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Abstract

LIGO’s current searches for gravitational waves take place in the sub-8 kHz regime.
Sensitivity drops off for higher frequencies but peaks again at multiples of the free spec-
tral range (FSR) frequency, 37.52 kHz. A channel with sufficient sampling rate has been
only recently installed, and analysis at this frequency is uncharted territory. An initial
analysis pipeline consisting of two main components has been created. The first com-
ponent is the frequency and sky position dependent detector response which takes an
arbitrary waveform and modifies it to what would be outputted by the detector and added
to interferometer noise. For signals with a frequency near the FSR frequency, the peak in
sensitivity causes resonance and an exponentially decaying ringing in the modified sig-
nal, with decay time of about 2 ms. The second component is an excess power algorithm,
used to determine if a signal is present by looking for power greater than expected due
to noise alone. The analysis pipeline allows us to inject signals from sources located at
various positions in the sky and compute detection efficiency near the FSR frequency, as
well as compare the all-sky average efficiency to that at low frequencies.

Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) seeks to detect gravi-
tational radiation from astrophysical sources, primarily focusing on waves with frequency of
less than 8 kHz. Most of LIGO’s high sensitivity band falls within that region, but there is
an additional sensitivity peak at 37.52 kHz. Recently, there have been proposals to extend
LIGO’s search to higher frequency waves [1]. LIGO’s low frequency channels are thoroughly
searched, but analysis in the sensitive high frequency region is uncharted territory. Possible
sources in these high frequency channels include the stochastic gravitational background [2],
high order neutron star vibrational modes, and high frequency components of black hole ring
down predicted by string theory [3]. In the absence of detection, upper limits on such sources
could be set.

The various elements of an analysis pipeline are examined. At the beginning of the analy-
sis, we would like to take into account the effect of the frequency-dependent detector response
on incoming signals. We examine these effects on a sine-Gaussian, a typical waveform, at the
frequencies of interest. We then consider an algorithm to determine if a signal is present
within noise and discuss an example where it might be used.

Cavity Response

Due to properties of a Fabry-Perot cavity, the LIGO arms’ length sensitivity is dependent
on the frequency at which the mirrors move. The sensitivity peaks at DC, decays as approx-
imately 1/f , and then peaks again at multiples of the free spectral range (FSR) frequency,
where FSR is the frequency at which a signal’s period of oscillation is exactly equal to the
time it takes for a photon to make a round trip in one of the arms. For the 4-km-long LIGO
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interferometers, the FSR frequency is about 37.52 kHz. The cavity response is not depen-
dent on gravitational waves and occurs for all sources of mirror motion, including vibrational
noise. The normalized transfer function is (See [4] for more information)

H(s) =
1− rarb

1− rarbe−2sT
, (1)

where s is the Laplace domain frequency variable, ra and rb are the mirror reflectivities, and
2T is the round trip time for a photon in the arm. At integer multiples of the FSR frequency
the response peaks (Fig. 1).
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Figure 1: Cavity response of the interferometer. Peaks occur at multiples of the FSR frequency (37.5
kHz).

Directional Sensitivity

There is also a directional dependence to LIGO’s strain sensitivity. A gravitational wave
coming from straight overhead, polarized along the arms, is called optimally oriented, because
it provides the maximum response at DC. On the other hand, LIGO has no strain sensitivity
to a gravitational wave that comes in the plane of the detector along the bisector of the arms.
At these low frequencies, the period of the gravitational wave is much longer than the round
trip time in the arm, or 1/fgw >> 2T . In this regime, the wave oscillates slowly and does not
change much in one round trip of a photon. The effects of the propagation time are small and

2



neglected. The directional sensitivity, called an antenna pattern, is currently calculated at DC
and used for all frequencies up to 8 kHz.

As fgw increases to the FSR frequency, the wave oscillates significantly in one round
trip of a photon. The effect of the photon propagation can no longer be neglected at higher
frequencies. The exact frequency dependent directional sensitivity has been worked out [5].
It is important to note that antenna patterns are not frequency independent in this regime, or
equivalently, for a given orientation, the strain sensitivity depends on frequency. For example,
the optimal orientation for DC provides no strain sensitivity at the FSR frequency, and some
orientations provide sensitivity at the FSR frequency but not at DC (Fig. 2). For plots and a
more detailed discussion of the antenna patterns, see [6].
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Figure 2: Sensitivity vs. frequency at two source locations, where θ and φ are standard spherical
coordinates in the detector frame and ψ refers to orientation. Left: A source directly overhead the
interferometer (φ=0◦, θ=0◦, ψ=0◦)is optimal for DC but provides no sensitivity at the FSR frequency.
Right: A source at this location (φ=135◦, θ=90◦, ψ=0◦) provides no sensitivity at DC but some at the
FSR frequency.

A Sine-Gaussian

The detector response, consisting of the cavity response and directional sensitivity, determines
how a gravitational wave signal would be seen by LIGO. Before conducting long-running
searches, it would be useful to know how the detector response affects an incoming gravita-
tional wave at the FSR frequency. As the exact shape of a signal waveform is unknown, a
sine-Gaussian burst of .5 ms is used as one possible model [7]. The signal is given a location
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and orientation in the sky, described by φ, θ, which are the standard spherical coordinates in
the detector reference frame, and ψ, an orientation angle. (See [5] for more detail).

For signals with center frequency far from the FSR frequency, there is no qualitative differ-
ence between the source waveform and the detected waveform; there is an amplitude change
but the general shape remains the same. Near 35.5 kHz, a slight tail appears on the waveform.
At the FSR frequency, there is a significant change in the overall shape of the waveform (Fig.
3). An exponentially decaying tail dominates the Gaussian envelope and drops off with a de-
cay time τ = 2 ms. The signal ‘rings’ due to the resonance induced by the cavity response.
For bursts with duration less than 2 ms, the ringing is a significant effect. The detector signal
also exhibits a delay in rise to maximum amplitude, caused by the time necessary for the en-
ergy to build up in the cavity at resonance. The ringing effect is due solely to the peaks in the
length response and is not qualitatively changed at different sky locations.

This example was calculated with a center frequency equal to the FSR frequency, but
similar effects occur at 2 × FSR, 3 × FSR, and so on.

Figure 3: Sine-Gaussian signal of the source (blue) and detector (red). Plots have been normalized to
compare shapes. Note the exponentially decaying tail of the detector signal with decay time τ = 2 ms.

Analysis Pipeline

The sequence of events leading to a gravitational wave detection can be stated simply as
follows:

1. A gravitational wave is emitted from a source.

2. The gravitational wave passes through LIGO, producing a phase change in the light that
corresponds to an ‘effective’ length change of the arms. The signal at the photodetector
is modified by the detector response – the cavity length response and the directional
sensitivity.
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Figure 4: Analysis Pipeline. η represents interferometer noise.

3. The gravitational wave signal is joined with noise: shot noise, seismic noise, vibrational
modes, etc.

4. LIGO attempts to detect the gravitational wave signal in the noise.

With the detector response in place, we can construct an analysis pipeline to mimic these steps
(Fig. 4). A generated signal is given a sky location and modified by the detector response and
then added to LIGO noise, at which point detection is attempted through some algorithm. The
detection algorithm used here, called the excess power method [8], is described in the next
section, Methods. It can, for simplicity, be tested on a signal added to white noise rather than
interferometer data. The analysis pipeline may be used to perform simulations with injected
signals or to run searches on interferometer data.

Methods

Detector Response

The detector response determines how a gravitational wave signal would be seen by LIGO.
The signal that LIGO sees, xdet(t), is a function of the source signal, xsource(t), and the angles
φ, θ, and ψ.

Application of the frequency-dependent detector response must be done in the frequency
domain [6]. A fast Fourier transform function (FFT) is used to obtain the spectrum X̃source(f)
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of the time signal.
X̃source(f)⇔ xsource(t) (2)

The cavity response and directional sensitivity, represented here by H(f) and D(f, φ, θ, ψ),
respectively, are then applied for each frequency component to calculate the spectrum of the
detector signal.

X̃det(f) = H(f)D(f, φ, θ, ψ)X̃source(f) (3)

The new spectrum X̃det(f) is then transformed back to a time signal xdet(t).

xdet(t)⇔ X̃det(f) (4)

Excess Power

The excess power method is useful for detecting signals in the presence of white Gaussian
noise [8]. It has the advantage of not requiring knowledge of the duration or frequency band-
width of the waveform, which is often unknown, especially for high frequencies. The essence
of the excess power method is to look for power greater than one would expect from noise
alone; that is, to look for excess power.

Let detector output be y(t), noise n(t), and a (possibly absent) signal x(t). In the absence
of a signal,

y = n. (5)

Power is proportional to y2, and thus, letting <> denote average value,

< y2 > = < n2 > (6)

If a signal is present,

< y2 > = < n2 > + < x2 > +2 < nx > . (7)

If we assume that n and x are uncorrelated, then < nx >= 0, and

< y2 > = < n2 > + < x2 > . (8)

If a signal is present, < x2 > is positive definite, and thus the expected power in the detector
output will be greater than in the absence of a signal.

Because LIGO’s high frequency sensitivity peak is centered in a narrow band around the
FSR frequency, it makes sense to focus our search within that band. Fourier analysis is used
to break the power in the signal up into different frequency bins. We could imagine taking
the Fast Fourier Transform (FFT) of 1 second of time domain data and having a frequency
resolution of 1 Hz, but then relatively short duration bursts could be drowned out by the noise
power. Instead, we create a Time-Frequency Plane (TF-Plane), or a spectrogram, where we
divide the time data into many time bins and FFT each time bin separately. In this way, we
have better resolution in time, but the frequency resolution is worse (Fig. 5).
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Figure 5: Left: spectrum (red) of 8 points of time domain data (blue). Right: time domain data has
been divided up into two bins of 4 points each. Spectrum of each time bin is shown, yielding higher
resolution in time, but lower resolution in frequency.

We cannot achieve arbitrarily high resolution in both time and frequency due to the un-
certainty principle. If we denote time resolution by ∆t and frequency resolution by ∆f , the
best we can achieve is ∆t∆f = 1. Instead, we can settle for producing several TF-planes,
with successively higher time resolution and successively lower frequency resolution in each.
The procedure described in the LIGO Scientific Collaboration Algorithm Library (LAL) has
been followed and adapted [9]. The power contained within a single time and frequency bin
(a single pixel) would be described by

P = (Re(ỸjJΣ))2 + (Im(ỸjJΣ))2, (9)

where j denotes the TF-plane, J denotes the time index, and Σ denotes the frequency index.
The excess power method works by summing up the power within the detector output and

comparing that value with the expected power from noise. As previously stated, if power from
the entire output were summed, then a signal could be easily lost in the noise power. Ideally,
power from just the times and frequencies at which the signal existed could be summed, and
the rest of the noise discarded, allowing the highest chance of detection. However, because
the duration and bandwidth of the signal are unknown, we must search over all possible TF-
tiles, where a TF-tile is a subset of a TF-plane and is specified by a start time, end time,
start frequency, and end frequency. Searching over all TF-tiles is equivalent to placing a
rectangular window on a TF-plane and only looking at the power within that window, and
then allowing that window to change its location and dimensions. The total power in each
TF-tile is summed:

P =

J=J2,Σ=Σ2∑
J=J1,Σ=Σ1

[
(Re(ỸjJΣ))2 + (Im(ỸjJΣ))2

]
(10)
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Chi-Square Distribution

In the presence of white Gaussian noise, the power follows a χ2 distribution. A χ2 dis-
tributed variable is the sum of squares of independent, zero mean, unit variance, normally
distributed variables. The number of variables being summed is called the number of degrees
of freedom, ν, which is equal to the expected value of the χ2 variable. In a TF-plane, each
pixel contributes two degrees of freedom: one each for the real and imaginary parts of the
FFT.

The χ2 distribution is useful because its probability distribution function (PDF) and cu-
mulative distribution function (CDF) are analytic.

Figure 6: Cumulative Distribution Function for a χ2 distribution with ν = 10.

Figure 6 shows an example CDF for a χ2 distribution with ν = 10. At P = 20, the
value of the CDF is ∼.97, meaning that 97% of observed values of P can be expected to be
< 20. Then 3% of observed values can be expected to be > 20. One could also say that the
probability of observing P > 20 due to noise alone is .03.

TF-Tile Power

For each TF-tile, the probability α of obtaining the summed power due to white Gaussian
noise alone can be computed using the χ2 CDF. A lower α means it is less probable that
the total summed power is due to noise alone. The number of degrees of freedom is twice
the number of pixels in each tile. One way of deciding if a signal is present is to simply
compare the probability level α against a threshold level, αthresh. If α < αthresh, then a candidate
event (detection) is marked. The threshold is set to achieve a desired false alarm rate; e.g.,
αthresh = 10−6 yields one false detection per one million windows checked, on average.
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Looping through TF-Tiles

To save computational time, we calculate the power only for a fraction of all possible TF-
tiles. Some subset of all possible tiles would be presumed satisfactory coverage for detecting
a signal. A quadruple loop over the time width, time start, frequency width, and frequency
start determines the tile. The algorithm for determining which tiles are selected is as follows
(the reasoning will be shown for the time dimension; it is identical for frequency):

Let Jstart represent the starting time index and Jwidth represent the width index of the tile.
The increment for Jstart is

∆Jstart = 1 +

[
Jwidth

Nov

]
, (11)

where brackets represents rounding down to the nearest integer, andNov is an overlap constant.
For constant Jwidth but shifting Jstart, this provides a fractional overlap of tiles∼ (Nov−1)/Nov.
The worst case scenario for a signal of a given width occurs when its starting time lies just
between the starting times of the surrounding tiles, causing neither tile to fully surround the
signal (Fig. 7). With this algorithm, the worst case fractional loss of signal power is∼ 1/2Nov.

The increment for Jwidth is exactly the same:

∆Jwidth = 1 +

[
Jwidth

Nov

]
. (12)

A tile with the same Jstart but larger Jwidth covers a larger area than the previous tile. The worst
case scenario would be a signal that has a time width that lies just in between the two tiles,
which would cause a large loss of signal power in the smaller tile as well as a large excess of
noise power in the larger tile (Fig. 7). The worst case fractional loss of signal power / gain of
noise power is ∼ 1/2Nov.

Figure 7: Top: shifting start position for Jwidth = 7, Nov = 3, corresponding to a tile width of 8 points
and a fractional overlap of about 2/3. Overlap area is shaded – in this case, the overlap is 5/8. Bottom:
Same start position, but different widths, with Nov = 3. Filled circles indicate a signal located in the
worst-case-scenario position.

Results of a Search

After all tiles have been searched, the excess power algorithm has produced a list of can-
didate events and their associated tiles. A strong signal might produce many candidate events.
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For visualizing the results, it would be useful to display all the tiles on one graph, so that areas
of high concentration of candidate events are noticeable. A ‘fill plot’ places the location of
each tile on a time-frequency plot in a light color. Areas with overlapping tiles become darker,
whereas areas with only one or two tiles are light-colored (Fig. 8).

Figure 8: A fill plot of candidate events. Areas with overlapping tiles are displayed in a darker color.

Signal Estimation

As a short and simple method for estimating the original signal, we can take a TF-tile that
has a candidate event and produce a time series from it. Zeroing all points on the TF-plane
except for those within the TF-tile eliminates most of the noise power while leaving most
of the signal power. The frequency domain data can then be inverse Fourier transformed to
produce a signal estimate (Fig. 9). The TF-tile selected to estimate the signal could be based
on criteria such as the lowest probability level or the largest time-frequency area. Or, we could
take an average of the estimated signals from every TF-tile with a candidate event.

Power at the FSR frequency

One analysis that can be performed is to look at the detector output over stretches of time
and check if it matches with trends in power corresponding to the movement of a source across
the sky. During a single day, the location of a distant source such as the center of our galaxy
will remain relatively constant. Due to the earth’s rotation, the galactic center will appear to
move in the local coordinate system of a point on the surface of the earth. As the source moves
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Figure 9: Top left: original signal, a sine-Gaussian. Top right: white noise has been added to the
original signal. Bottom left: the estimated signal (red) has been plotted atop the original signal (blue).
Noise artifacts are still present. Bottom right: closeup of the estimated signal and the original signal.

through LIGO’s sky, it moves across the antenna pattern, through areas of higher and lower
sensitivity. One could correlate trends in the sensitivity with trends in the signal. LIGO’s
antenna patterns at DC and at the FSR frequency for plus, cross, and average polarizations
along with an overlay of the galactic center’s trajectory is shown in Fig. 10. The excess power
algorithm could be used as well to track the number of ‘events’ that occur during time periods
of higher sensitivity.

Conclusion

An analysis pipeline has been developed to begin the search for gravitational waves at
the FSR frequency. Its two main components are the cavity response and the excess power
algorithm. The cavity response can have a dramatic effect on some signals near the FSR
frequency, altering their waveform. A sine-Gaussian distorts to have a ringdown time of
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Figure 10: Antenna pattern plots, where red represents high sensitivity and blue represents low. Top
left: DC, plus polarization. Top Right: FSR frequency, plus polarization. Middle left: DC, cross
polarization. Middle right: FSR frequency, cross polarization. Bottom left: DC, average polarization.
Bottom right: FSR frequency, average polarization. The galactic center’s path through the sky over
one day is plotted, with an x marked at each hour interval.

about 2 ms. The excess power algorithm can detect signals in the presence of white noise.
While developed, the algorithm not been tested on a multitude of cases. Future work should
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include Monte Carlo simulations of injected signals at various sky locations to determine the
success rate of the algorithm. Detailed analysis could be done correlating an astrophysical
object’s motion through the sky with the strength of a signal, as described with the galactic
center example above. Tracking trends over long periods of time may be the only way to
detect signals of low amplitude at the FSR frequency. Gravitational waves may exist at the
FSR frequency. Further development of the analysis pipeline begun here should ensure that
LIGO’s sensitivity at the FSR frequency is taken advantage of.
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