sensitive to different combinations of the two polarization components of the 

gravitational-wave) complicates attempts to compare signal amplitude or waveform as 

measured by different interferometer. Also the differences in hardware, software and 

algorithms make the collaborative analysis technically challenging [5]. 

Generally GW search codes have a single threshold which is varied to tune the analysis; 

lower thresholds allow weaker signals to be seen, but also allow higher false alarm rates 

from fluctuations in the noise background. Typically multi-detector GWB searches are 

tuned according the Nyman-Pearson criterion, which states that decision rule should be 

constructed in order to have the highest network efficiency, while not allowing  network 

false alarm rate to exceed a certain fixed value. For example, LIGO searches are typically 

tuned for a false alarm rate of 0.1 events or less over the observation time [5]. To date 

this tuning is typically done “by hand”, which can lead to sub-optimal tuning (i.e. poorer 

detection efficiency). In addition, there is an inherent ambiguity in which kind of signal 



should be used to estimate the efficiency. Without a model for the network it is difficult 

to quantify the effects of uncertainties or possible errors in the description of detectors. 

Truly optimal tuning should be done using a quantitative model for the detector network. 

This is particularly important for searches involving detector with different sensitivities 

and different orientation. Developing tools for such a quantitative model has been the 

goal of this project. 

 

     This project was oriented to model the performance of networks of gravitational-wave 

detectors in trigger-based search for gravitational-wave bursts (GWBs). This involved 

creating a software package that can estimate the efficiency and the false alarm 

probability of a general network of gravitational-wave detectors. The main target of such 

a network simulator is tuning of analyses in actual network GW searches, to maximize 

network sensitivity, or, in other words, to find the best power threshold set satisfying 

Neymann-Pearson criterion. Further, it could be used to estimate sensitivity to 

populations of signals other than those which were directly tested in the search. Finally, 

the software tool could be used to quantify the effect, over the entire network, of the 

uncertainties or possible errors in the properties of the individual detectors (such as in 

calibration, or due to finite-number statistics in measurements of sensitivities). 

The simulation engine was constructed in Matlab, and made publicly available. In the 

following the used approach and methods are outlined. 

 

     Data considered to test the tool were collected during S2 LIGO-TAMA analysis for 

GWBs search [5]. As part of the LIGO-TAMA search analysis, to estimate the sensitivity 

of LIGO-TAMA heterogeneous network simulated gravitational-wave signals were 

added (or “injected”) to the data stream from each detector and re-analyzed. This gave 

four sets of candidate signals (“event triggers”): analyses run 14 (playground data) and 17 

(total data) include injections, while run 15 (playground data) and run 18 (total data) 

don’t include injections. Injected signals belong to the population of linearly polarized 

Gaussian-modulated sinusoids: 
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Here t0 is the peak time of the signal envelope and f0 is the central frequency of the 

injection which is picked randomly from the values 700, 849, 1053, 1304, 1615, 2000 Hz. 

The quantity hrss is the root-sum-square amplitude of the plus polarization and it is found 

to be a convenient measure of the signal strength: 
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1. Network efficiency estimation 

 

     The first step was to develop the software to estimate efficiency curve for a general 

network of gravitational wave detectors, which is the probability for a GWB with specific 

amplitude to be detected by all of the interferometers. This task was achieved writing first 

a Matlab function, DetectorEfficiency.m, to estimate the single detector optimally 

oriented efficiency curve as function of the SNR threshold and the observable amplitude, 

that is essentially the product of true injected amplitude hrss by the antenna response 

factor corresponding to the source and polarization angle of the injection. Basically 

DetectorEfficiency.m function searches for time coincidences between trigger events 

collected by the interferometer and injected simulated GWB signals. For the events in 

time coincidence with an injection, the function checks the SNR value to be higher than 

the specified threshold and if so, the injected signal is considered detected, otherwise the 

detector wasn’t able to see that signal. The higher this threshold, the lower the false alarm 

rate, but the higher the probability that a weak GW signal cannot be seen. The fitting of 

the curve was done using a sigmoid function. DetectorEfficiency.m function has been 

used to obtain efficiency curves for each detector belonging to the network both averaged 

over all injected signals and for each kind of injected signals. Data with injections were 

used to obtain curves relative to the detectors H1, H2 and L1, shown below. 
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Figure 1. H1 efficiency for no power threshold averaged on all injected signals (left) and for each knd 
of them (right). Uncertainty in the latter picture is greater than former one because of the smaller 

number of simulations. 
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Figure 2. H2 efficiency for no power threshold averaged on all injected signals (left) and for each knd 
of them (right). Uncertainty in the latter picture is greater than former one because of the smaller 

number of simulations. 
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Figure 3. L1 efficiency for no power threshold averaged on all injected signals (left) and for each knd 
of them (right). Uncertainty in the latter figure is greater than former one because of the smaller 

number of simulations. 



 

Detector efficiency curves above-shown, are obtained fixing SNR threshold to zero. SNR 

provided by Event Trigger Generator (ETG) algorithm, which can be different for each 

detector, is here meant as a measure of signal strength and sometimes, especially if noise 

is fluctuating, this measure can result to be zero. 

Varying SNR threshold detection efficiency is expected to change, in particular 

increasing the threshold, detection probability is expected to decrease and this can be 

seen from following figures, representing H1 efficiency for SNR threshold equal to 0, 5 

and 10. 

 

 
Figure 4. H1 efficiency for different values of SNR threshold: 0 (blu line), 5 (red line), 10 (green line). 
 

 

These curves were used to estimate the network efficiency, which is the probability for a 

GW signal to be seen by all detectors. In theory this can be accomplished by computing 

the following integral, which basically computes the probability that all the 

interferometers see a GW signal, with specific amplitude, averaged over source angle and 

polarization angle. 

 
2

10 0 0

( ) sin ( ( , , ) ) ( , ) ( )
N

nw rss i obs
i

E h E h p p
π π π

ψ ϕ θ θ ψ ϕ θ ϕ θ ψ
=

= ∂ ∂ ∂ ∏∫ ∫ ∫  

( , , ) ( , , )obsh F hψ ϕ θ ψ ϕ θ+= ⋅ rss  

(1)

 



Here p(ψ) is probability distribution of polarization angle of GWB, while p(φ,θ) is the 

probability distribution of the source. 

In order to compute the value of the previous integral a Matlab function 

NetworkEfficiency.m was developed. It works out the result through direct integration, 

that consists in approximate the integral with the following sum. 
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To implement the previous calculation choosing a grid of samples for the source angles 

and the polarization angle is required. Polarization angle, ψ, is uniformly sampled; 

concerning source angle, the function allows choosing among a uniform, a cosine-θ 

uniform, that is sampling φ and cosine θ uniformly, and a sinusoidal map sampling, 

which provides a uniform distribution of samples over the sphere. In the following, 

results with sinusoidal map sampling, choosing a number of θ samples equal to 22, are 

shown. 
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Figure 5. H1-H2-L1 network efficiency for no power threshold averaged over all injected signals 
(left) and for each injection (right). Uncertainty in the latter picture is greater then the former one 

because of the smaller number of simulations. 
 
 
To have an idea of how SNR threshold set affects network efficiency, change this set 
from (0, 0, 0) into (0, 0, 5), i.e. make higher the threshold corresponding to L1, which is 
the least sensitive LIGO detector. Resulting curves for network efficiency are shown in 



following figures. You can see clearly from the center of sigmoid function, which 
increases roughly by an amount of 10%, that network efficiency makes worse. 
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Figure 6. H1-H2-L1 network efficiency for SNR thresholds H1: 0, H2: 0, L1: 5. 
 
 
 

2. Network False Alarm Rate 

 

     The next step of the project was to develop software to estimate network false alarm 

rate, which is the probability that a background event can occur in time, frequency and 

amplitude coincidence in all the detectors of the considered network. Amplitude 

comparison of observed signal amplitude is made hard by the differences in the 

alignment of the detectors. Not aligned detectors are sensitive to different combinations 

of the two polarization component, therefore amplitude cannot be compared in a trivial 

manner; simple comparison of observed amplitude can be done only for aligned 

detectors. The estimation of network false alarm rate was accomplished developing three 

function sets. 

 

     2.1  Time False Alarm Rate 

     The first set estimates the probability that a background event can occur in all the 

detectors in time coincidence. A function, DetectorFalseRate.m, was written to estimate 

for each detector time rate of background noise events occurring with SNR above 

specified threshold, with the assumption that the background is Poisson process. This 

function loads list of events not due to a GWB injection with SNR above fixed threshold 



and, based on the known total observation time, according to the formula shown below, 

estimates the time occurrence rate of background noise events in each detector. 
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Obviously detector time false event rate depends on the fixed SNR threshold: higher it is, 

lower false alarm rate is. Following figures show false alarm rate as a function of SNR 

threshold value for LIGO detectors. 

 
Figure 7. Time rate of background noise events occurring with SNR above specified threshold for 

LIGO detectors. 
     Successively, to estimate network time false alarm rate is fixed a coincidence window 

wt, which accounts for travel light time between the detectors in question: in practice, for 

safety, wt is chosen 10-20 ms longer than the light travel time.  Events from two detectors 

are defined to be in coincidence if the difference in their peak times satisfies the 

following condition 
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where t is the peak time and Δt is the duration of the signal. The duration-dependent term 
allows for the estimated peak time of coincident triggers to be further apart if the triggers 
are long compared to the coincidence window [5]; one may consider this as an allowance 
for the uncertainty in the determination of the peak time. A set of event triggers i, j,…. , k 
is defined to be in coincidence if each pair (i, j), (i, k), (j, k), etc., is in coincidence. 
NetworkTimeFalseRate.m function estimates the probability that noise events generated 



by the detectors can be in time coincidence. Assuming the hypotheses that background 
noise in each detector is modeled as Poisson process, that Ri wt << 1 and that 
coincidence window is the same for each pair of detector, the estimator for network time 
false alarm rate is 
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To estimate false rates were used data not including injected simulated signals, to avoid 

injections affecting estimations. For no SNR threshold, in table 1 are shown values 

obtained for the LIGO network. 

 

ρρ  ==  00 H1 H2 L1 H1-H2-L1 
Rt 0.0176 0.0153 0.3699 1.5905 10-7

Table 1. Detector and netowrk time false rate for LIGO. 
 

 

2.2 Frequency False Alarm Rate 

     The second function set was built with the intent to estimate the probability that 

background events can occur in different detectors in frequency coincidence. In order to 

estimate the probability density function of background events over central frequency and 

frequency bandwidth for each detector, BackgroundFrequencyDistribution.m function 

was developed; it considers background noise events detected with SNR above fixed 

threshold and, binning central frequency and frequency bandwidth, builds a 3-dimensal 

histogram counting the number of events for each frequency-bandwidth bin. Histograms 

resulting from analysis of run 15 data for LIGO detectors are shown in following figures. 

 



   

          
Figure 8. H1 (top left), H2 (top right) and L1 (bottom left) background noise ditribution 
measurement over central frequency and bandwidth from run 15 data, with no SNR threshold (The 
discrete structure happens because frequency and bandwidth of the triggers used are restricted to 
discrete values mulitples of 64 Hz). 
 

 

 The desired estimation is achieved by solving the following integral. 
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The criterion to establish frequency coincidence between two events is very similar to 

that used for the coincidence in time: two events are defined to be in frequency 

coincidence if the following condition is true 

 

( )i j f i jf f w a f f− < + Δ − Δ  (7)

 

where f is the estimated central frequency value and Δf is the estimated frequency 

bandwidth. Multiple events are defined to be in coincidence if each pair of events is 

coincident. The integral (6) is solved through Monte Carlo method. For 

• LIGO network 

• wf = 0; a = 0.5 

• no SNR threshold 

• 106 trials 

The resulting estimation is . _ 0.008159f netR =

 

 

2.3 Amplitude False Alarm Rate 

     Last step in computing network false rate is estimating network amplitude false alarm 

rate, which is the probability that background events occur with approximately the same 

amplitude in detectors. As mentioned earlier, this kind of test is applied only to detectors 

with the same orientation. Two events are defined to be in amplitude coincidence if 

 

|Hi - Hj| < wh (8)

 

with H defined as log(h), where h is the signal amplitude measured by the detector. 

To achieve desired estimation, we can proceed in the same way as done for the frequency 

false rate. BackgroundAmplitudeDistribution.m function estimates the probability density 

function of background events over amplitude, considering detected triggers not due to 

injected signals and whose corresponding SNR value is higher than specified threshold 



and building a histogram detailing the percentage of events occurred with specified 

amplitude. Histograms resulting from such a measure are shown in the following. 

 

 

 
Figure 9. Measured background noise distribution over amplitude for LIGO detectors and with no 

SNR threshold. 
 

The next step is done by NetworkAmplitudeFalseRate.m function, which performs, 

thorough Monte Carlo integration method, the following integral. 
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For 

• LIGO network 

• wh = 0.3 



• no SNR threshold 

• 106 trials 

The resulting estimation is . _ 0.4161h netR =

 

Once network time, frequency and amplitude false rate have been estimated, to obtain an 

estimation for the overall false rate is given by the product of this three quantities: 

_ _ _nw t nw f nw h nwR R R R= ⋅ ⋅  

This product rule is valid only in the hypothesis that time, frequency and amplitude 

coincidences are independent on each other. Applying this rule and considering 

previously computed quantities, network false events rate is . It’s clear 

that the quantity  is dependent on SNR thresholds chosen for each detector. Suppose 

to fix H2 threshold value and to vary those corresponding to H1 and L1, variations in 

network false rate are shown in the following figure. 
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Figure 10. LIGO network false rate as a function of H1 and L1 SNR thresholds. 

 

 

3. Find threshold SNR set satisfying Neymann-Pearson criterion 

 

    Once functions to estimate network efficiency and network false alarm rate were built, 

a master function was written to find the SNR threshold set satisfying Neymann-Pearson 

criterion. Principal steps are outlined. Fix a target network false alarm rate, choose a grid 



of SNR threshold set and check for sets allowing network false rate to be below fixed 

value. For selected sets compute network efficiency and choose the best one. The 

criterion to choose the best efficiency is to search for the curve having the lowest 

amplitude value, corresponding to a chosen efficiency value. The SNR threshold set 

corresponding to the best efficiency curve is the wanted set. 

 

 

4. Future plans 

 

     An interesting feature to include is the possibility to choose different coincidence 

windows for each pair of detectors. Also the possibility to choose different SNR 

threshold set range for each detector can be included. 

Further testing and optimization of the software tool are planned. 

Other future tasks are applying developed tool to past search, for validation of results, 

and current search, to help it. 
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