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Abstract

A simple preliminary design methodology for multi-stage isolation stacks has
been developed. It makes use of one-dimensional approximations leading to closed-form
design equations. The method provides information on the relative effectiveness of
different designs (in the vertical direction only) and can be used for preliminary design
purposes and to gain insight in the stack design problem. Horizontal transmissibility is
not addressed by this technique so that final evaluation and design refinements must be
based on 3-dimensional MATLAB simulations.
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1. One-Dimensional Isolation Stack Analysis

Seen as a one-dimensional system for the axial direction, an n-stage isolation
stack reduces to the chain of masses Mi and springs ki shown in Fig. 1. An uncoupled
natural frequency fi can be defined for each stage as the natural frequency of that stage
taken out of the stack, i.e. fi = (1/2π)√ (ki/Mi).

 ki

 Mi

stage i

Figure 1: one dimensional approximation of isolation stack.

Using linear system theory and assuming structural damping only, the absolute
vertical transmissibility Tzz of the stack is asymptotically given by the chart of Fig. 2.
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Figure 2: approximate asymptotic Tzz transmissibility of multi-stage
isolation stack (not to scale).

Each stage i in the stack generates a -40dB/decade roll-off, starting at the cutoff
frequency fi. The DC transmissibility is of course equal to unity. Because of resonances,
the actual stack transmissibility usually lies above the asymptotic approximation. Away
from resonant frequencies however, the error made by the approximation is extremely
small. To illustrate this, Fig. 3 compares the computed vertical response of the MIT
prototype stack (using 3D model but fixed properties) to the asymptotic approximation
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(uncoupled natural frequencies of the stages from the floor up are 21.3, 17.4, 15.1, and
17.1 Hz, based on DC stiffnesses).
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Figure 3: MIT stack with fixed (DC) properties; asymptotic
approximation (—) for Tzz compared to 3D model prediction (—).

At any frequency f above all stage’s uncoupled natural frequencies fi, the
approximation gives
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where n is the number of stages and Πfi is the product of the stages’ natural frequencies fi,
i=1,…,n. This formula shows that performance is determined exclusively by the stages’
uncoupled frequencies. Relative masses of isolated body to stack elements, mass
distribution, stiffnesses, etc. have no direct effect on isolation performance.

Using this same formula (1), we can derive an upper bound on the performance of
a stack using a given spring design. Assuming a linear spring with maximum allowable
axial deflection δmax, the natural frequency of an optimal single stage stack (spring loaded
at its maximum) is

fmin = (1/2π) √ (g/δmax) , (2)

where g is the acceleration of gravity and fmin is in Hz. For a multi-stage stack, this last
relation holds only for the upper stage. The static load on other stages is more than the
weight of that stage so that uncoupled natural frequencies are larger than fmin. Using fmin

for all stages in Eq. (1) instead of the actual values gives the best conceivable
performance of an n-stage stack using those springs:

Tzz(f) >  ( g / ( 4π2 f 2 δmax ) ) 
n. (3)

Equation (3) confirms that the axial performance of an n-stage isolation stack is
bounded by the available axial deflection of the springs. Spring design efforts should
therefore concentrate on providing reasonably sized springs with the largest possible
allowable axial deflection (avoiding yield, excessive creep, and instabilities). Note that
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spring rates or load capabilities are not directly involved: the stack simply uses more or
less springs depending on their load capability.

For non-linear springs, we define δmax= Pmax/kax, based on the allowable static load
Pmax and the tangent axial stiffness kax at maximum loading. Note that in that case δmax

does not correspond to the actual deflection of the spring under the load Pmax.
For springs with frequency dependent stiffness, estimates of transmissibility at a

single frequency can be obtained by defining kax as the spring stiffness at the frequency of
interest instead of the DC stiffness. For the prototype stack of Fig. 3 for example, the
stiffness of the VITON springs at 100 Hz is 2.7834 times larger than at DC. The corrected
stage frequencies are then √2.7834=1.6684 times larger than the DC estimates. This leads
to an increase in the estimated log10(Tzz) equal to 2× log10 (1.66844)=1.7784. Figure 4
compares this corrected estimate with the results from a 3D MATLAB simulation using
frequency dependent properties.
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Figure 4: corrected asymptotic estimate for frequency dependent
stiffnesses; prediction based on DC stiffnesses (—) and corrected

prediction at 100Hz (••) are compared to 3D simulation results using fixed
(---) and frequency dependent (—) stiffnesses.

For isolation in the shear direction, the springs should also have the smallest
possible transverse stiffness. In other words they should be designed to minimize the ratio
ksh/kax of shear to axial stiffness (instabilities will be limiting factors). Note that because
the horizontal response of the stack is inherently 3-dimensional, estimates of horizontal
transmissibilities cannot be easily obtained and final design selection and refinement
must be based on 3-dimensional MATLAB simulations.

2. Mass and Spring Distributions - Closed Form Design Equations

We now consider the design of a multistage stack with multiple legs to support a
given top structure (Fig. 5). All legs are assumed identical. Leg elements and top structure
are assumed rigid.
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mi × (kax, Pmax)
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 Mn = Mtop
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Figure 5: multi-leg, multi-stage stack.

We have shown in the previous section that the stages’ uncoupled natural frequencies are
the dominant design parameters for an isolation stack. With this in mind, let us solve the
following problem: given the type of springs (kax, Pmax) to be used, the mass of the top
structure Mtop, the number of legs nleg, the number or stages n and their required
minimum characteristic frequencies fi, what is the lightest actual stack? In other words,
for each stage i, design the number of springs mi per leg and the stack element mass Mi in
each leg so that the stage natural frequencies do not exceed required values fi and the
springs are not overloaded. Note that the natural frequency of the upper stage is out of our
control: it is determined by the given mass of the upper structure Mtop and the smallest
number of spring that can support it. This design problem can be formulated as:

Minimize M = Mtop + nleg× Σ Mi , (4)

Such that:

(1/2π) √ (mi kax / Mi ) < fi ,   i = 1,…,n-1

g*(Mi + Mi+1 + … + Mtop/nleg) < mi Pmax , i = 1,…,n.

We also require that the top structure and each leg element be supported by at least 3
springs (for static equilibrium, since we neglect the springs’ bending stiffnesses).
Since decreasing the stages’ natural frequencies requires more mass, the lightest stack
will exactly satisfy conditions on fi, we can solve this problem analytically and get

mtop = max ( ceil( gMtop /(Pmaxnleg) ), ceil(3/nleg) ), (5)

mi = max ( ceil ( g (Mi+1 + … + Mtop/nleg) / (Pmax - kax g/(4π2fi
2) ) ), 3 ), i=1,…,n-1 (6)

where max(a,b) returns the largest of a and b, ceil is an operator that rounds to the next
larger integer value, and

Mi = mi kax / (4π2fi
2). (7)
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Equations (5) to (7) are used recursively, starting with the top stage to provide masses and
number of springs at each stage of the stack.

3. Stack Design Procedure

3.1 Effect of Distribution of Stage Frequencies

Equation (1) shows that the performance of the stack is determined approximately
by the product of the stages uncoupled frequencies. For a given performance, we have to
ask ourselves whether the weight of the stack will vary significantly when varying
individual stage frequencies, keeping their product constant.
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Figure 6: Stack weight as a function of stage frequency ratio for various
required performances at 100 Hz (n=3, nleg=3, Mtop = 78 kg).

To investigate this, we consider the case of a 3-stage, 3-leg stack similar to the
MIT prototype. For a given performance, the only design parameter is the ratio of natural
frequencies of the 2 lower stages (the frequency of the upper stage is determined by the
given mass of the upper structure and the smallest number of spring that can support it).
The stack uses VITON springs with kax = 1709.1 lb/in (at DC; we ignore frequency
dependence in this calculation) and Pmax = 125 lb. Using the design equations of Section
2, we generate stacks of given performance with a ratio f2/f1 varying between
approximately 0.6 and 1.75, where stage 1 is closest to the ground. Figure 6 shows plots
of the stack weight as a function of f2/f1, for log10 (Tzz) = -4.6, -4.4, -4.2, …, -3.4 at 100
Hz.

The figure shows that - for any given performance level - the weight of the lightest
possible stack (minimum point on the curve) is never very different from that of a
uniform frequency stack (f2/f1=1, i.e. one where all stages have the same uncoupled
frequency). In other words, a uniform frequency stack is never much heavier than the
optimal stack of identical performance. Also, because the objective function of a
minimum weight stack design optimization is discontinuous (due to discrete number of
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springs, see steps in Fig. 6), solving such a problem is not straightforward and requires
specialized discrete techniques or exhaustive search. For these reasons we decided to
limit ourselves to uniform frequency stacks.

3.2 Designing a Uniform Frequency Stack

Assuming uniform stage frequencies, the design of a stack with nleg legs and n
stages using springs with axial stiffness kax and load capacity Pmax to support a top
structure (assumed rigid) of mass Mtop with a given vertical transmissibility Tdesign at
frequency fdesign is straightforward. It applies the design equations of Section 3 one stage
at a time from the top down.

3.2.1 Top Stage

With given springs, the natural frequency of the top stage is out of our control.
The minimum number of springs per leg to support the top structure is given by Eq. (5).
The natural frequency of the upper stage is then given as

ftop = √ ( mtop nleg kax / Mtop ). (8)

3.2.2 Other stages

Using Eq. (1) with this value ftop for the top stage natural frequency and equating the
transmissibility to the required value Tdesign we get the required natural frequencies of all
other stages as

fi = fdesign
n/(n-1) Tdesign

1/(2n-2) ftop
-1/(n-1) ,   i=1, …, n-1. (9)

Equations (5) to (7) then give us, stage by stage, the number of springs per leg and the
required mass of the leg elements. This procedure was coded into a MATLAB M-file to
allow rapid generation of stack designs with various numbers of legs and stages and using
different types of springs.

4. Design Example

To illustrate the technique, we redesign the MIT stack A. The vertical
transmissibility at 100 Hz is used to rate the design. The VITON springs used in that
stack have kax=1709.1×2.7834=4757.1 lb/in at 100Hz, and Pmax=125 lbs. The top plate
weighs gMtop=78.0 lbs. The prototype stack uses 3 legs and 4 stages. Table 1 lists for each
stage the element weight (gMi), the number of springs per leg (mi), the uncoupled natural
frequency (fi), and the static load per spring (Pi).

i (stage #) gMi (lb) mi fi (Hz) Pi (lb)
4 (top) 172. 1 28.5 57.
3 220. 3 25.2 92.
2 220. 4 29.0 125.
1 (base) 220. 6 35.5 120.

Total stack weight: 2152.0
Total # springs: 42

log10(Tzz) @ 100Hz: -4.25

Table 1: MIT prototype stack A, simplified analysis based on spring
properties at 100 Hz.
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Using Eq. (3), with δmax= Pmax/kax = 0.02628 in., we get the lower bound on stage
uncoupled frequencies (for performance at 100 Hz)

fmin=19.299 Hz , (10)

and the upper bound on performance at 100 Hz for a stack with 3, 4, or 5 stages

TZZ(100Hz) > 5.17 10-5  with 3 stages, (11)

                 1.92 10-6  with 4 stages, (12)

                 7.17 10-8  with 5 stages, (13)

Note that these limits cannot be reached in practice. First, all stages cannot achieve the
optimal uncoupled natural frequency fmin because they bear the weight of other stages
above. It can be shown that a stack that achieves the limit performance has an infinite
mass. Also, since each leg has to use at least one spring in the upper stage, the natural
frequency of the upper stage cannot reach the lower limit. The springs of the upper stage
are far from being loaded to full capacity (see Table 1). Reevaluating the upper bounds
(11) to (13) with the actual upper stage frequency (28.5 Hz) gives us more realistic
bounds for this particular stack:

TZZ(100Hz) > 1.13 10-4  with 3 stages, (14)

                 4.20 10-6  with 4 stages, (15)

                 1.56 10-7  with 5 stages. (16)

This is a result of the discrete nature of the design problem (integer number of springs).
Let us now apply the design procedure of Section 3.2 to generate stacks with the

same performance at 100 Hz as the prototype (i.e. log10 (TZZ) = -4.25 or TZZ=5.62 10-5)
and 3, 4, or 5 stages. We immediately recognize that a 3 stage design cannot achieve the
required performance (eq. 14). Equation (9) gives us the required stage frequencies for all
but the upper stage of the 4 and 5 stage stacks:

fi = 29.74 Hz for stages 1,…,3 of the 4-stage stack, (17)

fi = 40.27 Hz for stages 1,…,4 of the 5-stage stack. (18)

Equations (5) to (7) then lead to the configurations of Tables 2 and 3.

i (stage #) gMi (lb) mi fi (Hz) Pi (lb)
4 (top) 172. 1 28.5 57.
3 158. 3 29.7 72.
2 158. 3 29.7 124.
1 (base) 316. 6 29.7 115.

Total stack weight: 2067.1
Total # springs: 39

log10(Tzz) @ 100Hz: -4.25

Table 2: uniform frequency 4-stage stack design.
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i (stage #) gMi (lb) mi fi (Hz) Pi (lb)
5 (top) 172. 1 28.5 57.
4 86. 3 40.3 48.
3 86. 3 40.3 77.
2 86. 3 40.3 105.
1 (base) 115. 4 40.3 108.

Total stack weight: 1291.8
Total # springs: 42

log10(Tzz) @ 100Hz: -4.25

Table 3: uniform frequency 5-stage stack design.

The 4-stage design is essentially equivalent to the prototype; the total mass is about 4%
less and it uses 3 less springs, but the leg elements are not all identical. The 5-stage
design is substantially lighter than the prototype (40% savings), uses the same number of
springs and provides the same expected performance at 100 Hz.

Figure 7 shows vertical transmissibilities for those 2 designs compared to that of
the prototype, as computed with 3-dimensional MATLAB models. As expected, the
performance at 100Hz is almost identical for all 3 designs. Also, the performance of the 4
stage design of Table 2 is practically identical to that of the prototype. The 5-stage design
has a steeper roll-off but a higher cutoff point, so it performs better above 100 Hz and not
as well below that frequency.
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Figure 7: predicted transmissibilities of prototype design (-- - ) compared
to 4 (—) and 5 (—) stage designs of Tables 2 and 3; the 1-dimensional

performance prediction is also shown (••).



Page 1

Note 1, Linda Turner, 09/03/99 11:26:43 AM
      LIGO-T960026-00-D


