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Reference: R. W. Scattering by Residual Gas LIGO file #49 

Phase noise due to forward scattering 

(l)RWpage8 

[Note: Expression for a single pass through gas column] 

a = molecular polarizability Example: a(N2 ) = 1.6 x 10-24cm3 

P# = particle density Example: at 1 atm P# = 3 x 1019 
/ cm3 

.A = light wave length 

vo = thermal velocity of gas with polarizability a 

Example: vo(N2 , 300K) = 4.2 x 104 cm/ sec 

wo = Gaussian radius at focus of beam Example: if close to confocal w0 = (-;;) 
112 

l = length of gas column 

Neglect expontential factor in all ensuing estimates 

Assume V21rfwo < 1 
Vo 

Statistical fluctuation limit due to forward scattering expressed as a limit on h(f), the 
gravitational wave sensitivity 

h(f) = v'2(27r)a(p#)
1
1

2 = ( dh) tf;(f) 
forward scat (wovol) 112 dt/J 

l = length of antenna = 4km 

P# = number density averaged over antenna arm 

Expression includes both arms 
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Condition for other parts of vacuum system is that phase noise in 4km arm should 
dominate. 

A) In those paths with phase sensitivity / after split 

a) main beam tu bes 

b) test mass-+ splitter 

Scaling goes as (EQ 1) 

¢2 (!) ex 

So phase noise from different parts of path¢(!) ex 

sum over different 
segments 

(

.Al main ) l/
2 

After beam splitter woi ,...,, w0 '.::'. i;h" 

So scaling goes as < P# > lsection 

Or to make contributions for phase noise comparable in short path vs main tube 

< P# >short ----""-------
< P# >main tube 

< P(torr) >short _ l1ong 

< P(torr) >Jong lshort 
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Conditions in beam path before beam split 

1) Phase noise is common mode to both interferometer arms so scaling 
is not the same as after split. 

2) Must worry about mode mixing (angular jitter noise) imparted 
by residual gas 

A) Common mode-+differential mode conversion in interferometer 

Primary source is through unbalance in arm storage time and frequency 
fluctuations of input light 

Assume that frequency noise is determined by input mode filter 
cavity 

Frequency noise sensitivity 

h(f) = v(f) Arst 
Vo 1"st 

Vo base frequency rv 6 x 1014 Hz 

v(f) - frequency noise Hz/ H z112 

h(f) - gravitational wave strain noise strain/ H z112 

Arst/ 1"st = ( ~: + ~l) fractional storage time unbalance in the two 4km arms 

Frequency noise due to forward scattering in input frequency reference cavity 

v(f) 
forwardscat 

(Note: Finesse of cavity is absorbed in phase noise for multiple path through the gas 

column) 

Convert to limit on h(f) in full interferometer 

h(f) 

freq noise 
from forward scat 

in input cavity 

[ ( ) 1/2] Arst 1r a P#c.,.,v 
-;:- 4 ( VoWo) 112 lcav 
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For estimation 

h(f) 
forward 

scat 
beam tubes 

h(f) 
freq noise 

from forward scat 
in input cavity 

< P# > A rst < P# > [ l [ ]2[ l 
Wol main ,...,, ~ Wol cav 

ff minimum beam size in either system 

Wo = ( ~)'/' 

[
< P# >] 

l 3!2 
main 

[
Arst] 2 [< ~12 >] 
1'st l cav 

Scaling 

<P(torr)> 
cavity 

<P(torr)> 
main 

Example: 

< P >main 

(
lcavity) 

3
/

2 [~] 2 

lmain A1'st 

lcavity 

lmain 

1.2 x 103 
3 

_4_x_l_o_s_ = 3 x 10-

Arst = 1 x 10-3 
1' 

< P(torr) >cavity < 1.6 X 102 < P(torr) >main 

~ 1.6 x 10-7 (~~) for ultimate sensitivity 

h(f) = 3 x 10-25 strain/ H z 112 

This assumes entire frequency reference derived from input cavity, no trim 
from main cavity. 
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Mode mixing (beam angular jiggle) due to statistical fluctuations in gas column 

mixing of TE 11 mode from T Eoo mode by 
residual gas forward scattering :fluctuations 

Eu 
Eoo 

Does not set a serious limit 

RW p16, 17 
Note: mistake 
p17 
a = 1.6 x 10-24cm3 

l - length of region with average number density P# 

lp# - column density 

Overlap integral < 1 

Other condition that sets pressure is damping of pendulum in TM chambers, this is 
satisfied for P (torr) < 10-6 

N2,H20 
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OUTLINE OF CALCULATION 

1) Definition of mode amplitudes - complex amplitude
2) Mode amplitude of point scatterer
3) Model of point scatterer polarizability, electric dipole approximation
4) Time dependence of mode amplitude
5) Fourier transform of mode amplitude
6) Integration over Maxwell velocity distribution
7) Power spectrum of noise in mode amplitude
8) Phase and amplitude fluctuations in the mode amplitude
9) Mode mixing by residual gas

THE MODE FIELDS 

Propagation along z 

H; ( �)) are the hermite polynomials

w2(z) = w! [l+ (,,1;:J] 
R(z) = z [1 + ( ";!) 2]

beam radius 1/ e 
wave front radius 

For the confocal cavity the beam radius at the waist is 
Wo (R ----1- oo) = 

11" 

l�ISO .,990:,.zs'··CJO ·- l<

� 
List of 3/1/89 

R. iJ ��,,as 
Some of the calculations in this document had previously 

been made by Stan Whitcomb in an unpublished document.



THE MODE AMPLITUDES 

Let the exit pupil of the optical system be defined at a point where the modes have wavefront radius 
R(o) --.. oo. This is a convenient place to define the mode amplitude associated with an arbitrary field. 

The mode amplitude is complex and given by 

Am,n = i !. Um,n (x,y) · E(x,y) · dxdy 

z=O 

Um,n(x, y) are normalized so that 

For Example 

i !. Um,n(x, y)uJ,1i:(x, y) · dxdy = Dm,jDn,k 

e 
_,.2+y2 

..,2 
0 

Mode amplitude of a single isotropic scatterer in the beam at a position z 
is 

Y... # r4r=======...::zL-=-=-=-=-=-=-=-:;-;:-=-=-=-=7~'"=-=-=-=-=r~-u_J"I k----7· 
,-~~--:->~~~~~~~-+-~~__J 

Fno~4GAl10N 01IZ£c.r1oal 
of GA.is~.A~ B•A~ 

2 /f 
I 

(;.A..>SS•-',J f:liU4.., 

"T r. JC ,-r- P" ~· ... 



Assume a point scatterer (molecule) at field position x,y,z in a Gaussian beam traveling along -z direction 
and coming to a focus at the exit pupil. We want to determine the mode amplitude of the scattered field. 

iSsumption 

Assuming weak scattering - single scattering - so that the wave incident on the scatterer is unperturbed by 
previous scatterings, the scattered field is isotropic and given by 

- pupil source 

( 

exit ) 

E 8 c Xi, Yi, 0 I x, y, Z 

where k is a unit vector along the scattered wave propagation direction and P is the induced electric dipole 
in the scatterer due to the incident wave 

P= a(w)Einc 

a(w) is the molecular polarizability at frequency w in units of cm3 /molecule. 

The molecular polarizability is best determined from bulk measurements of the refractive index at w. 

a(w) = n(w)-1 
27rp# 

n ( w) index of refraction of a gas composed 
of number density P# molecules/cm3 • 

We will be co cerned initially with scattering into the exit pupil so that the polarization of the scattered 
field is the s e as the incident field. 

_ ~kR _ 

Esc (x1,Y1,0 I x,y,z) = k2a(w) · R · Einc (x,y,z) 

note: R is irected from scatterer to the exit pupil 

The mode am litudes of the scattered field are given by the integrals 
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Am,n (scat)= J J U.m,n (x1,y1) Eac (x1,y1,0 I x,y,z) dxrdYr 

:Z:I YI 

z=O 

Am,n (scat) = J J Um,n (xr, YI) k 2a(w) e:R · Einc (x, y, z) dx1dy1 

:Z:I YI 
z=O 

The integral is evaluated by the method of stationary phase 

see: Jackson, J. D. "Classical Electrodynamics" 2nd edition, 1975, p 454-459. 

or Ishimaru, A. "Wave Propagation and Scattering in Random Media" Academic Press, 1978, 
p 287-292. 

Method of Stationary Phase 

+oo +oo . 

J J 
e•klrI-r.I 

I= dxr dyrA (xr, Yr)· I I 
rr - rs 

-oo -oo 

If A(xr,Yr) is not changing rapidly over integration and the point in the exit pupil which is stationary in 
the phase is x Io, y Io, the integral becomes 

27l"i 
I= A (xro, Yro) · k eik(zI-z.) ( spatial delta function) 

XJO = x, YIO = y the coordinates of the particle 

Am,n(scat) = i · 27rka(w)ttm,n(x, y)Einc(x, y, z) e-ikz 

The mode amplitude of the incident field in first order (neglecting the change in the incident field due to 
the scattering) is 

4 



Am,n(incid) = J J Um,n · Einc(x1,Y1,0)dx1dy1 

:r.1 Y2 

z=O 

The total mode amplitude 
Am,n(total) = Am,n(incid) + Am,n(scat) 

SPECIAL CASES 

Determine mode amplitude of T E 00 at exit pupil and furthermore let the incident beam be a T Eoo with 
the same mode dimensions at the exit pupil 

( 
Wo 

Einc x, y, x, t) = E 0 w(z) 

A00 (scat) = i · 211"ka(w) · {"%_]___ 
y;Wo 

e 
_z2+112 

..,2 
0 

2(z;+Yn 

e "'~ dx1dY1 

approx Th d f ==> e ominant effect of the scattered beam is to cause a phase shi t in the mode amplitude 

For first estimate let w2 (z) ,..,, w; large diameter beam 

( 
( .,2+y2) ( )) 

e
i k 'JR(") ta.n-l ~ 

~i 

neglect curvature of phase fronts 
and phase shift along beam due 
to caustic at z = 0 

. If ka(w) A 00 (scat) ,..,, i211" - • • E 0 
11" Wo 
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Total mode amplitude becomes 

The scattering causes a phase shift but not a first order amplitude change in this approximation - an index 
of refraction change 

The first order phase shift 

TIME DEPENDENCE OF THE PHASE SHIFT 

Since the scattered field at the exit pupil depends on the position of the particle in the incident field the time 
dependence of the mode amplitude phase shift, 1/;, is determined by the particle's velocity in the direction 
transverse to the incident beam. 

The particle encounters the beam 
fMT1c.i..li with impact parameter b 

Ml.)illl J 

A(b) 
u(t,VT) 

..--"--.. 
-2b2 /w2 -2u2 t 2 /w2 

e o.e T o 

1/;(t} has an amplitude A(b) 
which only depends on the impact parameter 

and a pulse shape u (t, VT) which depends on the transverse velocity but not on the position of the particle 

1/J(t) = A(b)u (t,vT) 
The Fourier transform of the pulse shape 

+oo 

Su (f, VT) = J 'U (t, VT) e-iwtc5t = 2 fo 00 

'U (t, VT) cos wtdt 
-oo 
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To determine the power spectrum of the phase fluctuations due to the pulses we use the result given by 

Middleton, D. Introduction to Statistical Communication Theory McGraw Hill 1960, p 235-236. 

For pulses that overlap and have an average rate of occurance (no} 

The averages are taken over the Maxwellian velocity distribution and the impact parameter 

A way to do the counting is to use the Maxwell distribution in cylindrical coordinates and count the particles 
crossing infinitesimal surfaces db dz, the surfaces have normals along cp, angle between the x axis and the 

\. 
{ I¥-- - normal. All surfaces have the same impact parameter. 

-x 

istribution in cylindrical coordinates 

The pulse rate generated in a small section of dcp of the ring at the impact parameter b is 

m=particle mass 

( 
m )3/2 

dn=p# --
27rkT 

P#=average particle density particles/cm3 

The averages of the amplitude and spectra of the pulses are taken along with the pulse counting. The 
integral for the phase power spectrum 

~2 (f) = 2 J A2 (b)ISu (f, VT) 1
2 

• dii 

all pulses 

= 2 x 16k
2
a
2(w) . 7r w 2 • p (~)3/2 * 

w4 2 ° # 27rkT 
0 
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t 211" oo +oo I dz J drp I e-4b2 /w~ db I 
z=O <p=O b=O t12 =-oo 

Integration is taken over a gas column of length l 

e 

This is the first order result of the calculation 

The average velocity of a molecule 

2 (2kT) 1/
2 

(v) = - --Vi m 

The most probable velocity 

I /( lcT)l/2 
-11" Wo m 

Evaluation of strain noise due to phase fluctuations in a simple multi pass interferometer with independent 
paths 

The total column with b passes 

The position sensitivity 

The strain sensitivity becomes 
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But there are two independent paths, one in each arm, with independent phase fluctuations 

Using the confocal beam size (>..t) 1/2 

at the mirrors w0 = -
7r 

To compare with old result (bluebook and graphs in proposals) 

Comparing with old result 

aold(w) 
211" 

= anew(w) 

larger in amplitude 

spectral slightly ! (1/t) = 0 
Wo 27r new 

different f(l/l) = ~ 
W0 27r 

old v'2 different 

INCLUSION OF GAUSSIAN WAVEFRONT CURVATURE 

The new effect is amplitude fluctuation of the mode amplitude due to the time varying diffraction pattern 
of the moving scatters. 

Again use the TE00 mode only 

The scattered mode amplitude is no longer purely in quadrature to the mode amplitude of the incident 
beam 
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· . a(w)~ Aoo (scat) = i27rk-- -
Wo 71" 

x2+y2 
- 2 Wo 

e WO E 
• 

0 w(z) 

_x2+y2 

e w2(z) x 

A(x, y)eirp 

~~x ( ) Let wo '.::'. w z in the amplitude 

Look at the phase of the exponential eirp 

71" k (x2 + y2) -1 ,\z 
cp= -+ -tan -

2 2R(z) 7rw5 

Gaussian waist wo at z=O w6 = ;; Where l is the distance between confocal mirrors 

2R(z) = 2z [1+(~~5)']=2z [1+ C~)'] = l [(2:) + C~)] 

1 ,\z 1 2z 
tan- -- =tan- -

11"W2 £ 0 

ka(w) ~ 2 21 2 ei(~+ t(~~i;) -tan-
1 2!) 

Aoo (scat) = 271" - e- r w 0 • E 0 
Wo 71" 

at z / l ~ 1 the result will be as before but further away from the exit pupil the diffraction pattern of the 
Individual scatterers causes new phase shifts to occur. The distant scatters cause both phase and amplitude 
fluctuations in the mode amplitude 

The total mode amplitude has both real and imaginary fluctuation terms. 
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Without further calculation, it is worth noting that the phase fluctuations in the mode amplitude will be 
comparable with fractional (IA!/ A)mode amplitude fluctuations when integrated over the column of gas. 

Looking at the structure of the above equation, it is plausible to argue that the phase fluctuation power 
spectrum is comparable with the fractional amplitude power spectrum and that furthermore they will be 
partially correlated. 

hunch is: .t.2(f),..., IA(f)l2 
<¥ ,..., !Aj2 

The detailed calculation is left as an exercise for the reader with nothing better to do. 

I believe it is enough to show how a representative term looks upto the point of averaging over the impact 
parameter and pulse rate to see this. 

For either the in phase or quadrature term in A00 (total) the Fourier transform of the pulse will involve 
integrals of the following type. 

Again using r 2 = b2 + v~t 2 , the individual in phase and quadrature components can be divided into an 
amplitude and phase determined by the impact parameter and a time dependent phase and amplitude 
determined by the particle velocity. 

A typical term in setting up the Fourier transform is 

-2b2/w~[-2u~t2 /w~{sin}('Jr kb
2 

__ 1 (2z) kv~t2 ) 
e e cos 2 + l (f (z)) tan l + l (f(z)) 

(2z l) f(z) = -+­
l 2z 

For a fixed value of z, the argument of the sinusoid can be expressed as a constant plus a time dependent 
term. 

The Fourier transform of the time dependent part will have integrals of the form 

. k 2 t2 2v2 2 w2 Sln V 
00 { } s.(rJ = 2 [ .- •' I 0 cos ( t (r(.n +I' (b, •l) cos wtdt 

'Jr kb
2 

_ 1 (2z) 
where <p (b, z) = "2 + l (f(z)) - tan l 
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The integrals are of the form 

Joo -/3z2 { sinax
2

} b e 2 cos x 
cos ax 

0 

e-f3b
2 

/ 4(/3
2
+a

2
) {sin} (!tan-la _ _ a_b

2
_) 

cos 2 f3 4 ((32 + a2) 

A typical term in the Fourier transform will look like 

Wo 1 
Su(f,z)-- ·- 1 

VT ( 1 ) • 
1 + 4(f(z))2 

{
cos} ( 1 _ 1 1 w

2
l 1 ) 

sin 2 tan · 2/(z) - 16kv~f(z) . (i + 1 ) 
4(f(z))2 

f(z) runs from oo to 2.5 for z going 0 to l. 

The spectrum at z~o is exactly as before. The change in the amplitude of the spectrum at z=l is at most 
10%. 

The phase of the sinusoid changes slowly with z and the large phase shifts at high frequency are not noticed 
because of the rapid reduction in overall amplitude by the exponential term. 

I will assume that the hunch is right to a factor of 2 

Is this a problem for the LIGO? 

IA(f) 1
2 

= t/;2 (f) 
IAl2 

A good reference is the mode amplitude fluctuations due to the Poisson (shot) noise in the beam. 

The power spectrum of the power fluctuations, if the beam matches the TE00 mode at the exist pupil, is 

P 2 
(!)Poisson = 2hv < P > 

Therms power fluctuation is a band ~f 

Prms = (2hv~J) 112 < P > 112 

h = Planck's constant 

v =photon frequency 

< P > average power in the mode, P 2 (!) 
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power spectrum of the power :fluctuations 

In terms of the mode amplitude, the Poisson noise is given by 

A;IDSPoiuou = (2hvAf)
2 IAI 

The ratio of the scattering amplitude noise to the Poisson noise depends on the mode amplitude and the 
bandwidth. For a narrow bandwidth 

e · IAI (Af) 1/2 

Sample calculation f < ~ =2.6KHz 
Wo 11" 

aN 2 = 1.54 x 10-24cm3 /atom 

A = 1.06 x 10-4cm 

l. = 4 x 105cm 

wo = 3.67cm 

Vo (N2) = 4.3 x 104cm/sec 

p# = 3 x 1010mol/ cm3 --+- 10-6 torr 

Af= lKHz 

P watts = lOOWatts 
CONCLUSION 

A 2rms scat ,------
2 P 

. = 1.5 x 10-27 (P#) yP(watts)Af 
Arms 01sson 

= 1.5 x 10-14 

Amplitude :fluctuations due to gas scattering will never be larger than shot noise for any stored power 
or residual gas density that might be contemplated. The glow due to Rayleigh scattering may be more 
significant. This will be addressed later when the scattering by mirrors and tube walls is considered. The 
reduction of the average forward intensity could also be significant with very good mirrors (discussion later) 

Mode mixing by residual gas 

Let the incident beam be in the TE00 mode. Determine the coupling into other modes by the scatterers. 

The mode amplitude from one scatterer 
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.Am,n = I I 'ILm,n(x, y)Esca.ttered (x, y, olx', y'' z') dxdy 
z y 

I I k2eikR wo 
= 'ILm,n(x,y) R ·a(w)Eow(z') 

z y 

Using stationary phase integral 

Position of the scattered is x', y' 

[ 

,.12+,'2 

Am,n = ia:(w)Eo27rKw(~') um,n (x',y') e- w
2

< .. '> 

f3(x' ,y') 

Since x' and y' change with time due to the motion of the molecules, the molecules cause pulses in the mode 
amplitude Am,n· Much as before, the mode amplitude will be complex but in this case there is no average 
amplitude from the incident field, so that the quantity of interest is the modulus of the mode amplitude. 
The intergals are more difficult to carry out and as an example, to gain intuition, I will calculate the power 
spectrum of the excitation into the u 11 mode. 

Position of the molecule with impact parameter b and 
transverse velocity VT making angle tJ with 

x axis 
_
0 

Position of particle at t=O is 
Vx =VT COS v th • t t 

• _
0 

e impac parame er 
VT= VSlilv 

x(O) = sin iJb 
y(O) = cos iJb 

x(t) = - sin tJb + t VT cos tJ 
y(t) =COS iJb +VT t sin iJ 
r2 (t) = b2 + v}t2 

The excitation of the 1,1, mode as a function of time from this one molecule is 
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.a(w)Eok Y2 
An(t) = i 8-wg 7r 

e-2b2/w2
0 ( ) 2v

2 
t
2 /w2 

(-sin 11b + VTt cos 11) cos 11b +VT+ sin 11 e- T 0 

A(b) 

Take Fourier transform of pulse shape u(t,b) 

Get three integrals 

00 

J 2 2v2t2/ 2 Su(f,vT,b) =2 (-sin11cos11)b coswt e- T w 0 dt 

0 
00 

u(t,b) 

+ 2 J bvTt (2cos2 11- l) cos wt e-2
vTt

2 /w~ dt 

0 
00 

+ 2 J v~t2 (sin 11cos11) cos wt e-2v~t2 
/ w~ dt 

0 

= 2{ (sin d cos 11) .. E_wo [ (~ - w
2

) w~ _ b2] e- "'12.,~~ 
2 v 2vT 16Vf 

( 2 ) bw; ( WWo ~ (-l)kk! ( WW 0 )
2k+l} 

+ cos .,, - 1 
4VT l - 2312vT t:o (2k + l)! Y2vT 

The power spectrum of the mode amplitude becomes 

With the averages taken over the impact parameter, angles, and Maxwell velocity distribution as before. 
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The integral over the pulses becomes 

A(M)(f)=2 J A 2 (b)I Su (f,vT,b) l2 dri 

o.ll pulses U~) 

l +oo 

2
8 

a
2
(w)E

2
k

2 
( m )! J I _mv

2 

= _ 0 (q) -- dz e ~dvz 
11" w~ 211" kt 

Put integral into dimensionless form by using 

vT/vo = /3 
b/wo = / 

w/ (vo/wo) = n 

z=O -oo 

1 

v0 = (2kT /m) 2 

The power spectrum of the TE11 mode amplitude normalized to the square of the TEoo mode amplitude 
becomes 

2 2 ( n oo (-1)k k! ( n ) 2k+1] 2 
+(cos t? - 1) / 1- 132! ~ (2k + l)! -/2.{3 
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The dimensionless integral calculated numerically shows a flat spectrum to n ,..., 1 and has a value ,..., 0.1. 

The power excited in the TEu mode/TEoo mode 

Pu = J A~1 (f) df ~ 2: a:
2
(w)k:l(p#). (O.l) 

Pao A00 7r w0 

Could the mode mixing be seen in the LIGO? 

sample numbers 

l = 4 x 105cm 

a: (N2) = 1.5 x 10-4 cm 

wo = 3.67cm 

,\ = 1.06 x 10-4 cm 

Vo (N2) = 4.3 x 104 cm/ sec 

P# = 3 x 1010mol / cm3 => 10-6 torr 

fu ,..., 1.8 x 10-22 
Poo 

for P00 ,..., 100 Watts 

i 
value of integral 

w :5 vo/wo 

Pu ,..., 10-20 Watts of no consequence 

The power into the other modes is probably comparable. I would expect the frequency spectrum to extend 
to higher frequencies as the order of the mode increases since the molecule brosses more- lo bes in the modes 
in its transit across the beam. 

If the mode coupling could ever be seen, it would appear as a slight broadeJing of the beam associated with 
a time varying speckle. The mirrors and mirror motion are bound to be a far more serious source of mode 
~~. I 

Scattering by the residual gas into other than the forward direction 

Scattering into other than the forward direction is incoherent. Both due J the random distribution of the 
scatterers as well as the doppler shift due to their motion. To evaluate this ~cattering, it is sufficient to sum 
intensities. · 

The direct backscatter is looked at separately since for stationary scatterers it is coherent but smaller than 
the forward scattering in the ratio of the wave length to the column length. 
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The major effect of the incoherent scattering is to reduce the forward intensity and to produce a "glow" in 
the tube which will become part of a random scattered field, reflected, scattered and diffracted by the tube 
walls. 

The calculation of the incoherent scattering requires less care and is discussed under Rayleigh Scattering 
by: 

Jackson, D. p 422 - 423 Static Molecules 

Ishimaru p 80 - 84 Moving Molecules 

The differential scattering cross section per unit volume with a particle density p #/cc is given as 

ko is the direction of the incident light 

k8 is the direction of the scattered light 

a(w) is the molecular polarizability at w, assumed to be slowly varying with w (not at a resonance in the 
molecule) so a(wa),...,, a(wo) 

v = velocity of the molecule 

Total scattering cross section per unit volume integrated over the Doppler width is: 

The intensity is reduced as 

I(z) = I(O)e-uz 

The attenuation in the gas column is then 

18 
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Typical numbers 

.\ = 1.06 x 10-4 cm 
P# = 3 x 1010mol / cm3 --+ 10-6 torr 
l = 4 x 105 cm 
a(N2) ,.,,, 1.5 x 1024cm3 /mol 

Attenuation = 2 x 10-10 

I 

A= o-lb 

b = # of passes = 50 

Which is negligible relative to the mirror losses 

The power scttered into 471" Steradians is 

The scattered radiation becomes isotropized and somewhat depolarized by reflection, scattering and diffrac­
tion at the tube walls and baffles. A simple model to determine the brightness, defined as the intensity per 
solid angle, at the exit pupil is to model the tube as a randomizing cavity. 

The energy density of the scattered light 

in the tube is u 

' 
Equilibrium ~emands 

I 
Power into the tube walls =power scattered by residual gas (neglect ends which is ok if 1-R>O) 

' 

{1 - R) !c4u AT = Pscat/passb 

Brl.ghtn 1 ·s B - cu - Pi .. Ab Js = - 4ll" - (I-R)A-T 

b = # of passes of light 
R = Power reflection of tube walls 
AT =area of tube walls 

= 27rR0 l 

The area x solid angle product (etandue) of the exit pupil, if one couples out only one mode, is 

' 
AO 

Neglecting the depolarization and the Doppler shift 
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The power coupled out due to the random scttering of the residual gas isotropized by the tube becomes 

.\2Ab 

(1-R)AT 
2(211") 3 a(w)p#b 

.\2 (1 - R)R0 

This is an upper estimate since it neglects the randomization of the phase, depolarization and the frequency 
width due to the Doppler shift by the molecular scatterers. 

Sample# 
R = 1/2 b= 50 

II 

R 0 = 24 = 61cm 

P# = 3 x 1010mol/cm3 => 1x10-6 torr 

a(N2) = 1.5 x 10< - 24)cm3 /mol 

This is completely negligible, the contribution form the mirrors will be much larger 

SPECIAL CASE OF BACKSCATTERING 

Back scattering is similar to forward scattering in that coherence plays a role. 

For stationary backscatters the average back scattered field is small. From simple arguments one can see 
that the scatterers in cross sections at different values of z in an incident beam propagating in the +z 
direction will radiate waves back to an exit pupil with phase shifts 2kz. The back scattered field at z and 
z + .\/ 4 will cancel and the only net contribution will come from a layer about .\/2 in thickness rather than 
the total column length as is the case in forward scattering. This is the basis of the "obliguity factor" in 
the Kirchoff-Huyghens diffraction theory. 

The analysis changes with moving scatterers 

Take a Gaussian beam in the T E 00 propagating in the +z direction with the exit pupil at z = 0. 

Neglect the beam curvature and phase shift. Because of the caustic at the exit pupil 

The scattered field is again given by 
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k 2 ik.R 

( I / / ') a e ( ) ( I I ') E 8cx,y,ox,y,z = R awEincXYZ 

Because of the Doppler shift in the backscattered direction 

where Vz is the velocity of the scatterer in the z direction 

The stationary phase intergration over the exit pupil gives the mode amplitude 

The scatterer moves 

Neglecting second order terms in Vz/ c 

The Fourier transform of the pulse shape is 

00 

S (! ) J e-2vf t 2 Jw; ei(2kov,.t-wt) dt 
u ,VT,Vz = 

-oo 

+oo 

= 2 J e-2vi-t
2 fw~ cos(2k0 vz - w)t dt 

-0 

Su(/,vT,Vz) = F2 (Wo) e-(2kov,.-w)2 w; V2 VT Bv~ 
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The power spectrum of the pulse over all Vz in the Maxwell distribution gives 

+oo 

((Su(/, VT ))2)vz = ~ ~i (2;:T) 1/2 I e-mv;JMr e 

-oo 

The integral is done by completing the square in the exponent 

e 

+oo [ ]2 m k~~ 1; 2 k0ww~ d e- -+-- v - v f ( kT vi- ) z 2v2 (--"'-- + !¥ )1/2 • 
-oo T 2kT VT 

l!:~(....!!!...)1/2 
(I ( 2) 2 ti~ 2kt Su f,vT)I v,. = --=--k-2 -2-

( ...!!l. + ~) 1/2 
2kt ti~ 

e 

In terms of the most probable velocity 

e 

1r 
,_ ----
- 23/2v2k2 

0 0 

The pulse power spectrum in the mode averaged over all transverse velocities 

all pulses 

x 

I. 211" 00 00 I dz I dcp I e-4b2 /w~ db I e-mv~/kT v~ dvT 

o rp b=o VT=o 
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-w2 /2v2 k2 
e o o 

The spectrum is distributed around w0 , the light frequency, the frequency w is measurable in the fringe 
phase directly. The spectrum has the Doppler width extending from f = 0 to f(l/l) ...., WoVofc 

Is the backscatter a problem for the LIGO? 

The phase fluctuations and the fractional amplitude fluctuations in the mode must be considered. In a 
Fabry-Perot system the backscattered field becomes part of the cavity field. In a Michelson system without 
recycling the backscattering is not part of the interferometer output. 

The ratio of the phase fluctuations from backscatter to forward scatter is 

.1.2 (!) 
~ back 

1f;2 (!) 
forward 

7r2 0:2(w)pi11t e-(27rf)2 /2voko 
v0 wg 

(2ir)2 lc2a2 (w)p.,t 
WoVo 

- 2 x 10-11 for .A= 1.06u 

The backscattering is negligible relative to the forward scattering. 

The relative amplitude fluctuations have the same ratio, backscattering is not a problem. 
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