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1 Gravitational waves in the TT gauge

1.1 Coordinates of the wave frame

In the linearized theory, gravitational waves are described by small perturbations
to the spacetime metric. Assume that in the absence of gravitational waves the
spacetime is flat. Then the metric is

gµν = ηµν + hµν , (1)

where ηµν is the Minkowski metric and hµν is the tensor of linear metric perturba-
tions caused by the gravitational wave. In the transverse traceless (TT) coordinates
the perturbations take the form:

hµν =











0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0











, (2)

where the two amplitudes h+ and h× correspond to two different polarizations of
the gravitational wave:

h+(t, r) = h+(t+ z/c), (3)

h×(t, r) = h×(t+ z/c). (4)

For most of this analysis, time can be regarded as a fixed dimension and no
time-dependent coordinate transformations will be necessary. We therefore can
safely neglect the time components of the 4-dimensional tensors and consider only
their spatial (3-dimensional) parts:

h0 =







h+ h× 0
h× −h+ 0
0 0 0






. (5)

1.2 Coordinates of the detector frame

A laser interferometer defines its own coordinate system so that the x and y axes run
along the two interferometer arms and the origin is at the beam-splitter. In general,
these coordinates are oriented differently from the coordinates of the gravitational
wave introduced above. The two coordinate systems can be related by rotational
transformation

x = RT x0, (6)

where x0 are the coordinates associated with the gravitational wave and x are the
coordinates associated with the detector. The transformation of the coordinates
induces the transformation of the metric:

h = RTh0 R. (7)
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Figure 1: Orientation of the detector with respect to the source of gravitational
waves.

Explicit formulas for the rotational matrix R can be constructed as follows.
Denote the direction to the source of gravitational waves by a unit vector n. The
detector coordinate system xyz and the source of gravitational waves S are shown
schematically in Fig. 1. The components of the vector n in the detector coordinate
frame are:

nx = sin θ cosφ, (8)

ny = sin θ sinφ, (9)

nz = cos θ, (10)

where θ and φ are the spherical angles of the source. The third angle ψ describes
the orientation of the principal axes of polarization of the gravitational waves with
respect to the plane of incidence (SOP in Fig. 1).

The rotation matrix Rij is defined by the Euler angles: φ, θ, and ψ, and can be
constructed as a product of the following three rotations.

First, we rotate the coordinate frame xyz around the z-axis by angle φ. The
axes x and y remain in the horizontal plane. As a result, the x-axis comes to point
along ~OP , which coincides with the projection of ~n onto the plane of the detector.
This rotation is given by

Rz(φ) =







cosφ sinφ 0
− sinφ cosφ 0

0 0 1






. (11)
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Second, we rotate the coordinate frame around the y-axis by angle θ. As a
result, the z-axis comes to point to the source ( ~OS). Also, the axes x and y
become perpendicular to ~OS. This rotation is given by

Ry(θ) =







cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ






. (12)

Finally, we rotate the coordinate frame around the z-axis by angle ψ. As a re-
sult, the axes x and y become aligned with the polarization axes of the gravitational
wave. This rotation is given by

Rz(ψ) =







cosψ sinψ 0
− sinψ cosψ 0

0 0 1






. (13)

The combined effect of all three rotations can be found as a product

R = Rz(ψ) Ry(θ) Rz(φ). (14)

As a result, the gravitational wave tensor will have all components:

h0 =







hxx hxy hxz
hyx hyy hyz
hzx hzy hzz






. (15)
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2 Propagation of light in the detector frame

In what follows we will frequently use the perturbation expansion keeping only
terms which are first order in h. Whenever we encounter a quantity A(p) which is
of order h, we will neglect all terms in p which are of order h and higher.

2.1 Null trajectory

Consider the interval corresponding to the metric, Eq.(1), in the detector coordinate
frame:

ds2 = −c2dt2 + dx2 + dy2 + dz2 + hij(t+ n · r/c)dxidxj . (16)

Propagation of light takes place along the null geodesic:

ds2 = 0. (17)

For light traveling in the x-direction, the condition for null interval becomes

c2dt2 = [1 + hxx(t+ nxx/c)] dx
2. (18)

Introduce the coordinate velocity of the photon:

vx =
dx

dt
= ±

c
√

1 + hxx(t+ nxx/c)
. (19)

To first order in h the velocity can be approximated as

vx ≈ ±c

[

1 −
1

2
hxx(t+ nxx/c)

]

. (20)

Then the trajectory of the photon is given by

x(t) = x0 +

t
∫

t0

vx(t
′, x′) dt′, (21)

where x′ belongs to the unperturbed photon trajectory: x′ = x0 + c(t′ − t0).
Equivalently, we can describe the trajectory in the inverse form:

t(x) = t0 +

x
∫

x0

dx′

v(t′, x′)
, (22)

in which case t′ would belong to the unperturbed photon trajectory: t′ = t0 +
(x′ − x0)/c. This inverse form is more convenient for calculations of the photon
propagation times. To first order in h it can be written explicitly as

t(x) = t0 +
x− x0

c
+

1

2c

x
∫

x0

hxx

(

t0 +
x′ − x0

c
+
nxx

′

c

)

dx′. (23)
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2.2 Photon round-trip time

Consider two test masses with coordinates xa and xb and assume that a photon is
launched from one test mass and is bounced by the other. Let the coordinates of
the test masses be

xa = l, and xb = l + L, (24)

and the unperturbed propagation time between the masses be

T =
L

c
. (25)

As we know, in the TT gauge the coordinates of the test masses, do not change
under the influence of the gravitational wave. Therefore, the duration of the forward
trip can be found from Eq.(23) by specifying the boundary conditions in Eq.(24).
Namely,

T1 = t(l + L) − t(l)

=
L

c
+

1

2c

l+L
∫

l

hxx

(

t0 +
x− l

c
+
nxx

c

)

dx. (26)

Assume that the end of the trip corresponds to time t. In this case we can express
t0 as a function of t:

t0 +
L

c
= t. (27)

Then t can be viewed as a running parameter and the propagation time can be
written as a function of t:

T1(t) = T +
1

2c

l+L
∫

l

hxx

(

t−
L+ l

c
+
x

c
+
nxx

c

)

dx. (28)

Similarly, we find that the duration of the return trip is

T2(t) = T +
1

2c

l+L
∫

l

hxx

(

t+
l

c
−
x

c
+
nxx

c

)

dx. (29)

In this case, too, t corresponds to the end of the trip and can be viewed as a running
parameter.

The round-trip time of the photon propagation is

Tr.t.(t) = T1[t− T2(t)] + T2(t). (30)

To first order in h this expression can be approximated as

Tr.t.(t) = T1(t− T ) + T2(t). (31)
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Deviations of this round-trip time from its unperturbed value (2T ) are given by

δT (t) =
1

2c

l+L
∫

l

[

hxx

(

t− 2T +
x− l

c
+
nxx

c

)

+ hxx

(

t−
x− l

c
+
nxx

c

)]

dx. (32)

By making the substitution: x→ x− l we obtain the final result:

δT (t) =
1

2c

L
∫

0

[

hxx

(

t− 2T +
x

c
+
nx(x+ l)

c

)

+ hxx

(

t−
x

c
+
nx(x+ l)

c

)]

dx.

(33)

3 Laplace-domain transfer function

The deviation in the round-trip time, Eq.(33), can also be written in the Fourier
or Laplace domain. Define the Laplace transform of an arbitrary function of time
A(t) by

Ã(s) =

∞
∫

0

e−stA(t) dt. (34)

For convenience we introduced the integral:

I(t) =

L
∫

0

hxx (t+ α+ βx) dx. (35)

Its Laplace transform is given by

Ĩ(s) = esα
(

esβL − 1

sβ

)

h̃xx(s), (36)

Then the variation of the round-trip time Eq.(33) can be written in terms of I(t)
as follows:

δT (t) =
1

2c
[I1(t) + I2(t)] . (37)

where the parameters α and β takes the following values

α1 = nxτ, β1 =
nx − 1

c
, (38)

α2 = nxτ − 2T, β2 =
nx + 1

c
, (39)

and also τ = l/c.
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Thus we obtain the formula for δT in Laplace domain:

δT̃ (s) =
1

2c

[

esα1

(

esβ1L − 1

sβ1

)

+ esα2

(

esβ2L − 1

sβ2

)]

h̃xx(s). (40)

It is convenient to rewrite the result as

δT̃ (s)

T
= esnxτ D(s, nx) h̃xx(s), (41)

where D(s, nx) is the corresponding transfer function:

D(s, nx) =
1

2sT

[

1 − e−(1−nx)sT

1 − nx
− e−2sT ·

1 − e(1+nx)sT

1 + nx

]

, (42)

There are a couple of limiting cases that we can check now. First, consider the
low-frequency limit: sT → 0. In this case D(s,n) → 1, and therefore

δT̃ (s)

T
= h̃xx(s), (43)

which agrees with the standard result, usually obtained in the long-wavelength
regime.

The other simple limiting case occurs when the gravitational wave is incident
upon the detector from the direction which is perpendicular to the x-arm, i.e.
nx = 0. In this case

δT̃ (s)

T
=

(

1 − e−2sT

2sT

)

h̃xx(s), (44)

which agrees with the standard calculations of the detector response for optimal
orientation (see Refs. [6, 11, 10]).
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4 Response of a Fabry-Perot cavity

Thus far, we considered the bouncing photon as a particle, assuming that there is
a beginning and an end for the photon round trips. In practice, measurements of
photon propagation times are done with optical interferometry in which photons are
represented by continuous electromagnetic waves. We therefore extend the previous
calculation to include continuous waves. This will allow us to include the storage
effect of Fabry-Perot cavity.

4.1 Round-trip phase of light

Assume that the light is given by a plane monochromatic wave with frequency
ω and wavenumber k. Define the phase of the light acquired during propagation
between two points xa and xb as

Ψ(t) = −

xb
∫

xa

k dl = −k

xb
∫

xa

√

gxx(t, ~r) dx. (45)

For forward propagation, the phase is

Ψ1(t) = −kL−
k

2

l+L
∫

l

hxx(t
′, x) dx. (46)

Similarly, for the return trip:

Ψ2(t) = −kL−
k

2

l+L
∫

l

hxx(t
′, x) dx. (47)

Then the round-trip phase can be found as

Ψr.t.(t) = Ψ1(t− T ) + Ψ2(t) = −2kL+ δΨ(t), (48)

where δΨ is the linear perturbation due to the gravitational wave:

δΨ(t) = −ω δT (t). (49)

Laplace-domain version of this equation is

δΨ̃(s) = −kL esnxτ D(s, nx) h̃xx(s). (50)
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4.2 Fabry-Perot effect

Consider a Fabry-Perot cavity held on resonance by control systems. Assume that
there are no disturbances, and the cavity is in the steady state. The field in the
cavity will be essentially static: E(t) = Ē.

The gravitational wave will cause variations in the light propagation phase which
will produce temporal variations in the cavity field. The general form for the field
equation is

E(t) = taA+ q e−iδΨ(t)E(t− 2T ), (51)

where A is the complex amplitude of the input laser field and q is the round-trip
reflectivity: q = rarbe

−2ikL.
The solution can be found in terms of first order perturbations:

E(t) = Ē + δE(t), (52)

where Ē is the (static) equilibrium field and δE is a small perturbation produced
by the gravitational wave. The equilibrium field correspond to the situation Ψ = 0
and is given by

Ē =
taA

1 − q
. (53)

Then the field perturbation satisfies the equation:

δE(t) − q δE(t− 2T ) = −iqĒ δΨ(t). (54)

Laplace transformation of both sides of this equation yields

δẼ(s) = −iqĒ H(s, α) δΨ̃(s), (55)

where H(s, α) is the cavity transfer function:

H(s;α) =
1

1 − q e−2sT
, (56)

where α = kL modulo π. This transfer function describes the storage property of
Fabry-Perot cavities. Note that the LIGO arm cavities are set to the center of the
resonance, which means that α = 0. In this case,

H(s; 0) =
1

1 − rarb e−2sT
. (57)

Combining the response of the phase to gravitational waves with the filtering
property of the Fabry-Perot cavity we obtain the total field response:

δẼ(s) = iqkLĒ esnxτH(s, α)D(s, nx) h̃xx(s). (58)
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4.3 Michelson interferometer with Fabry-Perot arms

In LIGO detectors, two Fabry-Perot cavities are combined to form a Michelson
interferometer, and the signal is extracted from the antisymmetric port (Fig.2).

Assume that the beam splitter is at the dark fringe, then the signal is propor-
tional to

δṼ (s) = e−s(nxτx+2T )δẼx(s) − e−s(nyτy+2T )δẼy(s), (59)

where δEx and δEy are the corresponding field perturbations in X and Y arms.

L

L

yl

l x

arm

laser

arm
BS

PD

y

x
y

x

Figure 2: Michelson interferometer with Fabry-Perot arm cavities.

For simplicity, we assume that the arms are equal, then the formula for the
signal is

δṼ (s) = e−2sTH(s, α)
[

D(s, nx) h̃xx(s) −D(s, ny) h̃yy(s)
]

, (60)

where we omitted the irrelevant multiplicative constant.
This allows us to introduce two transfer functions:

G+(s) ≡
δṼ (s)

δh̃+(s)
, (61)

G×(s) ≡
δṼ (s)

δh̃×(s)
. (62)

These transfer functions also depend on the coordinates of the source: φ, θ, ψ. Note
that

G×(s)|ψ = G+(s)|ψ+π/4 . (63)

Therefore, it is sufficient to consider one transfer function:

G(s) ≡ G+(s). (64)
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5 Angular dependence of the detector response

Consider the dependence of the response function on the angles:

G = G(s|φ, θ, ψ). (65)

For simplicity, we fix two angles and vary the third.

5.1 Φ-dependence

Take θ = 0 and also ψ = 0, and vary φ. The changes in the response function are
shown in Fig.3.
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Figure 3: Dependence of the response function on the angle φ (the values of the
angle are given in degrees).
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5.2 Θ-dependence

Take now φ = 0 and also ψ = 0, and vary θ. The changes in the response function
are shown in Fig.4.

10
2

10
4

10
0

frequency (Hz)

m
ag

ni
tu

de

θ = 0

10
2

10
4

10
0

frequency (Hz)

m
ag

ni
tu

de

θ = 10

10
2

10
4

10
0

frequency (Hz)

m
ag

ni
tu

de

θ = 20

10
2

10
4

10
0

frequency (Hz)

m
ag

ni
tu

de

θ = 30

10
2

10
4

10
0

frequency (Hz)

m
ag

ni
tu

de

θ = 40

10
2

10
4

10
0

frequency (Hz)

m
ag

ni
tu

de

θ = 50

Figure 4: Dependence of the response function on the angle θ (the values of the
angle are given in degrees).
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6 Antenna patterns at different frequencies

Conversely we can fix the frequency and study the angular dependence of the re-
sponse function.

6.1 DC pattern

Consider the angular dependence of the detector response function |G|. Assume
for simplicity that ψ = 0. At low frequencies, the angular dependence (antenna
pattern) is shown in Fig.5 (left).
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Figure 5: The dependence of the |G| on the location of the source in the sky. Left:
the frequency of G.W. is 0. Right:the frequency of G.W. is equal to FSR.

6.2 FSR pattern

No significant change occurs as the frequency of the gravitational wave changes
through the kilohertz region. The drastic change occurs when the frequency ap-
proaches the free spectral range (FSR) of the arm cavities:

fFSR =
1

2T
. (66)

The angular dependence of the detector response in this case is shown in Fig.5
(right). There are several maxima of the response function. Numerical optimization
shows that the first maximum occurs approximately at

θ = 37.5◦, φ = 14◦. (67)
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6.3 Frequency response of LIGO for maximum at FSR

Consider the source location which yields maximum signal at FSR. Namely, its
position is given by Eq.(67). For this location, the response of the detector (Bode
plot) is shown in Fig.6.
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Figure 6: Response of LIGO to gravitational waves at θ = 37.5◦ and φ = 14◦.
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