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1. Physical configuration
Here the Parametric Instability (PI) “R” value is calculated for an arbitrary TM acoustic mode {m}vibration distorting the net electromagnetic field within a single (Adv LIGO) arm cavity. The arm cavity is held on exact {00} mode resonance, with no perturbations present other than the acoustic mode vibration and the finite TM mirror diameter. The cavity is pumped with a perfectly matched {00}field which maintains a steady state field strength E0 (at frequency 0: a tacit “carrier” factor   
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 is understood to have been removed from all field amplitudes) of this mode within the cavity. The particular acoustic mode {m} (specific to only one TM) oscillates at fixed frequency m. All other acoustic modes and the perturbation fields they generate have no influence on the dynamics of {m}. This is based on the assumption that for every other mode {m’}, 
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. An incipient acoustic mode amplitude 
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(x being the coordinate within the TM bulk) is excited (perhaps thermally, but in any case vanishingly small ……). Whether this amplitude will coherently grow or not depends on the balance of 1. the dissipation rate D of the internal energy of {m}, and 2. the rate of work,
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, done on the mode {m} via its [mirror surface] coupling to the net cavity field Etot. This work is typically positive for a Stokes Doppler component of the cavity field, Ebk
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 , allowing the possibility of unstable growth of {m} if 
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Calculations of the acoustic frequencies, wm, and modal shapes, um(x), and hence Dm are
entirely the results of independent (
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{m}) FEA simulations of the Adv LIGO TM. Only the calculation of  Wm involves an optical cavity (FFT) simulation. 
An important distinction (and simplification) from the analysis in [1,2,3] is that we assume that the parametric feedback on {m} has no significant effect on m. Therefore m is merely an ab initio constant parameter. More exactly, the problem is one of coupled oscillators (the mode {m} and a sum over cavity modes which sufficiently approximates Etot), so that m will be shifted. However it may be shown that any relevant shift is 
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(~ 10-7 m).

2. Derivation

First D, the dissipation of the acoustic mode {m}. We regard {m} as a classic SHO with dissipation parameterized as Qm such that
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We can also define a “width” 
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. A FEA simulation of the TM mode {m} gives u(x), m, and Ustored via
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Next, using the TM surface distortion
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also obtained from the FEA, we calculate the field scattered (“reflected”) from this TM:
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Since, for the purposes of this threshold calculation, 
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 can be considered arbitrarily small it will be consistent to only retain and consider field components to first order in ~
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. In particular, the total cavity field, Etot, into the TM surface can be reduced to three [Fourier] components:
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where 
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 via (3). Etot may then be used to calculate the radiation pressure on the TM surface:
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Where  is a constant (depending on units) which relates radiation pressure to the magnitude of the Poynting vector (which will cancel in the sequel). The factor two represents the doubling of pressure due to the nearly perfectly reflecting surface. In this situation we approximate “2”=1+RTM. The only terms in (5) which will lead to time average work on {m} will be ones at frequency m, and of quadrature ~Sinmt (in phase with the velocity of {m}, consistent with (3)). With E0 taken as pure real, such terms will then be 
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Immediately at this stage the sign difference of work done by the Stokes component and by the anti-Stokes component emerges. Several special cases may make the factor 
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 vanish. One would be if uz(xs) is spatially uniform, so that 
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are resonant and thus relatively real [3]. Similarly it may appear that a piece is missing from the total radiation pressure: that due to Escatt- E0 . However, aside from the usual static pressure already accounted for by the factor 2 in (5), this field gives no dynamic contribution to (6): the perturbation is pure phase modulation. Physically this says that light reflecting off a mirror (not part of a cavity) will not alter the damping of any of the mirror’s mechanical modes. Therefore the active term in (6) exists only via circulating “back” fields due to the cavity.
Work is done by the radiation pressure on {m} at rate:

   
[image: image25.wmf]2

z0z

()u()4Imu()

sas

mmssmmbkbks

WSintdsSintEEEds

c

h

wwww

éù

==-

ëû

òò

xxx

&

g

P

          7   
Then combining (1,2,5,6,7) gives:
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Then noting that P0 (cavity pump power) is 
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Which is essentially the expression presented in LIGO-T060207-00 [6]:
        [image: image29.emf]
3. FFT implementation

The expression (9) for R needs to be interpreted in terms of well defined arm cavity FFT (static) simulations. At first this appears paradoxical since the physical problem is dynamic, since Escatt consists of time dependent side bands of different frequency light in the cavity, which feed back on the TM in a time modulated way. However we see already in (9) that there are no explicitly time dependent quantities. This results from recognizing and formulating this problem of interest (threshold feedback) as a purely linear one which allows the time dependence of each Fourier component to be factored out.
Aside from those quantities in (9) obtainable from TM FEA simulations, the only unknown ones are 
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is the steady state field which would result from the excitation of a perfect, {00} resonant arm cavity with a field equal to the 
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component of Escatt (3). But this is exactly what our static FFT algorithms are designed to calculate. The implementation proceeds as follows:
1. An FFT simulation is configured for an ideal (no distortions) Adv LIGO arm cavity. The input excitation field is 
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, the ideal Adv LIGO Gaussian beam which matches into this cavity. This “baseline” simulation is performed to establish the precise numerical cavity resonant length L0. By FFT convention the relaxed field
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, of this simulation at the TM reflection surfaces are purely real.
2. Next we perturb this ideal input excitation via a phase distortion upon transmission into the cavity. This is performed by a standard FFT transverse phase map:
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      which causes the cavity to be excited by a wavefront of exactly the same distortion amplitude as the physical acoustic scattering,(3), would for each individual frequency component

3. Now consider an FFT simulation for one of these frequency components, 
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. One way to do this would be to specify a new wavelength
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 for the simulation (FFT knows only spatial quantities, e.g. ) while maintaining the cavity length L0. Instead we choose to fix 
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for all simulations while microscopically changing the cavity length 
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4. The result of the FFT simulation (with distorted input and L fixed at
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) is a transverse map of the steady state cavity field at the longitudinal position of and into the distorting (input) TM. It is the sum 
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. The proportionality constants are precisely, analytically related (tracing the undistorted cavity resonance curve, at least to first order in perturbation) to the cavity length change
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 can be exactly removed from the map, and the properly normalized, for use in (9), term
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5. The previous step is repeated to separately generate 
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, which are then inserted into Eqn. (9). 
4. Cavity mode reduction

Once again, since the problem at hand is essentially linear, we can always decompose the excitation field Escatt (3) into a sum of cavity eigenmodes (of normalized transverse form j) and calculate a partial Rj which takes into account only the work done by each single modal component. We proceed to calculate
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For each Fourier component of 
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For brevity we follow only one modal component of this field (e.g.
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where 
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which now does explicitly differ, s/as, through ks/as. In this expression 
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is the cavity Gouy phase for mode {j}, and 
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is the effective RT reflectivity within the cavity for mode {j}. Recall now that
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For small RT phase deviations from resonant, 
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where we define 
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Using (13) and (14) in (5,6,7) we arrive at the rate of work done on {m}by this individual modal component:
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Which may be simplified using
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Where 
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 is the geometrical coupling factor of [1,2]. This is exactly the contribution of {j} in the R expression of LIGO-T060207 and [1,2]:
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