

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T080268-00-I

AGO

ADVANCED LIGO

10/08/08

Optical Layout and Parameters for the Recycling Cavities

Muzammil A. Arain and Guido Mueller

Distribution of this document: LIGO Science Collaboration

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW17-161 175 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189

http://www.ligo.caltech.edu/

Table of Contents

1	Intr	oduction	3
	1.1	Purpose and Scope	3
	1.2	Definitions	3
	1.3	Acronyms	3
	1.3.	1 LIGO Documents	3
2	Opt	ical Configuration	4
3	Der	ived Cavity Parameters	6
4	Hig	7	
	4.1	Carrier in the PRC	7
	4.2	Low Frequency Sideband in the PRC	
	4.3 High Frequency Sideband in the PRC		
	4.4	Carrier in the SRC	9
	4.5	Low Frequency Sideband in the SRC	9
	4.6	High Frequency Sideband in the SRC	10
5	Sun	nmary	10

1 Introduction

1.1 Purpose and Scope

This document describes the optical parameters of the recycling cavities for Advanced LIGO. The lengths between various optical elements, ROC values of the mirrors, and their tolerances are listed. The various cavity parameters like Finesse, linewidths, and transversal mode spacing are calculated. Included also are the higher order modes offsets from resonances.

1.2 Definitions

Finesse: Measure of the selectiveness/build-up of the cavity given by $F = \frac{\pi \sqrt{r_1 r_2}}{1 - r_1 r_2}$

Free Spectral Range: FSR is given by $FSR = \frac{c}{2L}$ where c is the speed of light while L is the length of the cavity. The units we use are Hz.

Linewidth: The point at which the normalized transmission through a cavity becomes 1/e^2. This is calculated as Linewidth = $\frac{0.5 * FSR}{F}$ = Half-Width-Half-Max (HWHM).

Transversal Mode Spacing: Transversal mode spacing in the frequency difference between two Gaussian modes. For example, this is the frequency difference between TEM₀₀ mode and TEM₀₁. For any higher order TEMnm mode, the difference between TEMoo and TEMnm mode is given by $\frac{(n+m)FSR*a\cos(\pm\sqrt{g})}{\pi}$ where g is the G-factor of the cavity. Note that we will use Hz as the

units of transversal mode spacing.

Sagitta or Sag: For a beam with 1/e^2 beam size of w incident on a mirror if ROC R, the sag is given by $\frac{w^2}{2R}$.

1.3 Acronyms

ROC: Radius of Curvature

PRC: Power Recycling Cavity

SRC: Signal recycling Cavity

1.3.1 LIGO Documents

- 1. Mike Smith, recycling-cavity-length-nfold-stable_range_0.08-ITMvert_9-12-08.pdf.
- 2. Mike Smith, non-fold_src_coord_0.08-ITMvert_9-12-08.pdf.
- 3. R. Abbott, "Advanced LIGO Interferometer Sensing and Control Conceptual Design," LIGO-T070247-00-I.

2 Optical Configuration

The optical configuration of the Advanced LIGO cavities is given in Fig. 1 where we include both recycling cavities and the arm cavities.

Fig. 1: Optical layout of Advanced LIGO cavities.

The various distances involved between optical elements are taken from Ref. 1 and 2. These are shown in Table 1.

		F	PRC	SRC	
Definition	Unit	Straight	Folded	Straight	Folded
PRM radius of curvature	m	9.0	10.43	-10.11	-71.09
Distance b/w P(S)RM and P(S)R ₂	m	16.6329	15.7972	15.7064	15.9407
P(S)R ₂ ROC	m	-2.26	-1.56	-3.78	-2.49
Distance b/w P(S)R ₂ and P(S)R $_3$	m	16.1709	15.2	15.470	16.0016
P(S)R ₃ ROC	m	34	31.5	34.0	34
Distance b/w P(S)R $_3$ and BS	m	19.511	19.4139	19.395	20.0991
BS Effective thickness	mm	0	0	131.5	132
Distance b/w BS and CP	m	4.8526	9.4652	4.8076	9.4455
Distance b/w CP and ITM	mm	5	5	5	5
ITM ROC	m	1971	1971	1971	1971
Reqd. beam waist size in arm	mm	11.8	11.8	11.8	11.8
Spot Size at ITM	cm	5.55	5.55	5.55	5.55
Beam waist location from ITM	m	1882.6	1882.6	1882.6	1882.6
ETM ROC	m	2191	2191	2191	2191
Angle of Incidence at P(S)R ₂	degree	0.748	0.963	0.892	0.878
Angle of incidence at P(S)R ₃	degree	0.608	1.144	0.774	0.916

Table 1: Optical Parameters and Distances in Advanced LIGO Cavities

The associated component specifications for the recycling cavity mirrors are given in Table 2.

	ROC (m)		Beam Size (mm)		Sag (±µm)		Tolerance in % and m			Tol. Sag (±nm)	
Optics	Straight	Folded	Straight	Folded	Straight	Folded	Both (%)	Straight (±m)	Folded (±m)	Straight	Folded
PRM	9.00	10.43	1.90	2.30	0.20	0.25	1.00	0.09	0.10	1.99	2.51
PR2	-2.26	-1.56	3.40	2.60	-2.56	-2.17	1.00	0.02	0.02	25.83	21.90
PR3	34.00	31.50	56.52	56.70	46.98	51.03	0.50	0.17	0.16	233.75	253.89
SRM	-10.11	-71.09	2.00	2.90	-0.20	-0.06	1.00	0.10	-0.71	2.00	-0.59
SR2	-3.78	-2.49	5.70	4.00	-4.30	-3.22	1.00	0.04	0.02	43.47	32.51
SR3	34.00	34.00	56.50	56.72	46.94	47.31	0.50	0.17	0.17	233.55	235.39

Table 2: Component Parameters for Recycling Cavity Mirrors

Note that the tolerances of $P(S)R_3$ are based upon our ability to correct any manufacturing tolerance by repositioning $P(S)R_2$. From layout standpoint, we can reposition $P(S)R_2$ by ± 10 cm requiring P(S)RM be moved by ± 20 cm. Thus we had to select 0.5% tolerance for $P(S)R_3$. Tolerance of $P(S)R_2$ and P(S)RM is loosely based upon what we can get from the manufacturers easily. Any error in ROC of $P(S)R_2$ and P(S)RM can also be corrected by repositioning the mirrors but the range of motion required for these mirrors is very small. Note: Here 'Sag' is the sagitta change due to ROC while 'Tol Sag' is the change in sagitta between the nominal ROC value and when the ROC is at the end of the tolerance. For example, for PRM, 'Tol. Sag' = $(\text{Beam size})^2/(2*10.43) - (\text{Beam size})^2/(2*10.43+0.1)$

Note that we have used the HR side of the BS for designing the PRC while for the SRC, the beam passing through the BS AR side is chosen. Thus for the straight cavity, PRC is designed for the Y-arm while SRC is designed for the X-arm. For the folded cavity, PRC is designed for the X-arm while SRC is designed for the Y-arm. The difference in the resulting ROC for the cavity mirrors is very small and well within the proposed tolerance.

3 Derived Cavity Parameters

To derive cavity parameters we have to use some mirror transmittances and distances. These are given in Table 3 and are taken from Ref. [1-3].

Quantity	Unit	Strai	ght IFO
ITM Transmittance	%		1.4
PRM Transmittance	%	:	3.0
SRM Transmittance	%	2	20.0
ETM Transmittance	ppm		10
PRC Length	М	57	.676
SRC Length	m	56	5.028
Arm cavity length	m	39	94.75
Lower Mod. Frequency	MHz	9.1	1011
Distance b/w P(S)R $_3$ and BS	MHz	45.	.5055
Arm cavity Finesse		2	143
Arm cavity FSR	KHz	3.	7.52
Arm cavity TMS	KHz	32	2.69
Arm cavity Linewidth	Hz	42	2.37
Arm cavity G-factor		0.8	8455
		PRC	SRC
Carrier Recycling cavity Finesse		114	25.36
Recycling cavity FSR	MHz	2.6	2.67
Recycling cavity TMS	MHz	1.722	0.434
Carrier Recycling cavity Linewidth	KHz	11.35	52.7
RF Recycling cavity Finesse		141	26.46
RF Recycling cavity Linewidth	KHz	9.22	50.57
G-factor		0.2376	0.7617
One way Gouy Phase	Radian	2.08	0.51

Table 3: Derived Cavity Parameters

Note that there is a little difference between the Finesse for the carrier and the RF sidebands in the recycling cavities. This happens because the carrier is resonant in the arms while the sidebands are not. Therefore we use effective reflectance for the over-coupled arm cavity. The amplitude reflectivity of ITM based upon 1.4% power transmittance is 0.9930 while the amplitude reflectivity of the combined ITM-ETM combination when the carrier is resonant inside the arm cavity is - 0.9879. Thus the slightly higher losses for the carrier accounts for slightly reduced Finesse of the PRC and SRC for the carrier as compared to the sideband Finesse in these cavities.

4 Higher Order Mode Resonance

Next we have used straight IFO to check the higher order mode resonance in the recycling cavities. The results are shown in the figures below.

4.1 Carrier in the PRC

4.3 High Frequency Sideband in the PRC

4.4 Carrier in the SRC

4.5 Low Frequency Sideband in the SRC

5 Summary

We have evaluated the higher order mode resonance for the carrier and the sidebands in the PRC and SRC. None of the higher order mode with a mode index of less than 15 is within the cavity linewidths anywhere. The l+m=6 mode in the signal recycling cavity for the carrier and the 45 MHz sideband is almost at the edge of the cavity linewidth. The choice of PRC and SRC Gouy phase seems appropriate.