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As currently designed, the signal recycling cavity (SRC) in the Advanced LIGO interferometer is
degenerate. In such a degenerate cavity, the phase fronts of optical fields become badly distorted
when the mirror shapes are slightly deformed due to mirror figure error and/or thermal aberration,
and this causes significant loss of the signal power and the signal-to-noise ratio (SNR) of a grav-
itational wave event. Through a numerical modal simulation of the optical fields in a simplified
model of the Advanced LIGO interferometer, I investigate the SNR loss and the behavior of both
the carrier and signal optical fields, with the SRC at various levels of degeneracy. I show that the
SNR loss is severe with a degenerate SRC, and a non-degenerate SRC can be used to solve this
problem. I identify the optimal level of degeneracy for the SRC, which is achieved with the cavity
Gouy phase between 0.4 and 0.7 radian. I also discuss possible alternative designs of the SRC to
achieve this optimal degeneracy.

PACS numbers:

I. INTRODUCTION

In Advanced LIGO [1], among other upgrades from
initial LIGO [2], a signal recycling mirror (SRM) is in-
troduced at the dark port output of the interferometer
(see Fig. 1).

The SRM forms the signal recycling cavity (SRC) with
the input test masses (ITMs); and the SRC and the arm
cavity (AC) form a coupled resonant cavity, whose res-
onant properties can be controlled by two parameters
of the SRM (position and reflectivity) [3, 4]. In Ad-
vanced LIGO, with much higher optical power in the AC
(830kW), the SRM parameters are chosen to reduce the
optical power in the recycling cavities that passes through
the beamsplitter (BS), thus reducing the thermal distor-
tions due to thermal lensing. This flexibility also enables
the interferometer, although not in the Advanced LIGO
baseline design, to change its frequency response between
broad-band and narrow-band configurations, thus im-
proving the detection of GW sources with specific fre-
quency characteristics [7]. The Advanced LIGO baseline
design has the interferometer working in the broadband
resonant sideband extraction (RSE) configuration [4–6].
The signal recycling configuration, in principle, is also
able to circumvent the fundamental quantum limit on
measurement and go below the so called standard quan-
tum limit (SQL).

Given the advantages and new physics the signal recy-
cling configuration brings, however, there might be prob-
lems in the current design of the SRC.

The SRC, as well as the power recycling cavity (PRC),
are near degenerate, and it is well known that degener-
ate cavities are not selective to optical modes and per-
turbations to the cavity geometry cause strong mode
coupling[8]. Specifically, in the LIGO and Advanced
LIGO interferometers, figure error and thermal aberra-
tion of the mirrors (PRM, SRM and ITMs) will cause
strong optical mode coupling which transfers laser power
from the fundamental mode to higher order modes
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FIG. 1: Diagram of Advanced LIGO interferometer. A signal
recycling mirror is placed at the dark port, forming a SR
cavity with the ITMs.

(HOMs) and harm both the radio frequency (RF) side-
band (in the PRC) and the signal sideband (in the SRC).

The consequence of the high PRC degeneracy is well
known since severe mode mixing of the RF sideband has
been observed in LIGO, and it did harm the control sig-
nal and affect the interferometer operation. Measures
has been taken to fix the problem, including introducing
the thermal compensation system (TCS) to reduce the
thermal aberration on the mirror [9], and replacing bad
optical elements with unexpected high absorption. How-
ever, there is still the worry about the Advanced LIGO,
where much higher optical power in the AC will cause
worse thermal aberration on the ITMs. Müller et al have
been suggesting to reduce the PRC degeneracy by mov-
ing the mode-matching telescope (MMT) into the recy-
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cling cavities to reduce the beam waist size [10] and they
are currently working on practical issues in implementing
this modified topology in AdvLIGO [11].

The consequence of the high SRC degeneracy is not yet
clearly understood though since signal sideband behaves
differently from the carrier or the RF sideband in the
sense that it is resonant in the coupled two-cavity system
formed by the AC and the SRC, unlike the carrier or the
RF sideband which, roughly speaking, is resonant only
in the non-degenerate AC or the degenerate PRC. The
mode mixing of the signal sideband is seemingly some-
where between the carrier and the RF sideband.

Thorne [12] estimated the severeness of mode mixing in
the signal sideband under the assumption that the light
propagation in the SRC is well described by geometric op-
tics (since degenerate cavity accommodates optical eigen-
modes to very high orders, ”light rays” with sharp edges
are eigenmodes of the cavity as well), and found that for
the signal to noise ratio (SNR) to reduce by less than 1%
(assuming shot noise dominating) due to mode mixing,
the peak-to-valley mirror figure error in the central region
(region enclosing 95% of the ligh power) in the SRC has
to be less than 2nm for a wideband AdvLIGO baseline
design, and less than 1nm for narrowband configuration,
independent of whether Gaussian beam or Mesa beam
[12] is used, since degenerate cavity doesn’t distinguish
optical modes. These are severe constraints with cur-
rent technology. More careful investigation of this prob-
lem and the alternative designs of low degeneracy SRC
is needed.

In this paper, we present a mode decomposition based
simulation of light propagation, including both the car-
rier and signal sideband, in a simplified Advanced LIGO
interferometer model, and study the SNR loss due to
mirror perturbations. We get similar constraints on the
mirror figure error as in Ref. [12]. We also compute the
optimal degeneracy of the SRC, at which the SNR loss
due to mirror perturbations is minimized, assuming an
ideal lens is added into the SRC to reduce the degeneracy.
Consequently, we found that it is not practical to use a
single lens to change the SRC degeneracy as the beam
has to be focus so strongly to achieve the optimal degen-
eracy that the beam size on the SRM is on the order of
10−4m, and the power density on it exceeds 10GW/m2.
We apply the MMT design Müller suggested for the PRC
[10], which in principle, works also for the SRC. In this
design, the beam size is brought down to millimeter scale
by two mirrors to achieve the optimal degeneracy.

This paper is organized as follows. In Sec. II, we give
a brief overview of the mode decomposition formalism
and the Hermite-Gaussian modes [13], and interpret the
cavity degeneracy in the modal space point of view. In
Sec. III, we describe in detail the AdvLIGO interferom-
eter model that is used in the simulation. In Sec. IV, we
summarize the numerical result came out of the simula-
tion, including the constraint on mirror figure error and
thermal aberration and the optimal SRC degeneracy. We
also investigated the requirement for the three alternative

designs to achieve the optimal SRC degeneracy. At the
end, we discuss the robustness of our simulation and pos-
sible improvement undergoing. In Sec. V, we summarize
our conclusions.

II. MODE DECOMPOSITION FORMALISM

A. Modal decomposition in general

The mode decomposition formalism of calculating op-
tical fields in a perturbed interferometer is demonstrated
in detail by Hefetz et al [14]. We will review the general
idea briefly in this section.

One can generally expand the electromagnetic (EM)
field of a light beam as a superposition of orthonormal
optical modes:

E(x, y, z) =
∑

n

anUn(x, y, z) (1)

Though the basis modes Un(x, y, z) are arbitrary in prin-
ciple, one choose preferably the eigenmodes of the cavi-
ties in the ideal interferometer, e.g. (i) Hermite-Gaussian
modes, which are eigenmodes in the AdvLIGO baseline
design cavities formed by spherical mirrors (assuming in-
finite mirror size); (ii) Mesa beam modes [12], which are
eigenmodes suggested for AdvLIGO to reduce thermal
noise. The complex vector space formed by Un(x, y, z) is
call the modal space, and the EM field in modal space is
represented by an complex vector an. The propagation of
the optical field can thus be described by matrix in this
modal space. In a Cartesian coordinate where the z-axis
is along the optical axis and x and y-axes are transverse
to it, an operator M(x, y, z2, z1) transforms the EM field
at position z1 to the field at position z2:

E(x, y, z2) = M(x, y, z2, z1)⊗ E(x, y, z) (2)

and the representation of M(x, y, z2, z1) in the modal
space is given by

Mmn(z2, z1) =∫ ∫ ∞

−∞
U†

m(x, y, z2)M(x, y, z2, z1)Un(x, y, z1)dxdy (3)

It is convenient to separate these operators into prop-
agation operators in free space and interaction operators
describing the EM fields transformation when interacting
with optical elements. The free space propagator is given
by:

Pmn(z1, z2) = δmne−ik(z2−z1)eiηn (4)

where k is the wave vector and ηn is the diffraction phase
(i.e. the extra phase accumulated during propagation
besides k(z2−z1), due to diffraction effect, e.g. the Guoy
phase of Gaussian beam) associated with the nth optical
mode.
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To write out the interaction operator, we choose, near
the surfaces of an optical element, reference surfaces
which match the phase front shapes of the ideal light
beams. The operators can then be written in the general
form

Mmn = 〈m|M(x, y)|n〉 = 〈m|e−ikZ(x,y)|n〉 (5)

where Z(x, y) is the optical path light travels from enter-
ing a reference surface into the optical element till leaving
some reference surface. For ideal optical elements in our
interferometer model, Z(x, y) = constant, i.e. the mir-
rors or lens match exactly the optical modes and there
is no coupling between optical modes when light beam
interacts with the optical elements. For perturbed ele-
ments, e.g. slightly tilted mirrors, and slightly deformed
mirrors due to figure error and/or thermal aberration,
the optical modes couple to each other. Z(x, y) contains
contribution from both the figure error and the change
of refraction index in the material, and is referred to as
distortion function. Z(x, y) can be complex, when used
to describe lossy optical elements. These interaction op-
erators need to be accompanied by the scalar reflectivity
and transmissivity coefficients of the unperturbed opti-
cal element to give the true transform of the fields during
interacting with the elements.

In writing the interaction operators, we adopted the
short distance approximation [15], where the propaga-
tion inside optical element between the reference planes
are approximated by a simple non-uniform phase factor.
The phase distortion introduced by this approximation,
besides a factor of the order unity determined by the ge-
ometry of the ideal cavity, is obtained in Ref. [15]

∆Φ ∼ 1
4π

λ

L
(6)

where λ is the wavelength of the light and L is the length
of the cavity. In LIGO or AdvLIGO, L is at least of the
order 10 meters, and the phase distortion is thus smaller
than 10−8. Since a 1nm mirror figure error gives a phase
distortion of 6× 10−4, ∆Φ is always safely negligible.

In the modal space, the optical fields in a perturbed
interferometer can be calculated from the unperturbed
fields using linear algebra only, without solving the wave
equations.

B. Hermite-Gaussian modes

In this section, we review briefly the Hermite-Gaussian
modes [13] that is used as basis modes in our simulation.

A Hermite-Gaussian mode of beam waist size w0 is

given by [13]:

Un(x, z) =
(

2
π

)1/4( 1
2nn!w(z)

)1/2

Hn

(√
2x

w(z)

)

×exp
(
−x2

(
1

w(z)2
+

ik

2R(z)

))
×exp

(
i

(
m +

1
2

)
η(z)

)
(7)

where Hn(x) is the Hermite polynomial and R(z), w(z)
and η(z) are the curvature radius of the phase front, the
beam spot size and the Guoy phase respectively, given in
terms of the Rayleigh length z0 = πw2

0/λ by

R(z) = z +
z2
0

z
, w(z) = w0

√
1 +

z2

z2
0

and η(z) = tan−1

(
z

z0

)
(8)

These Hermite-Gaussian modes are exact solutions to
the paraxial wave equation in one dimension, and they
form an complete orthogonal basis in the space. We use
Hermite-Gaussian modes as basis modes in the modal
space:

E(x, y, z) =
∑
mn

amnUm(x, z)Un(y, z)exp(−ikz) (9)

where each transverse mode is labeled by two integers
(m,n) corresponding to x and y dimensions.

The propagation operators are given in Eq. (4), with
the diffraction phases replaced by the Gouy phases of
the (m,n) Hermite-Gaussian modes: (m + n + 1)η(z).
The interaction operators defined in Eq. (5) are derived
analytically for Hermite-Gaussian modes in Ref. [14], as-
suming that the mirror radius is much larger than the
beam size. This assumption is not valid everywhere in
the LIGO or AdvLIGO interferometer, but we will not
consider the correction caused by the diffraction loss (i.e.
mode coupling due to finite mirror aperture) in this work.

Gaussian beams have spherical phase fronts, and are
thus supported by cavities formed by spherical mirrors
as eigenmodes. There are simple relations between the
geometry of the cavity (measured by, e.g. cavity g-factor,
mirror radius of curvature) and the physical properties
of the Gaussian eigenmodes (e.g. beam waist size, waist
position) that are available in Ref. [13].

To conclude this section, we use the baseline designs
of the AC and the PRC in the AdvLIGO as examples
to demonstrate quantitatively the degeneracy of cavities
that . The curvature radii of the PR mirror and the test
masses are

RETM = RITM = 2076.4m RITM2 = −1186.4m

RPR = 1194.7m (10)

where RITM and RITM2 are curvature radii of the ITM
seen from inside the AC and the PRC, respectively, and



4

the ITM is convex seen from the PRC. The cavity lengths
are dAC = 4000m and dPRC = 8.34m and we have the
Rayleigh lengths and Guoy phases

z0 AC = 390.9m ηAC = 0.39 (11)
z0 PRC = 82.1m ηPRC = 4.9× 10−4 (12)

In the AC, the Rayleigh length is clearly much shorter
than the typical distance carrier light travels in the cav-
ity, i.e. the light propagation is in the strong diffraction
zone which indicates a non-degenerate cavity. More rig-
orously, the Guoy phase, corresponding to a frequency
shift of

∆ν =
c

2πdAC
ηAC = 4.6kHz (13)

which is much larger than the bandwidth of the AC
(∼ 15Hz). This means, the Guoy phase breaks the de-
generacy between the Gaussian modes with different or-
ders (different m + n), i.e. when the cavity is tuned to
have the fundamental mode in resonance, all other HOMs
are suppressed.

In the PRC, the Rayleigh length is longer than the
length of the cavity, but shorter than the typical distance
RF sideband light travels inside the cavity after we count
in the number of round trips (∼ 50). So the RF sideband
propagation in the PRC is still in its strong diffraction
zone. Nevertheless, when we look at the Guoy phase,
corresponding to a frequency shift of ∆ν = 2.8kHz,
which is much smaller than the bandwidth of the PRC
(∼ 100kHz). The PRC, although not degenerate to the
extreme level that geometric optics becomes valid, ac-
commodates tens of HOMs together with the fundamen-
tal mode, and is thus highly degenerate.

III. ADVANCED LIGO INTERFEROMETER
MODELING

In this section, we describe our simplified model of
the AdvLIGO interferometer, and the way our simulation
works.

In our simulation, we study a AdvLIGO interferometer
in equilibrium with static optical fields built inside it. We
use the standard AdvLIGO optical topology displayed
in Fig. 1, and the input light is a pure (0,0) Hermite-
Gaussian mode coming in from the PR mirror. We con-
sider both a broadband and a narrowband interferometer
designs. The interferometer parameters for the broad-
band detector are chosen as their values in the AdvLIGO
baseline design. The parameters in the two designs are
listed below, where we started to use the following sub-
scripts to denote different mirrors and cavities through-
out the whole paper: ”bs”, ”i”, ”e”, ”p” and ”s” stand
for the beam splitter (BS), ITM, ETM, PRM and SRM;
”ac”, ”prc” and ”src” stand for AC, PRC and SRC

(i) Cavity macroscopic length: The ACs both have L =
4000m; The common lengths of the PRC and the SRC
are lpc = 8.34m and lpc = 8.327m;

(ii) Cavity microscopic tuning: The carrier light gets
the following amount of phase shift during a single trip
in the AC, PRC and SRC

φac = φpc = 0 φB
src = 0.06 φN

src = π − 1.556 (14)

where the superscripts on the SRC phasing denote broad-
band (B) and narrowband (N). An asymmetry in the
Micheleson arm lengths is introduced because, among
other reasons, we choose the homodyne readout scheme
where a tiny amount of the carrier light power goes to-
ward the darkport and beat with the resonant signal side-
band to give the detector output. For this purpose solely,
the asymmetry here is specified at the microscopic level
as the phase difference the carrier accumulates in the two
Micheleson arms: ∆φ = 0.01.

(iii) Mirror power transmissivity:

t2i = 0.5% t2e = 76ppm t2p = 5.9%

tBs
2

= 7% tNs
2 = 0.3% (15)

We assume lossless mirrors throughout our simulation,
so the amplitude reflectivity and transmissivity are com-
pletely determined.

(iv) Mirror curvature radius: Given in Eq. (10) except
for the SRM. We introduce a lens between the beamsplit-
ter and the SRM to change the beam shape and degener-
acy in the SRC, so the curvature radius of the SRM, thus
also the cavity g-factor of the SRC, can change continu-
ously. The lens is assumed to provide the right amount of
phase front correction on the beam to match the choice
of the SRM geometry.

The difference between the broadband and the narrow
band designs are all in the choice of the SRM transmis-
sivity and the SRC tuning, as we mentioned in Sec. I.
The complex optical sideband resonant frequency in the
coupled SRC and AC two-cavity system is given by [16]:

ω̃ =
ic

2L
log

ri + rpe
2iφsc

1 + rirpe2iφsc
≡ −λ− iε (16)

where λ and ε are positive and are the resonant frequency
and the decay time. With our choice of signal-recycling
parameters above, we get resonant sideband frequencies
λ = 228Hz and λ = 1005Hz (The actual resonant fre-
quency is ω0 − λ, i.e. the down-converted signal side-
band). The PRM transmissivity and the PRC tuning
are chosen such that the PRM is impedance matched to
the AC and the carrier power in the AC is optimized.

The only control we do during the simulation when the
mirrors are slightly deformed is to optimize the carrier
power in the AC by adjust the tuning of the PRC and
the AC. When optimizing the carrier power in the AC,
instead of modeling the correct control signal, we look
directly at the power at each equilibrium state, i.e. we do
the static pseudo-control and don’t model the evolution
of the interferometer during the control process. With
our choice of interferometer parameters given above, and
a 125W input laser light power, the carrier light power in
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an ideal interferometer is ∼ 825kW, the power recycling
rate is ∼ 18 and the carrier light goes toward the dark
port is ∼ 0.5W.

Since our goal is to study the tolerance of the signal
sideband light on mirror deformations in the degener-
ate SRC, we consider in our simulation only the car-
rier light and the resonant signal sideband (i.e. the
down-converted sideband), and omit the RF sideband
and other sidebands used for control purposes, as well
as the other signal sideband that doesn’t resonant in the
system (i.e. the up-converted sideband).

After setting up the ideal interferometer, we introduce
perturbations to the mirrors. We don’t model the ther-
mal effect, and assume all tilt and mis-alignment are
cured by the control system, and consider only the mir-
ror figure error. Because of the high computational load
associated with the modal method, we limit our figure
errors to simple profiles and thus generates leading order
coupling between only a few optical modes (< 20). One
focus of our study is the mirror curve radius error, which
is the most interesting figure error we need to deal with,
since it can be generated effectively by thermal lensing
of the ITMs. To avoid the complications from the beam-
splitter, we assume that it is always perfect.

At the output, we assume a mode cleaner that filtered
out all HOMs in the carrier and signal sideband. So
the shot noise is proportional to the square root of the
output carrier power in the fundamental mode (i.e. (0,0)
Gaussian mode)

Nshot ∝
√

IC
00 (17)

where the superscript ”C” stands for carrier, and the
subscript labels the mode. The signal power comes from
beating the signal sideband with the carrier, both taking
only the fundamental mode, so

S ∝
√

IC
00

√
IS
00 (18)

where the superscript ”S” stands for signal sideband. As-
suming shot noise dominating, we have

SNR ∝
√

IS
00 (19)

i.e. the SNR is directly proportional to the signal side-
band amplitude in the fundamental mode. When we take
into account also the radiation pressure noise at low fre-
quency, the change of the SNR becomes more delicate.
The radiation pressure noise is omitted in this simplified
model, and will be studied in a follow up detail simula-
tion.

In the interferometer model set above, we calculate
the signal sideband in two steps. In the first step, we
propagate the input carrier light (Nd:YAG laser) with
frequency f0 = 2.82 × 1014 through the interferometer
to build up the static carrier light field. In the sec-
ond step, we assume a sinusoid gravitational wave of
frequency fg propagating perpendicular to the detector

plane with only ”+” polarization, i.e. effectively, it differ-
entially shakes the ETMs sinusoidally with frequency fg.
In the leading order of the GW strain, two signal side-
bands of frequencies f0 ± fg are generated at the ETMs
with exactly the same mode structures as the carrier field
at the ETMs. We then propagate the down-converted
sideband that is tuned to be resonant in the ideal in-
terferometer through the interferometer to build up the
static signal sideband field. Repeat the second step with
various GW frequencies, we can map out the frequency
response of the detector. Repeat both steps with various
SRC geometries and degeneracy levels, we can study the
effect of the recycling cavity degeneracy on the change
of frequency response and noise spectrum of the interfer-
ometer, due to mirror deformations.

The EM filed in the interferometer, which is a system
of coupled optical cavities, can be written generally as

E = Epump + Pr.t.E (20)

where Epump is the pumping field that contributes di-
rectly to the E field, and Pr.t. is the round trip propa-
gator which consists free propagation operators and in-
teraction operators that describe the propagation of E
through the interferometer and back to itself. The spe-
cific form of Epump and Pr.t. depend on the position of
the E field in the interferometer. For example, for field
Ecir1 in Fig. 1, i.e. the circulating field in the online AC
at the ITM going toward the ETM, can be written as

Ecir1 = tiTi1Ein1 + rireMi1Pac1Me1Pac1Ecir1 (21)

where e.g. Mi1 and Ti1 are reflection and transmission
operators of the online ITM, and we use subscript ”1”
and ”2” to denote the online and offline cavities. We
can write out a set of coupled equations in the form of
Eq. (20) for all fields labeled in Fig. 1, and solve them
numerically by iteration, as was done in the FFT simula-
tion code for optical fields in LIGO [17]. In principle, we
can also solve each field in terms of the input field Ein0

by directly taking the inverse of all operators in the form
of (I−Pr.t.) (I is the identity matirx). In the FFT code,
hundreds of modes are included, and it is computation-
ally difficult to take the inverse of all the large matrices,
which are sometimes nearly singular. In our simulation
however, as we consider only a few (< 20) modes, we
find it more efficient to take directly the matrix inver-
sions than to iterate the fields.

In Appendix. A, we write out and solve explicitly all
the carrier and signal sideband fields.

IV. SUMMARY OF SIMULATION RESULTS

Based on the optical field simulation of the simplified
AdvLIGO model set up in Sec. III, we try to answer the
following questions in Sec. IV A:

(i) How severe is the mode mixing in the signal side-
band due to mirrors deformations, when the SRC is de-
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FIG. 2: SNR loss in AdvLIGO interferometers with common (left panel) and differential (right panel) curvature radius errors
on the ITMs, when SRCs with various degeneracy levels are used. The SRC degeneracy level is labeled by the cavity g-factor
and the one way Guoy phase.

generate? If it is severe, whether a non-degenerate SRC
is able to suppress this mode mixing?

(ii) How is the carrier light affected by the SRC degen-
eracy level?

(iii) If a non-degenerate SRC is used, will it strongly
reject the carrier or signal light coming from the AC with
a mode mismatched to the eigenmodes of the SRC, and
would this affect the power buildup of either the carrier
or the signal light?

(iv) For broadband and narrow band AdvLIGO config-
urations, how different are the answers to the questions
above?

(iv) Based on the answers to the questions above, what
is the optimal SRC degeneracy.

In Sec. IV B, we investigate alternative designs of SRC
to achieve the optimal degeneracy that might be practical
in AdvLIGO.

A. Mirror figure error and optimal degeneracy

We consider mostly mirror curvature radius errors in
our simulation, since they are the most likely dominant
perturbations presented in the AdvLIGO due to mirror
figure error or thermal lensing, and it is the lowest or-
der perturbation on Hermite-Gaussian modes after mir-
ror tilts having been suppressed by the control system.
At the leading order, we need to consider only the (2,0)
and (0,2) Hermite-Gaussian modes if there is only curva-
ture radius error.

First, we consider a broadband interferometer with
curvature radius errors on the ITMs to simulate the ther-
mal lensing effect, and assume all other mirrors are per-
fect. The curvature radii of the ITMs (RITM = 2076.4m)
are changed by ∆RITM = 5m, either commonly or dif-
ferentially, and we show the signal sideband power loss
at the dark port in Fig. 2. With the change of the SRC
degeneracy, characterized in the plot by the Guoy phase
and the SRC g-factor, we do see significant change in the

loss of the signal amplitude in the fundamental mode.
In the current degenerate design, for common and dif-
ferential perturbations, we lose 2% and 0.5% the signal
amplitudes, or equivalently SNRs (according to Eq. (19)).
Note that the leading order SNR loss in the fundamen-
tal mode is proportional to the square of the size of the
error, we have, for instance, 4 times the SNR loss when
∆RITM = 10m. This result is also consistent with the
estimation based on geometric optics approximation in
Ref. [12]. When the degeneracy is reduced, the SNR loss
drops by more than two orders of magnitude, and the cur-
vature error is harmless on this aspect. More over, the
most catching feature in the plots are the peaks corre-
sponding to huge SNR loss at some non-degenerate SRC
configuration. This happens when the Guoy phase of the
HOMs (in this case, (2,0) and (0,2) Hermite-Gaussian
modes) cancels the SRC detuning (φB

src = 0.06 for broad-
band design), so that the HOMs of both the carrier and
the signal light are resonant in the SRC while the funda-
mental modes are detuned. This is clearly a bad choice of
SRC degeneracy, and we refer to it as the HOM resonant
peak. When more HOMs are coupled into the interfer-
ometer by perturbations, we should avoid all such cavity
configurations in which some HOMs have Guoy phases
ηHOM canceling the SRC tuning phase exactly.

The effect of the SRC degeneracy on the carrier light is
shown in Fig. 3, with differential curvature errors on the
ITMs. Besides the HOMs resonant peaks we discussed
above, there are other noticeable features about the car-
rier light. In the AC, curvature error harms the carrier
power build-up in the way described below. When the
SRC becomes non-degenerate, for common and differen-
tial curvature errors on the ITMs, both carrier and signal
sideband lights behave very differently.

With common curvature error, the HOMs are coupled
into the symmetric port of the interferometer, accepted
by the degenerate PRC but anti-resonant in it, and get
reflected back into the AC. Since the HOMs don’t see
the SRC, its degeneracy causes no difference. In this
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FIG. 3: Carrier light power change in the AC and SRC in AdvLIGO interferometers with differential curvature errors in the
ITMs, when SRCs with various degeneracy levels are used. The SRC degeneracy level is labeled by the cavity g-factor and the
one way Guoy phase.

case the carrier light power is controlled by the AC and
is hardly affected by the mirror deformations, thus we
didn’t show it. The SNR loss in this case is due directly
to the coupling of signal light HOMs to the dark port.

With differential curvature error, however, the HOMs
are coupled to antisymmetric port of the interferome-
ter, and and when the SRC is degenerate, since the car-
rier light is not anti-resonant in it, it behaves like ”reso-
nant carrier extraction”, and sucks carrier light out of the
AC thus reduces its power buildup. When SRC is non-
degenerate, HOMs are rejected by both the SRC and the
AC, and the carrier power builds up as usual in the AC
in almost entirely its fundamental mode without losing
any significant power. The SNR loss in this case is due
directly to the loss of carrier power in the AC, since the
signal light HOMs are coupled to the symmetric port and
are rejected by the PRC which is not detuned for the sig-
nal sideband frequency.

In conclusion, common and differential errors in the
ACs reduce the SNR through different ways and the dif-
ferential errors reduce the carrier buildup significantly.
Finally, as indicated above by ”resonant carrier ex-
traction”, the differential curvature errors send a huge
amount of carrier power in HOMs toward the dark port
(10W in HOMs and 0.3W in fundamental modes inside
the SRC), and thus sends a reference light that is mostly
in the HOMs toward the photon detector, which must be
cleaned out by the output mode cleaner.

Now we turn to the third question in the beginning of
Sec. IV. To answer it, we consider ACs and SRC with
different curvature error or even different mode of per-
turbations. In Fig. 4, we show the SNR loss for various
SRC degeneracy levels, when there are common curva-
ture radius errors of ∆R = 5m on the ITMs and differ-
ent curvature radius error and several 4th order figure
errors (i.e. distortion function Z(x, y) is a linear combi-
nation of H4(x)H0(y), H0(x)H4(y), and H2(x)H2(y)) of
comparable sizes on the SRM. Comparing with Fig. 2,
we see more SNR loss with degenerate SRC due to the
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FIG. 4: SNR loss in AdvLIGO interferometers with common
curvature radius errors on the ITMs and curvature error and
4th order Hermite polynomial shaped figure error on the SRM,
when SRCs with various degeneracy levels are used. The SRC
degeneracy level is labeled by the cavity g-factor and the one
way Guoy phase.

excitation of more HOMs, i.e. the 4th order Hermite-
Gaussian modes, and we see two more HOM resonant
peaks generated by the 4th order modes. We can see
from Fig. 4 that, although the optical modes in the AC
and the SRC are different, and there is an eigenmode mis-
matching on the ITMs, the non-degenerate SRC doesn’t
simply reject part of the signal power, and the SNR loss
is still very low (away from those HOM resonant peaks).
This is because the SRC effectively filters out the HOMs
that cause the mode mismatch and helps the fundamen-
tal mode buildup in the AC, as long as the SRC tun-
ing for the signal sideband fundamental mode resonance
is unchanged (this depends on how the control system
works, and the modeling of control sidebands are being
considered in the more sophisticated simulations under
development, e.g. the AdvLIGO FFT simulation [18]).

All examples above are simulations with broadband
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FIG. 5: SNR loss in an advanced narrowband interferome-
ter with common curvature radius errors on the ITMs, when
SRCs with various degeneracy levels are used. The SRC de-
generacy level is labeled by the cavity g-factor and the one
way Guoy phase.

AdvLIGO configuration, i.e. under the RSE scheme, in
which signal storage time is reduced by the SRC. In the
narrowband configuration, however, the signal light is in-
deed being ”recycled”, and the storage time in the SRC
is order of magnitude longer than in the RSE scheme,
which could change our results for broadband interfer-
ometer significantly. In Fig. 5, we show the result of a
narrowband configuration with differential curvature er-
rors ∆R = 2m on the ITMs. Again, we got similar result
as before, i.e. SNR loss is suppressed by non-degenerate
SRC by order of magnitude. The loss in degenerate SRC
is about 5%, which is significant. In Ref. [12], the most
severe constraint on mirror figure error is also placed
on the narrowband configuration. The SRC finesse in
the narrow-band configuration is much higher than the
broad-band AdvLIGO configuration, so that the HOMs
being excited inside the SRC is built up to higher power,
when the SRC is degenerate.

From the examples above, we can see that the mode
mixing and the consequent problems are suppressed with
non-degenerate SRC, and the optimal Guoy phase in the
SRC for Hermite-Gaussian mode should be somewhere
between 0.25 and 1 radian, with best range between 0.4
and 0.7 radian. In the examples above we showed only
at the most sensitive signal sideband frequency (given by
Eq. (16)) that the signal power or SNR loss is suppressed
by non-degenerate SRC. In Fig. 6, we show the interfer-
ometer response to various signal frequencies assuming
that the SRC is either degenerate with current design
parameters or non-degenerate with the MMT design sug-
gested by Müller [10]. There is indeed an strong suppres-
sion of the SNR loss across the entire AdvLIGO sensitive
band, with some shift of the most sensitive frequency (re-
member however that at low frequency (< 100Hz), we
need to consider also the radiation pressure noise).

At first sight, there seems to be a wide range for us
to choose the SRC degeneracy, but our freedom is ac-

tually quite limited. One obvious constraint is that we
need to avoid those Guoy phases giving rise to the HOM
resonant peaks. In a realistic interferometer, with many
more HOM perturbations, there would be a huge num-
ber of HOM resonant peaks across the optimal Guoy
phase range so the degeneracy should be chosen carefully,
through careful simulations.

However, the worst difficulty posed by the above Guoy
phase range is a practical one. There are two obvious
ways to achieve this g-factor by changing the SRC de-
sign: reduce the beam size, or increase the cavity length.
Unfortunately, to achieve the low degeneracy required
above, we need either very small beam waist size near
the SRM, or kilometer-long recycling cavity length. In
the next section, we discuss the practical alternative de-
signs to reduce the SRC degeneracy to the optimal range.

B. Alternative designs

There are basically two ways to reduce the SRC de-
generacy: either reduce the beam size or increase the
cavity length. We discuss both ideas respectively in the
following.

To reduce the beam size in the SRC we could add a
lens in the recycling cavity, but to get the Guoy phase
range between 0.25 and 1 radian, the beam should be so
strongly focused that the beam waist size is on the or-
der of 30µm, and the waist should also be tuned precisely
several millimeters away from the SRM. If we have 10µm
scale beam size on the SRM, we are looking at an unprac-
tical 10GW/m2 power density. This problem is pointed
out qualitatively by Bochner [17] in his FFT simulation
work.

We can bypass this problem by introducing multiple
steps of beam focusing, i.e. bring down the beam size step
by step with more optical elements, such that there is
some Guoy phase accumulated during each step with rel-
atively small beam size, and clearly that we prefer reflec-
tive optical elements in this scheme than lens. A practical
design of moving the mode matching telescope (MMT)
into the recycling cavity is proposed by Müller [10], in
which the MMTs outside the recycling cavities used to
match the beam size between the laser source and the
PRM, and the SRM and the photon detector are moved
into the cavities to reduce the beam size. Two mirror are
used in each MMT, where the first brings down the beam
size from ∼ 6cm to millimeter scale, and the second tune
the shape of the millimeter scale beam to achieve the
desired degeneracy. The MMT introduces more mirrors
and cavities into the interferometer, so there are concerns
about the stability of the cavities and the control of the
new mirrors. Practical parameters for the PRC can be
found in Ref. [10], and the coupled recycling cavities and
cavities in the MMT are stable in principle. Experimen-
tal work on issues about implementing this MMT design
is under going.

Another way to reduce the SRC degeneracy is to use
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FIG. 6: SNR loss in AdvLIGO interferometers with common (left panel) and differential (right panel) curvature radius errors
on the ITMs, for signal with various frequnecies. In each plot, the solid curve with larger variation is the SNR loss when the
SRC is degenerate; the other solid curve is the SNR loss when the SRC is non-degenerate at the level given by the MMT
design (with one way cavity Guoy phase ∼ 0.38); the dashed curve is the frequency response function of the ideal AdvLIGO
interferometer, plotted in arbitrary unit for reference.

longer SRC, while the length must be kilometer-long be-
fore making any difference. A natural idea is to bend the
SRC into the arm cavity tubes and make it 4km long.
This design is much more radical, and has the immedi-
ate problem of light scattering noise in the crowded arm
tubes, but it does have important scientific advantages.
The 4km SRC design has been suggested for a long while,
and reducing the SRC degeneracy is really just a ”gift”
here among other advantages expected from long recy-
cling cavity. Mizuno [5] suggested to use a 4km long
SRC to collect power in both signal sidebands and in-
crease the SNR by a factor of

√
2. Buonanno and Chen,

among their discussion on beating the SQL with signal
recycled interferometer, found also that the gain in peak
sensitivity is vulnerable to optical loss in the short SRC,
while long SRC might solve this problem. Moreover, long
SRC introduce frequency dependent correlation between
the two quadratures of the vacuum field, and might bring
interesting change to the optical noise spectrum of the in-
terferometer.

V. CONCLUSIONS

We set up a simplified AdvLIGO interferometer model
with perturbations on the mirrors in the form of figure
errors, and simulated the carrier and signal sideband op-
tical fields in the interferometer through a mode decom-
position approach. Using the simulation result, we in-
vestigated the loss of SNR and carrier power with SRCs
at various degeneracy levels, and proposed the optimal
SRC degeneracy level to suppress these losses.

With the current degenerate SRC design, we found the
SNR loss due to mode mixing between the fundamental
mode and HOMs significant, and the result is consistent
with the order of magnitude estimation in Ref. [12]. We
found a 2% loss in SNR, with 5m curvature radius er-

ror on the ITMs, or even smaller mirror figure error on
the SRM. If we consider the perturbation in terms of fig-
ure error, these curvature errors correspond to roughly
5nm peak-to-valley figure error in the center region of the
mirror. Consider the fact that at leading order, this loss
grows quadratically with the size of the figure errors, and
losses due to errors with different Hermite polynomial
modes are added linearly, the constraint on mirror figure
errors and thermal effects is quite severe. Another prob-
lem we found with degenerate SRC is that, when there
are differential perturbations on the ACs, huge amount
of HOMs power is coupled to the dark port and over-
whelms the reference light in fundamental mode, which
requires a reliable output mode cleaner.

We showed then that non-degenerate SRC could solve
the problems above, suppress the mode mixing and re-
duce the SNR loss by orders of magnitude, for signals
with frequencies in the AdvLIGO sensitive band. We
showed also that the non-degenerate SRC would not sim-
ply reject laser light from the AC with mode mismatch,
but rather filter out the HOMs and help the fundamental
mode buildup.

Based on the facts above, we proposed to use non-
degenerate SRC in the AdvLIGO with optimal Guoy
phase between 0.25 and 1 radian. This optimal level of
degeneracy is, however, hard to achieve in practice, and
we discussed some possible alternative designs of the SRC
to reduce the degeneracy to the optimal level, including
moving the MMT into the recycling cavities and using a
4km long SRC.

A more complete simulation of the optical field in-
side the AdvLIGO interferometer using FFT propaga-
tion scheme is under development [18], which will effec-
tively include hundreds of HOMs, and the modeling of
important physical factors like the thermal effect on the
mirrors, and other control sideband fields. This new sim-
ulation is aimed at mapping out the phase front of light
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fields in a very realistic model of the AdvLIGO inter-
ferometer to the very high accuracy level of 10−6, and
among other goals helping design SRC with optimal de-
generacy.
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APPENDIX A: SOLVE THE OPTICAL FIELDS IN
THE INTERFEROMETER

In this appendix, I will write out the equations in the
form of Eq. (20) for all carrier and signal sideband fields
displayed in Fig. 1 and solve them analytically in terms of
the input field Ein0, the GW strain, and the propagation
and interaction operators in the interferometer.

The carrier light and the signal light have inputs from
different positions (the signal input is effectively at the
ETMs), their solutions are different and have to be
treated separately. I will in the following denote with
superscripts ”C” for carrier and ”S” for signal. Further-
more, because of their different frequency, their propa-
gation operators have to be distinguished as well in the
AC, while for the short recycling cavities, since the frac-
tional difference between the frequencies is on the order
of 10−11, the phase difference between carrier and signal
lights are negligible and we use the same operators. For
the same reason, interaction operators are the same for
carrier and signal light, in which the perturbation effect
has effectively a length scale ∼ 10nm.

As described in Sec. III, we solve as the first step the
carrier field. Using results for LIGO that has been de-
rived in Ref. [14] and Ref. [19], following the convention
in Sec. III, we define:

Round-trip propagator in the AC

PC
rtac1 = ri1re1Mi1P

C
ac1Me1P

C
ac1

PC
rtac2 = ri2re2Mi2P

C
ac2Me2P

C
ac2 (A1)

again we use subscript ”1” and ”2” to denote online of
offline arm cavities;

Reflection operator of the ACs (for reflecting off the
AC from the ITM side)

MC
ac1 = ri1

(
M ′

i1 −
t2i1
r2
i1

Ti1M
†
i1P

C
rtac1(I − PC

rtac1)
−1Ti1

)
MC

ac2 = ri2

(
M ′

i2 −
t2i2
r2
i2

Ti2M
†
i2P

C
rtac2(I − PC

rtac2)
−1Ti2

)
(A2)

where M ′
i1 and M ′

i2 are reflection operators of the ITMs
seen from the recycling cavity side;

Michelson operators

MC
C = t2pPC

d MC
ac1P

C
d + r2

pPC
−dMC

ac2P
C
−d

MC
D = tprp(PC

d MC
ac1P

C
d + PC

−dMC
ac2P

C
−d) (A3)

where PC
d and PC

−d are propagators through the length
difference d of the Michelson arms.

The coupled equations for the carrier fields are then:

EC
s = tbsP

C
prcP

C
d EC

re1 − rbsP
C
prcP

C
−dEC

re2

EC
a = rbsP

C
srcP

C
d EC

re1 + tbsP
C
srcP

C
−dEC

re2

EC
sr = −rpMpEC

s + tpEin0

EC
ar = −rsMsE

C
a

EC
in1 = tbsP

C
prcP

C
d EC

sr + rbsP
C
srcP

C
d EC

ar

EC
in2 = −rbsP

C
prcP

C
−dEC

sr + tbsP
C
srcP

C
−dEC

ar

EC
re1 = MC

ac1E
C
in1

EC
re2 = MC

ac2E
C
in2

(A4)

and the circulating fields inside the AC are given in terms
of EC

in1 and EC
in2:

EC
cir1 = ti1P

C
ac1

(
I − PC

rtac1

)−1
Ti1E

C
in1

EC
cir2 = ti2P

C
ac2

(
I − PC

rtac2

)−1
Ti2E

C
in2 (A5)

Solving Eq. (A4), we have:

EC
sr = tp

(
I + rpMpPC

prcM
C
C PC

prc − rprsMpPC
prcM

C
DPC

src

×
(
I + rsMsP

C
srcM

C
C PC

src

)−1
MsP

C
srcM

C
DPC

prc

)−1

Ein0

EC
ar = −

(
I + rsMsP

C
srcM

C
C PC

src

)−1
rsMsP

C
srcM

C
DPC

prcE
C
sr

(A6)

All other carrier fields can be easily calculated from EC
sr

and EC
ar.

Assuming a monochromatic GW wave passing through
the interferometer shaking the ETMS differentially with
strain h0 cos ωgt, the carrier light that is incident on the
ETMs (i.e. EC

cir1 and EC
cir2) are coupled to the motion of

the ETMs and generates signal sidebands at frequencies
ω ± ωg with the EM fields given by

ES
sig1 = iφhre1Me1E

C
cir1

ES
sig2 = −iφhre2Me2E

C
cir2 (A7)

where φh = 2kh0L is the phase shift due to the GW
strain. These fields are the input for the signal light field
in the interferometer.

For signal sideband field, we define round-trip propa-
gator of the AC:

P S
rtac1 = ri1re1Me1P

C
ac1Mi1P

C
ac1

P S
rtac2 = ri2re2Me2P

C
ac2Mi2P

C
ac2 (A8)
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and we define the Michelson operators the same way as
in Eq. (A3)

The coupled equations for the signal fields are similar
to Eq. (A4), and we only need to change all quantities
for the carrier fields in Eq. (A4) to their counterparts for
the signal fields, and change the positions of the input
fields in three of the equations given below

ES
sr = −rpMpES

s

ES
re1 = MS

ac1E
S
in1 + ti1Ti1P

S
ac1

(
I − P S

rtac1

)−1
ES

sig1

ES
re2 = MS

ac2E
S
in2 + ti2Ti2P

S
ac2

(
I − P S

rtac2

)−1
ES

sig2

(A9)

Solving Eq. (A9), we have the output signal field:

ES
out = ts

(
I + rsP

S
srcM

S
CP S

srcMs

)−1

×
(
−rpP S

srcM
S
DP S

prcMpES
s + ES

siga

)
(A10)

where

ES
s =

(
I + rpP S

prcM
S
CP S

prcMp − rprsP
S
prcM

S
DP S

srcMs(
I + rsP

S
srcM

S
CP S

srcMs

)−1
P S

srcM
S
DP S

prcMp

)−1

×
(
ES

sigs − rsP
S
prcM

S
DP S

srcMs

×
(
I + rsP

S
srcM

S
CP S

srcMs

)−1
ES

siga

)
ES

sigs = ti1tbsP
S
prcP

S
d Ti1P

S
ac1

(
I − P S

rtac1

)−1
ES

sig1

−ti2rbsP
S
prcP

S
−dTi2P

S
ac2

(
I − P S

rtac2

)−1
ES

sig2

ES
siga = ti1rbsP

S
srcP

S
d Ti1P

S
ac1

(
I − P S

rtac1

)−1
ES

sig1

+ti2tbsP
S
srcP

S
−dTi2P

S
ac2

(
I − P S

rtac2

)−1
ES

sig2

(A11)
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