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Abstract

The mechanical quality factors, or Q’s, of the violin resonances of each
of the test masses in the 40-meter Mark I Prototype were measured. From the
Q’s the thermal noise due to the violin modes was estimated. The calculated
noise was found to be in agreement with the measured noise of the 40-m
prototype near the resonant frequencies of the violin modes.

Introduction

Thermal noise is a fundamental noise source in a gravitational wave detector.

/Associated with each mode of a physical system in equilibrium with a thermal

Teservoir is %kBT of thermal energy, where kg and T are Boltzman’s constant and
the temperature of the reservoirs, respectively. In order to minimize the effects of
this thermal energy to the noise spectrum, it is desirable to concentrate the energy
in a very narrow frequency band around the resonant frequency, that is, to have
a large quality factor, Q. These narrow frequency bands can then be filtered out
of the gravity wave spectrum with little loss of observing bandwidth.

The suspension wires of a gravitational wave detector have several classes
of modes which may be sources of thermal noise. We consider here the double
wire loop suspension of the test masses in the 40-meter Mark I Prototype. The
first class is pendulum modes. These include a polarization along the axis of
the beam tube which will couple directly to the interferometer noise as well
as a perpendicular polarization and a torsional mode. The next class of modes
is the vertical spring modes, including a common mode vertical motion of the
mass, a tilt mode, and a roll mode. The vertical modes do not couple directly to
the interferometer, but may become important when the resonant optical mode is

misaligned from the optic axis of the mirror. The modes which we will concentrate

on here are the violin modes, which have two polarizations per wire, one parallel
to the optical axis of the interferometer and one transverse to this axis. These




are also poorly coupled to the interferometer in the sense that there is a large
mechanical impedance mismatch between the wires and the test mass, but their
resonant frequencies lie in the region of several hundred Hertz, right in the middle
of the interferometer’s observational bandwidth, which makes them an important
source of thermal noise.

Violin Resonances and Thermal Noise

The thermal noise in a coarse bandwidth around the violin resonances is well
understood.! By examining the violin resonances in finer detail one can probe the
specific lineshapes of the resonances and hopefully draw conclusions about the
damping mechanism. Typically one of two potential damping models is used.
The more traditional one, viscous damping, predicts that the damping force is
proportional to velocity. This model works well for mechanical systems damped
by external forces, such as in eddy current damping of moving conductors or as
in gas damping of a pendulum. Recently, Peter Saulson? has proposed that a
model called internal damping, where damping is modeled by a complex spring
constant and the Q is assumed to be frequency independent, may be more realistic
when damping is related to internal forces. The lineshapes for these models for
a simple oscillator are as follows:
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Here x, wn, w, and m are the amplitude, angular resonant frequency of the n®
mode, angular frequency of motion, and effective mass, respectively. Notice that
when w is near wy these two lineshapes are approximately equal. With the 40-m
Mark I interferometer, the thermal noise of the violin modes dominated other noise
only in a narrow band around the violin resonance frequencies, and therefore we
could not directly deduce the thermal noise lineshapes far from resonance from




the noise spectrum of the interferometer. However the viscous damping model
predicts that Q o w,, whereas the internal damping model predicts that Q is

frequency independent; by examining the Q’s of the harmonics of the violin

modes to determine the frequency dependence of the Q’s, one can discriminate
between the two models. ,

The Q’s of the violin modes also provide an important diagnostic of the
pendulum Q at frequencies of hundreds of Hertz. For a given amount of bending
of the connection of the wire at each end of the suspension, both the violin mode
and the pendulum modes have roughly the same energy. Therefore it is reasonable
to assume that if the Q’s of both the violin modes and the pendulum are limited
by losses in the bending of the wire, then both of their Q’s should be similar.
Since significantly more stretching of the wires occurs in violin modes than in
pendulum modes of comparable amplitude, the violin mode Q could be lower
than the pendulum Q if wire stretching losses are large. Thus the Q’s of the
violin modes are currently our best guess for the Q of the pendulum, perhaps
representing a pessimistic guess. Since the pendulum motion couples directly to
the interferometer, the noise spectrum could be dominated by thermal noise of the
pendulum well off resonance, so an estimate of the pendulum Q is important to
determine the broad band fundamental limits of the interferometer. For a complete
derivation of the pendulum Q’s from the wire Q’s, see Appendix I.

Measurement Technique

The Q’s of individual test mass wires in the 40-m prototype were measured
by driving the wires on resonance, turning off the drive, and measuring the
ringdown times by filtering the interferometer output, heterodyning it against a
local oscillator with a 1 Hz offset and using the decay of the beat note. For the
end masses, which have magnets attached to them, the driving signal was applied
to the actuator coils.? The vertex masses have no magnets and were driven using
the piezos on the control block which, in normal use, electronically damp the
pendulum motion.*

Results of Measurements on the 40-m Prototype

The frequencies and Q’s of the lowest (fundamental) violin modes of the
40-m interferometer are given in Figure 1. The differences in frequencies among
the different masses may be explained by differences in the suspensions. The
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east end mass uses 150—um-diameter wire.’ The south end mass uses 100—um-
diameter wire. Both of the vertex masses use 75-um—diameter wire. The end
masses and the vertex masses also have different types of control blocks.

The Q’s of the second harmonics of 5 wires were measured — two wires from
the east end mass, two wires from the south end mass including both a high and
a low Q wire, and a high Q wire from a vertex mass. In addition two additional
higher order harmonics of the vertex mass wire were measured. Every one of
these harmonics had Q’s which were the same as the corresponding fundamental
resonance Q within 20%. This result makes a strong case for using the internal
damping noise model; any viscous damping mechanism is of minor consequence,
at least over this frequency range.

The line shapes of the east end violin resonances were compared with the
thermal noise prediction using the internal damping model:®
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where wp is the pendulum frequency according to reference 1. The results of
this comparison are shown in Figure 2; note that the interferometer spectrum was
taken with the electronic damping off. Electronic noise in the damping circuitry
enhances the violin motion above thermal noise when the interferometer is in its
normal configuration.” Also note that some of the resonances are doublets with
a much smaller partner. These secondary peaks are presumably the transverse
polarizations of the violin modes which do not couple efficiently to the interfer-
ometer output. A finer comparison of theory and experiment is given in Figure
3 where the data points (for the middle resonances in Figure 2) are plotted on
a linear scale with their associated error bars. The agreement with the thermal
noise calculated using the measured resonant frequencies and Q-factors is quite
good. The predicted rms fluctuation of the test mass corresponding to a single
violin resonance is about 0.06 fm.

Using the measured Q’s and assuming that the pendulum mode has a Q as
derived in Appendix I, the total thermal noise of the wire suspensions can be
predicted. As pointed out above, this is likely a worst case estimate of thermal
noise contributed by the suspension. Figure 4 shows this thermal noise prediction
and compares it to the measured interferometer noise.




By changing the wire parameters (e.g. density, Q) of these test mass sus-
pensions we can lower the predicted thermal noise at any given frequency (at
the expense of other frequencies). There is, however, a noise floor given by
mechanical noise leakage through the vibration isolation and suspension systems.
Assuming this noise floor is a smooth function of frequency above the first ob-
served violin resonance (at ~300 Hz) we can set an upper limit on it by requiring
that it produce less energy in the observed violin resonances than kg T. This upper
limit is also shown in Figure 4.

Conclusion

We have analyzed a model which allows us to accurately predict the thermal
noise of the violin modes near resonance, given the resonant frequencies and the
Q’s of the wires. The next steps go in two directions. One area of research
will be to understand what limits the Q’s of the violin modes and to develop
techniques to reliably suspend masses with the highest Q’s possible on every wire
as opposed to the order of magnitude variations that currently exist. High Q’s on
every wire are important not only to minimize the noise at each violin resonance,
but also because the lowest Q wires may dominate the pendulum thermal noise.
The other area of research will be to understand better the relationship between
the pendulum Q and the violin Q’s. To do this we need to measure the vertical
spring mode Q to get an idea of the intrinsic losses of the wires due to stretching.
By comparing this Q to the violin Q’s we hope to be able to determine whether
violin losses are predominantly due to stretching or bending. Even then there
is a danger in comparing Q’s at frequencies which are different by an order of
magnitude, since other frequency dependent damping mechanisms may become
important at different frequencies. Avoiding this difficulty will eventually require
a direct measurement of the Q of the pendulum resonance near 1 Hz.
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Appendix I: The Pendulum Q

This Appendix shows the derivation of the pendulum Q from the violin Q’s
assuming that the losses are concentrated in the bending of the wire near its
endpoints. These “bending” losses are not necessarily restricted to intrinsic losses
in the steel itself, but may also include losses due to flexing or friction in the
clamps or the points of attachment at either the top or the bottom of the wire.
The model only requires that the losses be associated with the motion of the
wire in the region near the clamping through some angle # from the vertical
equilibrium position. This calculation assumes that for a given angle 6, there is
some loss of energy AE(#) which is independent of the particular mode. The
strategy therefore is to calculate the total energy of both the pendulum (E,) and
the violin (Ey) modes as a function of 6, and, by comparing Ep(0YAE(6) with
Ey(6)/AE(#), deduce the relationship between their Q’s

The Pendulum

Simple physics gives the energy of the pendulum mode as a function of §:
Ep(0) = Mgl(1 — cos 0)

M, g, and 1 are the mass, the acceleration due to gravity, and the length of the wire.
If we expand this result to second order in 0, we get

02
Ey(0) ~ Mgl

The Violin Modes

If we approximate the wire to have no stiffness, which is valid for the
parameters of the 40-meter prototype as far as the total energy of the lower
order violin modes is concerned, then the potential energy of the violin mode is
stored in the stretching of the wire. Therefore we can model the wire as a spring
with spring constant k (k = Yo/l; Y and o are Young’s Modulus and the cross
sectional area). Consider the initial stretching when the mass is hung. The wire
stretches to its equilibrium length, /, from its original length, [,, according to

l=1,+ Al




with
kAl=Mg

Thus the energy is
1
E@=0)= Ek(Al)z

Now consider the wire in the fundamental violin mode. The honzontal
displacement of the wire, y, as a function of vertical position, z, at the maximum
amplitude is

T2
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The length, L, of the wire in the stretched position is
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The change in length AL from the zero energy length is
AL=L~1,=1—1,+16*/4 = Al +16%/4
And so the energy is
Eo(0) = -;- F(ALY = %k(Al +16%/4)° » -;-k(m)? + %kAll&z
Thus the potential energy of the violin mode is, accurate to second order in 6,

Ey(0) = E(8) - E(0) = i kAlG? = Mgl6? /4




Generalization to 4 Wires

The pendulum has the same amount of energy at a given angle regardless of
the number of wires. For a 4—wire system, however, each wire is only supporting
one quarter of the mass, so the effective mass seen by the violin mode is M/4,
and E, = Mgl§?/16. Therefore for a given angle 6, the pendulum mode has 8
times as much energy as a violin mode, E, = 8E,.

For the violin modes, the loss of energy per radian, AE,, is given by

AEv(O) = Ev(e)/Qv

If the losses for both the violin mode and the pendulum mode are primarily
in the bending of the wire, then the losses in the pendulum would equal the losses
in the four wires:

AEp(8) = AEy(0) + AEy3(0) + AEy3(0) + AEy4(9)
_E,,(o)(1 L L +1)
-8 Qvl Qv2 Qv3 Qv4

Therefore we can estimate the Q of the pendulum as

_l__l(1+1+1+1)
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Appendix II: Thermal Lineshapes

The basis of our thermal lineshape comes from a paper by N. Mio® in which
the mechanical transfer function of a pendulum with a finite mass wire is derived.
His result is

w = [(wz W)l 4 4/Q2}
Here pp is the reduced mass of each mgde, and is approximately equal to M for
the pendulum mode (n=0) and % (g:) for the violin modes.

For a four-wire system the lineshape of an individual violin mode becomes
2kpT wa/Qn
© Mwnfwp)®[(@h —w?)? +wh/Q3)

To get the appropriate factor of 2, realize that the mass the wire must push against
is 4 times the mass giving the wire tension.

7 (f) =

Then the thermal noise associated with one test mass is
020

~2 _ 4kpT wg/Qp 2
m (f) wM [(w% —w2)2 +w§/Q;~;] 4%5 nE_: n

To get the total thermal noise as in Figure 4, sum the contribution from all
four test masses.




Notes

1.

A. Gillespie, T. Lyons, and F. Raab, “Near Thermal Excitation of Violin Modes
in the Test-Mass Suspension Wires of the 40-m Prototype Interferometer,” 19

May 1992.

2. P. Saulson, Phys. Rev. D, 42, 2437-2445 (1990).

In the case of the south end mass, which is normally used as the active element
in the secondary cavity servo (i.e., the cavity is locked to the laser which is
locked to the primary cavity), the ringdowns were measured with the south arm
used alternately as either the primary or secondary cavity. The ringdowns were
the same, indicating that the secondary servo did not damp the wire resonance.
An order of magnitude estimate of the damping of the secondary servo puts a
limit on the Q’s as measured by a ringdown at roughly 10°.

It was also verified that the pendulum damping piezos did not damp the wire
resonances by measuring the ringdown with the piezos active, open circuit,
and shorted. In each case the ringdown time was the same.

Steel music wire is used for all masses.

For a derivation, see Appendix II and reference 8.

This has been confirmed by S. Kawamura, Mark I Logbook 235, p. 74y.
N. Mio, Jpn. J. Appl. Phys., 31, 1243-1244 (1992).
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Figure 2

The data spectrum was taken with the electronic damping of the pendulum off; when
the interferometer is in its normal operating configuration with the da.mpmg on, the wire
resonances of this mass are excited above thermal noise by a factor of two. Next to two
of the resonances are secondary peaks which are an order of magnitude smaller. These
are presumably the transverse polarization mode of the violin resonances which are not
efficiently coupled to the interferometer output. The large peak at 327.5 Hz is a calibration
peak. The thermal noise lineshape has been averaged over each 0.025 Hz bandwidth to
produce the prediction.

Figure 3

This spectrum is a blowup of the two central resonances in Figure 2 plotted on a
linear scale to emphasize the peaks. The uncertainties of the data points are statistical
errors due to eight averages in a power spectrum. (Because the frequency resolution is very
fine, taking a spectrum requires a rather long time, and eight averages were the maximum
number we were able to obtain before the interferometer fell out of lock. ) The systematlc
uncertainty of the calibration is much smaller than these statistical errors.

Figure 4

The data were taken at two different bandwidths: 1.25 Hz from 200 to 1000 Hz and
6.25 Hz from 1000 to 2000 Hz. The thermal noise prediction was generated by integrating
the lineshapes for each violin and pendulum mode over the appropriate bandwidth. The
actual violin modes are much narrower than they appear on this plot and will look different
depending on the bandwidth chosen. The data were taken with the electronic damping
on, and the resonances around 320 Hz are excited a factor of two above thermal noise.
The peaks in the noise spectrum between 1800 and 2000 Hz which roughly line up with
the violin resonances are actually due to residual frequency noise from the laser (see for
example Logbook #22).
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Violin Resonance Q's
Left Arm data of
7/23/92-
frequency Q 7/27/92
(Hz)
End Mass
319.65 13,000
324.90 13,000
326.075 19,000
328.45 16,000
Vertex Mass
594.35 242,000
596.675 335,000
598.15 43,000
605.025 112,000 ot
Right Arm
592.7 295,000 505.85 66,000
592.8 295,000 506.875 118,000
596.425 356,000 512.85 23,000
600.225 163,000 514.90 16,000
Vertex Mass End Mass
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