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Abstract

The optical-feedback and polarization-filtering properties of a. three-mirror niangular.ring
cavity, and the ireducible fringe-visibility defect encountered in mode matching light between
a triangular ring cavity and a linear cavity are evaluated. Numerical results are obtained for the
prototype suspended-mirror mode cleaner crurently under development.

I. INTRODUCTION

A three-miror triangular ring cavity can be used to filter laser light in a similar manner
to the commonly used two-mirror linear cavity. It has the advantage that it is an intrinsically
low optical-feedback element which will purify the linear polarization state of the input light.
These advantages are purchased at the cost of additional complexity and losses due to the extra
miror as well as some additional irreducible losses incurred in coupling light between the
elliptical Gaussian mode of a triangular cavity and the normal circular Gaussian modes of linear
cavities such as lasers and interferometers. The optical feedback from a triangular ring cavity is
evaluated in Section II. The polarization filtering action of a triangular mode cleaner is evaluated
in Section Itr. Section fV evaluates the irreducible fringe visibility defect for mode matching
light between triangular and linear cavities. In each section, the results are numerically evaluated
for the specific case of the prototype suspended-mirror mode cleaner (SMMC) currently under
development for the initial LIGO interferometer.

tr. OPTICAL FEEDBACK FROM A TRIANGULAR RING CAVITY

The optical feedback from a linear cavity is dominated by direct reflection from the input
mirror and is typically between 0.1 and 1. For a ring cavity the light does not strike any of
the mirrors at normal incidence and thus the optical feedback results from backscattering, (i.e.,
the scattering of light from the input mode into a mode that is spatially identical to the input
mode but propagates in the opposite direction). Because the disnibution function for this type
of scattering (BRDFI) is strongly peaked at low angles of incidence, 0, a closed-area ring caviry
design such as the proposed SMMC (which uses two flat mirrors at 45o incidence and one
curved mirror at near-norrnal incidence) backscatters principally from a single mirror (Figure 1).

J. C. Stover, Optical Scattering, McGraw-Hill, N.Y. (1990), pp 1G-17, 86-87.
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The backscattered
equations:

amplitude from the cavity can be obtained from the cavity-field
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Here E" is the circulating field, sourced by the transmined input field, tE;. ,E"" is the
counter-circulating field, sourced by the backscattered field from the curved mirror, oEr. Tt'ie
field reflectivity of the flat mirrors used to couple light into and out from the cavity is r;
we approximate the field reflectivity of the curved mirror as unity. The steady-statc solutions
(obtained by setting the left hand sides of equations (1) and (2) to zero) are:

tru c -
tE; (3)

(4)
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The backscattered amplitude from the caviry is Es5 - tEcc. Using t2 - | - 12 (assuming
scattering and absorption are small compared to transmission) and R : 12, we obtain for the
backscattered power:

(5)

The power coupling between the circulating and counter-circulating beams due to scattering,
is given by

o2 = G(O)Qw, (6)

where G(0") is the BRDF evaluated at the angle do between the reflected input and scattered
oulput modes (i.e. nvice the angle of incidence) and the solid angle of the input mode is given by
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The power backscanered from the cavity is then given by
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Taking the values fi - lg-a,02 = 10-1, we get3 ,S = 671aor

a - 1 . 5 x 1 0 - 3 5

For a rypical value of ,9 : 100ppm (allowing for contamination of the mirror) we obtain
a value of c - 1.5 x 10-7.

For a small area configuration ,Lp K Lc, we have 0o = Lpf Lc = 10-2, G(lo) :
/ ,  r 2

"\#) so that

Substituting the appropriate values for the proposed mode cleaner (Lr : 0.14m, Lc :
I2.02m, curvedmirrorradius.R6: : I7m,(l- R) : 2000wm), we obtain r.r.to : 1.1 x
10-3rn and (Pss/Pi) : 1.5 x 10-6. The optical feedback from the triangular cavity, in this
case -58 dB, can be compared to a typical value of - 17 dB for a linear cavity with an input

2 R. Weiss, private communication.

3 It is interesting to note that the logrithmic term in equuion (6) is merely a7qo csrr€r;uon o the overall scaEering for

these values of 9r and 02, md is small even for UGO sized cavities. S is dominated by large angle scanering.

A reasonable model for the BRDF,2 sketched in Figure 2, is
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The constant a is chosen such that
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where ,S is the total integrated scattering. Since 01 and 02 dre small, we can set sin 0 = 0
in regions I and II. Performing the appropriate integrals and summing over all three regions
we obtain:
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circulator, with an additional -35 dB provided by each Faraday isolator. For comparison the
optical isolation between the mode cleaner and the main cavities in the curent 40-m prototype
(nvo circulators, one Faraday isolator, optical losses) is estimated to be -95 dB.

trI. POLARIZATION FILTERING BY A TRIANGULAR RING CAVITY

In a linear two-mirror cavity with dielectric mirrors, the field is phase shifted by r upon
each reflection, independent of its polarization. The net phase shift due to the mirror reflections
alone (to be distinguished from the phase accumulared in. propagation between mirrors) is zero
(modulo 2r) after each round trip. This degeneracy with respect to polarization may be broken
in a ring cavity where the mirrors are not used at normal incidence.a For planar ring cavities
the net phase shifts introduced by the mirror reflections in a round trip through the caviry
ffe 6, = n7r for S-polarization (normal to cavity plane), where n is the number of mirrors in
the cavity, *rd de: 0, independent of the number of mirrors in the cavity. The resonance
conditions for a triangular ring cavity are then:

2trn, = nn t 
,, + ,h\il (15)' c l r n

where n, and, n, are integers and u, and up atre the resonant frequencies for s and p polarized
modes. Neglecting the possibility of polarization-dependent Guoy phase shifts (i.e. assuming
,hl! - ,hlil : ,D we can apprcximate the mode frequencies as:
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where C : ,h 12. We see that at any of the cavity resonances only one polarization is resonant.
A useful figure of merit is extinction ratio, defined as the cavity transmission for the favored
polarization divided by the transmission for the disfavored polarization for a given mode. For
the case of equal nansmissions for the input and output mirrors (assuming full reflectivity for
the third mirror) we obtain:

where R is the reflectivity of the input (or output) mirror. For typical mode-cleaner mirrors
(transmission T=2000 ppm, loss L=100 ppm) we obtain RE : 8 x 105. The polarization

See, for instance, Jenkins and White, Fundamentals of Optics, McGraw-Hill. N.Y. (1957), pp 513-515.



filtering improves as the square of the finesse of the mode cleaner, but is independent of the
mode cleaner length.s

IV. ASTIGMATISM AND FRINGE VISIBILITY

By inspection of Figure I we see that reflection symmetry requires that the beam waist
occur midway between the two flat mirrors. The focussing properties of the curved mirror are,
however, different for rays in the tangential and sagittal planes (plane of Figure .1 and plane
perpendicular to Figure 1, respectivety)... .This astigmatism results in a splitting of the mirror
imaging equation into two forms:6
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where ̂ 9 is the object disrance, S! and S i are the imaging distances for tangential and
sagittal rays, respectively, B6: is thJ actual c-urvature for the spherical mirror, gt is the angle
of incidence (for the chief ray), and Rr, Rs are the effective mirror radii for tangential and
sagittal ray focussing, respectively. The azimuthal symmetry breaking innoduced by a nonzero
0i results in an elliptical Gaussian beam waist with principal axes along the tangential and
sagittal planes. For a cavity with.L6 D Lr, this astigmatism is small and the two waist sizes
are given by (see Appendix A):
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Where L is the distance from the curved mirror to the beam waist, wo is the circular waist
size for the flat and curved mirrors in a linear resonator of length .L, and 6R is the change in
effective mirrq radius due to astigmatism. Subtracting equation (19) from (20), and assuming
0; K 1, we have

6R=ry:ry (23)

Filtering of spuial variations on the light have a similar dependence on cavity length and inesse. This is not surPrising

since spatial variations and polarization impurities can only be transmitted on rpn-resonsnt modes.

Jenkins and White, pg 95; Monh Light, Principles and Experiments, lst ed., McGraw-HiU, N.Y. (1937), yp 52 and 424.



The irreducible loss in visibility which occurs when mode matching this astigmatic elliptical
beam into a linear Fabry-Perot cavity using spherical lenses is

6 V 7 4 - L - M o

where M" is the mode matching coefficient given by

(24)
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Here u, is the transverse spatial dependence of the elliptical input mode waist and uoo is the
corresponding dependence of the circular waist of the linear rcsonator. In general we obtain
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major and minor axes ofwhere u.r, is the circular beam waist and uo5 and uroT are the
the elliptical Gaussian beam. This reduces to

@)

for the case of optimized mode matching using spherical lenses (*o' : woswoT). Substituting
from equations (21) and (22), this becomes

(28)

Using equations (23) and (24) we finally have

5V*  
L  0 ;a,:ftff i  Qe)

For the resonator of Figrue I with L : L2.l6rn, 0i : 6 x 10-3, we have 6 Vy = 6 x 10-11
which is completely negligible.



APPENDX A

DERTVATION OF ELLIPTICAL GAUSSIAN WAIST SIZE

We may calculate the beam shape by separately applying results for an azimuthally symmetric
resonator separately to the tangential and sagittal planes.T For a symmetric linear resonator
using spherical mirrors we haves

(  L" \ l t lz
t " :  

\ 2 "  )

L " :L (2Rc -L ) t l t z

(A.1)

(A.2)

where uro is the circular beam waist radius, L, is the length of the equivalent confocal
resonator, ,\ is the wavelength of the light, and ,L is the separation bet'ween the two spherical
mirrors of radius .R". For a hemispherical linear resonator (a curved mirror and a flat) we
replace L by 2L in equation (A.2) obtaining

L" :21(Rc - Q4tlz (A.3)

where ,L is now the separation between the cunred mirror and the flat mirror (where the
beam waist occurs). To generalize to the triangular ring cavity we use equation (A.3) where tr is
now the disunce (along the light path) from the curved mirror to the midpoint between the flat
mirrors. We separately calculate semi-major and semi-minor lengths of the elliptical Gaussian
beam by substituting either r?s or r?r for R6 in equation (A.3) and then using equation (A.1).

For d; small, we have

(A.4)

(A.5)

We see that weaker focussing occurs in the sagittal plane so the major axis of the elliptical
Gaussian beam @curs in this plane. We redefine

R r - R 6 - 6 R (A.6)

A. Yriv, Quanurm Electr,onics, 2nd e4 Wiley, N.Y. (1975), pp 123-127.

O. Svelto, Principles of Lasers, Plenum, N.Y. (1982), pp 128--132-

Rr -- n"(t -+)

fts = n"(r .+)
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f t s :  R c * 6 R

where 6R : i@, - Rd : '!? . We then obtain for the principal
Gaussian: 

f , 5R 3(6R)2 Iu o r :  ' ' L t -  4 ( R c - L ) - f f i 1
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(A.7)

axes of the elliptical

(A.8)

(A.e)
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