
Mode calculation based on Sigg’s radiation pressure induced instability model 
 
Eiichi Hirose 
Department of Physics, Syracuse University, Syracuse NY 13244 
Feb 5, 2007 
 
There are two modes in two mirror resonator [1].  One is potentially unstable while the 
other is stable. 
 

 
(a) (b) 

 
             Figure 1:  Two different resonator configuration (a) stable (b) unstable 
 
 
Now, we want to calculate resonance frequency of the system considering small oscillation.  
In order to do this, let’s set up coordinates in the following way. 
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                                                Figure 2:  Coordinate setting 
 
 
Here,  and  are moment of inertia of each mirror.  1I 2I 1τ  , 2τ  are torque due to radiation 
pressure, which can be expressed using laser pow  and  are er inside the cavity.  1x 2x
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distance from the center line to points on which radiation pressure is acting.  21,, RRL  are
cavity length, radius of curvature of mirror 1, and radius of curvature of mirror 2, 
respectively.  Centers of radius of curvature (ROC) should, in reality, sit outsi
mirrors since ROC is much bibber than arm length in LIGO.  But, the figure two is awn
in convenient way. 
We assume Hook’s law for restoring force due to torsion of wires.  Namely, restoring 
torque is assumed to be some constant times small angle.  Define the constant as

 

 dr  
de the 

1μ , 2μ .  
Then, we can immediately write down kinetic energy and potential. 
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P  is the laser power stored inside the cavity, and  is the speed of light.  Minus sign of 

diation-pressure-induced torque works as if it reduces energy due to torsion spring.  
e

c
ra
R lation between x  and θ  in resonator is the following [2]. 
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Here,  and  are g parameters. 
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Therefore, the third and fourth term of potential can be rewritten in the following way. 

1g 2g
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Thus, potential of this system is  
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jiijKK θθ &&21=When we express kinetic and potential terms as  and  jiijVV θθ21= , 
( 2,1, =ji ) to see small oscillation,  and  will be the following.  ijK ijV
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Calculate eigenvalues by taking 

K

V

0)det( =− KV λ .  Namely, 
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After some calculation, we get a characteristic equation. 
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If we have  and III == 21 μμμ == 21  , the equation above will become much simpler.  
And fortunately, that is the case in LIGO 
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is gives eigenvalues. 
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 cavity makes system’s mode split into two since We see that laser power stored in the

2ωμ ≡I  is free torsion pendulum’s natural frequency.  One is higher than original torsion 
pendulum’s frequency while the other is lower than the original.  In other words, original 
torsion pendulum is degenerate case of the resonator configuration. 
 

e Eigenvectors ar
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There are two different modes, which correspond to each sketch in figure 5. 

 
 
                                                     Figure 3:  Four modes 
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Now is the time for us to input some realistic values into the equations.  The main 
parameters are listed in table 1. 
 
 

0.859 -
g2 0.451 - 0.730 -

speed of light  c 300000000 m/s 300000000 m/s

4K 2KParameter

value unit value unit
frequency  2π0.5 rad/s 2π0.5 rad/s
inertia  I 0.0474 kg m2 0.0474 kg m2

L 4000 m 2000 m
ROC (ITM) 13760 m 14200 m
ROC (ETM) 7290 m 7400 m

g1 0.709 -

 
                                                     Table 1:  Main parameters 

It is convenient to express eigenfrequencies with PSL laser power instead of laser power 
stored in the cavity since we really do not know the actual power there.  In order to do this, 
we have to estimate energy enhancement on the way to the arm cavity.  Here, we use 
energy loss at mode cleaner: 33%, energy enhancement factor at power recycling mirror: 
50, energy split at beam splitter: 50%, and finally energy enhancement factor at Fabry-
Perot cavity: 140.  Therefore, we estimate laser power stored in the cavity from PSL laser 
power in the following way. 
 
 

  [W] 
 

e system can be plotted by 

 
 

PSLcaviy PP ××××= 67.0405.0140

 
Therefore, with above PSL laser power, eigenfrequecies of th
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Plotted are H1 and H2 respectively. 
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                             Figure 4:  4K eigenfrequency in different modes 
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                             Figure 5:  2K eigenfrequencies in different modes 
 
 



 
As seen in figure 3 and 4, Mode 2 is unstable in the sense that resonance frequency 
becomes zero.  The reason is that radiation pressure decrease restoring of pendulum wire 
and eventually makes restoring force zero as laser power goes up. 
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