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Abstract

We investigate using short Fourier transforms (SFTs) to estimate the parameters of the
gravitational wave signal of a spinning neutron star [1]. We motivate estimating the parameters
directly from the complex amplitudes of the SFTs, and discuss certain technical problems.
By using the square of the complex amplitudes, i.e. the power spectra, we demonstrate the
extension of the PowerFlux method [2] to estimatingA+,A× andψ simultaneously. It remains
whether these extensions improve sensitivity enough to out-weigh the additional computational
cost.
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1 Introduction

We follow the standard model [1] of the gravitational wave signal, as seen by an interferometric
gravitational wave detector, of a freely precessing axisymmetric neutron star, focusing only on
thef = 2frotation component expected from a tri-axial ellipsoid. The template is:

h(t) = A1h1(t) +A2h2(t) +A3h3(t) +A4h4(t) (1)

where

h1(t) = a(t) cos 2πft h3(t) = a(t) sin 2πft (2)

h2(t) = b(t) cos 2πft h4(t) = b(t) sin 2πft (3)

anda(t) andb(t) are related to the beam patternsF+, F×. TheA parameters are:

A1 = A+ cos 2ψ cosφ0 −A× sin 2ψ sinφ0 (4a)

A2 = A+ sin 2ψ cosφ0 +A× cos 2ψ sinφ0 (4b)

A3 = −A+ cos 2ψ sinφ0 −A× sin 2ψ cosφ0 (4c)

A4 = −A+ sin 2ψ sinφ0 +A× cos 2ψ cosφ0 (4d)

whereA+, A× are the amplitudes of the plus, cross polarisations,φ0 is the initial phase, and
ψ is the polarisation.

We note in passing thatψ is a rotation of the spatial metric peturbation matrixH describing
the gravitational wave: the three angles(α, δ, ψ), whereα andδ are the right ascension and
declination of the neutron star respectively, constitute an Euler rotation from the wave reference
frame to the celestial reference frame (See [1]).

1.1 Inverting A1,2,3,4 to find A+, A×, φ0, ψ

A method to findA+, A×, φ0, ψ in terms ofA1,2,3,4 is given in [3]. Another method, derived
here, first substitutesθ1 = φ0 − 2ψ, θ2 = φ0 + 2ψ into equations (4), and takes the sum and
difference of appropriate expressions to give

A2 +A3 = (A× −A+) sin θ1 (5a)

A4 −A1 = (A× −A+) cos θ1 (5b)

A2 −A3 = (A× +A+) sin θ2 (5c)

A4 +A1 = (A× +A+) cos θ2 ; (5d)

from which we find

θ1 = tan−1 A2 +A3

A4 −A1
(6)

θ2 = tan−1 A2 −A3

A4 +A1
. (7)

The appropriate ranges ofθ1 andθ2, and thus ofφ0 andψ, depend on the ranges chosen
for A+ andA×. This becomes clearer when we consider the expressions

A2 = A2
1 +A2

2 +A2
3 +A2

4 = A2
+ +A2

× (8)

D = A1A4 −A2A3 = A+A× (9)
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and solve forA+ andA×, giving 4 possible solutions:

A+ = ±

√
A2 ±

√
A4 − 4D2

2
(10)

A× =
D

A+
. (11)

These solutions are in fact equivalent to interchanging and/or negatingA+ andA×. If we
impose the conditionsA+ ≥ A× ≥ 0, this selects only one solution, and−π ≤ θ1, θ2 < π.

Inverting θ1, θ2 to find φ0, ψ are a little complicated by the cyclicalmod 2π nature of
angles, which leads to the expression

θ1,2(φ0, ψ) = φ0 ± 2ψ ≡ θ1,2(φ0 + π, ψ +
π

2
) mod 2π (12)

This implies that the ranges ofφ0 andψ are reduced to0 ≤ φ0, 2ψ < π. Commonly though,
ψ is chosen to have a range of−π

4 ≤ ψ < π
4 , resulting in a full range forφ0 of 0 ≤ φ0 < 2π.

2 Estimation from complex amplitudes

We first investigated estimatingA+, A×, φ0, ψ from the complex ampitudes of 30 minute
SFTs. If we could obtain a well-defined estimate ofA+, A× from a single SFT, then a series
of SFTs produced over the course of a data run would yield a population{(A+, A×)i} of
estimates; from which, a mean and standard deviation could be used respectively as a detection
statistic, and a measure of the significance of the detection statistic, e.g. whether the detection
statistic deviates significantly from zero.

TheA parameters are computed from the data as described in [1, 3]:

A1 = 2
B<(Fa)− C<(Fb)

D
(13a)

A2 = 2
A<(Fb)− C<(Fa)

D
(13b)

A3 = 2
B=(Fa)− C=(Fb)

D
(13c)

A4 = 2
A=(Fb)− C=(Fa)

D
(13d)

where

A = (a| a) B = (b| b) C = (a| b) (14)

D = AB − C2 (15)

and

Fa =
(
x| a(t)e2πift

)
(16a)

Fb =
(
x| b(t)e2πift

)
, (16b)

where we define

(x| y) =
N−1∑
j=0

xjyj =

(
N−1∑
k=0

x̃kỹ
∗
k

)∗
(17)

Thex̃k are the input SFT data.
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2.1 Problems and discussion

We initially assumed thata(t) andb(t), being slowly varying, could be treated as constant over
the duration of each SFT. However this creates a few problems:

Firstly, thatA,B, andC are no longer independent:C = AB/2, which impliesD = 0 and
thus equations (13) are singular. This can be solved in a sense by approximating the (discrete)
inner products(x|y) by a continuous integral

∫ t0+T
t=t0

x(t)y(t)dt, for which it is possible to
find fairly compact analytic expressions. This results in an accurate calculation ofA,B,C
and ensures thatD 6= 0; however,D can still be of order10−6, which would result in a106

“magnification” of any noise in the SFT, which of course is always true for a real search. This
can be solved by averaging theA1,2,3,4s from several SFTs together; however this is no longer
the estimation from a single SFT we initially sought.

Secondly,Fa andFb are no longer independent:Fa = aF andFb = bF whereF =(
x| e2πift

)
. F has only 2 independent components (<(F ), =(F )) but we are trying to use it

to find 4 parametersA1,2,3,4. This can be solved by using analytic expressions for the Fourier
transforms ofa(t)e2πift andb(t)e2πift. The effect of thea(t) andb(t) are to split thef peak
(from the Fourier transform ofe2πift) into lines atf±fEarthandf±2fEarth. The summation for
the inner products should only need to sum over a few bins around these peaks for reasonable
accuracy.

A more serious problem is implicit in (16): thatFa andFb are implicitly dependent upon
f , the signal frequency. As this is generally unknown, a search over values off would be re-
quired, which would scale asT−1

observation. Thus we see that parameter estimation from complex
amplitudes naturally leads to a coherent search, of which theF statistic [1] is the canonical
example. We instead prefer to find a more optimal incoherent search, i.e. one that scales with
T−1

SFT.

3 Estimation from power

We now investigate estimatingA+, A×, andψ from the squared complex amplitudes, i.e. the
power, of the SFTs. We consider the signal in the form

h(t) = A+F+(ψ, t) cos Φ(t) +A×F×(ψ, t) sinΦ(t), (18)

whereF+ andF× are the beam pattern response functions, andΦ is the phase, which includes
the intial phase. The phase contains modulations from doppler shifts due to the relative mo-
tion between the source and the detector and the frequency evolution of the source. Over the
duration of a single 30 minute SFT, the beam pattern functions and frequency of the signal are
approximately constant. Thus the strain at discrete timetj measured from the start of the SFT,
wherej is the discrete time index, can be approximated as

hj ≈ F+(ψ, t1/2)A+ cos(φ0 + 2πf(t1/2)tj)

+ F×(ψ, t1/2)A× sin(φ0 + 2πf(t1/2)tj), (19)

wheret1/2 is the time at the midpoint of the SFT, and hereφ0 is the approximate phase at the
start of the SFT,not the initial phase at the start of the observation as before; i.e.

φ0 = Φ(t1/2)− 2πf(t1/2)(TSFT/2). (20)

page 4 of 7



LIGO-T060286-00

Using these approximations, the signal can be treated as the sum of pure sinusoids during the
time of one SFT,TSFT.

The SFT of this data is given by

h̃ =
N−1∑
j=0

hje
−2πijk/N∆t, (21)

where∆t is one divided by the sample rate of the data. Ignoring the mismatch in frequency
(which is unknown in a search over frequency), the normalized signal power is:

2|h̃|2

TSFT
= 0.5(A2

+F
2
+ +A2

×F
2
×)TSFT, (22)

where it is taken to be understood that this is the power from the SFT bin with the signal, and
thatF+ andF× are constants evaluated at the midpoint of each SFT.

3.1 Derivation of the PowerFlux method

Equation (22) represents the expected signal power for an elliptically polarized signal from one
SFT. If we label the SFTs using indexα, and consider a linearly polarized signal withA× = 0,
we can define the noise weighed sum of the square deviations in power as

g =
∑
α

[Pα − 0.5A2
+F

2
+αTSFT]2

S2
α

, (23)

whereSα is the one-sided power spectral density for the appropriate frequency bin, and

Pα =
2|x̃α|2

TSFT
, (24)

with x̃α the SFT data from the appropriate frequency bin.
A natural way one way to estimateA2

+, analogous toχ2 minimization, is to find the value
that minimizesg. Thus, we need to solve

∂g

∂A2
+

= −
∑
α

(Pα − 0.5A2
+F

2
+αTSFT)F 2

+αTSFT

S2
α

= 0. (25)

Solving forA2
+ gives,

A2
+ = 4

∑
α

F 2
+α

S2
α

|x̃α|2

T 2
SFT

/
∑
α

F 4
+α

S2
α

. (26)

Note that equation (26) is the PowerFlux method as defined in [2], though the derivation
given here is different. The noise and beam pattern weighting following naturally from the
minimization ofg in equation (23), but this appears to be equivalent to the maximization of
signal to noise ratio given in [2]. Finally, a value forψ has to be chosen to evaluateF+α, and
thus a search using this method has to include a search over values ofψ.
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3.2 Generalization to estimateA2
+ andA2

×

Having obtained the PowerFlux formula by minimizingg given in equation (23), the obvious
generalization to an elliptically polarized signal is to redefineg as

g =
∑
α

[Pα − 0.5(A2
+F

2
+α +A2

×F
2
×α)TSFT]2

S2
α

. (27)

Note that for this to work thatF 2
+α andF 2

×α have to be linearly independent functions ofα,
which should be true. Thus minimizingg with repect toA2

+ andA2
× gives

∂g

∂A2
+

= −
∑
α

[Pα − 0.5(A2
+F

2
+α +A2

×F
2
×α)TSFT]F 2

+αTSFT

S2
α

= 0, (28a)

∂g

∂A2
×

= −
∑
α

[Pα − 0.5(A2
+F

2
+α +A2

×F
2
×α)TSFT]F 2

×αTSFT

S2
α

= 0. (28b)

Solving forA2
+ andA2

× gives

A2
+ =

4
D

[∑
α

F 4
×α

S2
α

∑
α

F 2
+α

S2
α

|x̃α|2

T 2
SFT

−
∑
α

F 2
+αF

2
×α

S2
α

∑
α

F 2
×α

S2
α

|x̃α|2

T 2
SFT

]
, (29a)

A2
× =

4
D

[∑
α

F 4
+α

S2
α

∑
α

F 2
×α

S2
α

|x̃α|2

T 2
SFT

−
∑
α

F 2
+αF

2
×α

S2
α

∑
α

F 2
+α

S2
α

|x̃α|2

T 2
SFT

]
, (29b)

where

D =
∑
α

F 4
+α

S2
α

∑
α

F 4
×α

S2
α

−

(∑
α

F 2
+αF

2
×α

S2
α

)2

. (29c)

Equations (29) are a natural extension of the PowerFlux method to elliptically polarized
signals. One could use the sum ofA2

+ andA2
× as the detection statistic. A value forψ has

to be chosen to evaluateF 2
+α andF 2

×α, and thus this method still has to include a search over
values ofψ. Whether this method improves sensitivity has yet to be shown, and it also appears
to be of the order of 10 times the numerical complexity of PowerFlux.

3.3 Generalization to estimateA2
+, A2

×, andψ

We can re-writeF+ andF× in terms ofψ and two functions independent ofψ, a andb:

F+(ψ, t) = sin ζ[cos 2ψ a(t) + sin 2ψ b(t)], (30a)

F×(ψ, t) = sin ζ[cos 2ψ b(t)− sin 2ψ a(t)]. (30b)

The normalized signal power can be written as,

2|h̃α|2

TSFT
= 0.5(Aa2

α + Bb2α + Caαbα)TSFT, (31)

where the amplitudesA, B, andC are

A = sin2 ζ(A2
+ cos2 2ψ +A2

× sin2 2ψ), (32a)

B = sin2 ζ(A2
+ sin2 2ψ +A2

× cos2 2ψ), (32b)

C = sin2 ζ(A2
+ −A2

×)2 cos 2ψ sin 2ψ. (32c)

page 6 of 7



LIGO-T060286-00

It is easy to invert these equations, using:

tan 4ψ =
C

A − B
, (33a)

A2
+ +A2

× =
A+ B
sin2 ζ

, (33b)

A2
+ −A2

× =
A− B

sin2 ζ cos 4ψ
. (33c)

Thus, we can redefineg as

g =
∑
α

[Pα − 0.5(Aa2
α + Bb2α + Caαbα)TSFT]2

S2
α

. (34)

Note that for this to work thatF 2
+α andF 2

×α have to be linearly independent functions ofα,
which should be true. Thus minimizingg with repect toA2

+ andA2
× gives

∂g

∂A
= −

∑
α

[Pα − 0.5(Aa2
α + Bb2α + Caαbα)TSFT]a2

αTSFT

S2
α

= 0, (35a)

∂g

∂B
= −

∑
α

[Pα − 0.5(Aa2
α + Bb2α + Caαbα)TSFT]b2αTSFT

S2
α

= 0, (35b)

∂g

∂C
= −

∑
α

[Pα − 0.5(Aa2
α + Bb2α + Caαbα)TSFT]aαbαTSFT

S2
α

= 0. (35c)

Thus, the amplitudesA, B, andC can be found by inverting equations (35).
In this method, the value forψ no longer has to be searched over, but the computational

complexity of the search has increased. Whether this method improves sensitivity has yet to
be shown.

4 Conclusion

We found that estimatingA+, A×, φ0, ψ from the complex amplitudes of a single SFTs
presents several difficulties, and that using multiple SFTs naturally leads to a more compu-
tationally expensive coherent-like search. On the other hand, by using the power of the SFTs
we were able to extend the PowerFlux method to the estimation ofA+, A×, andψ. Further
work would determine whether these extensions increase sensitivity, and whether this merits
the additional computational cost.
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