Department of Physics and Astronomy Kelvin Building University Avenue Glasgow G12 8QQ



UNIVERSITY of GLASGOW

Fax : 0141-330 4464 (National) +44-141-330 4464 (International) (24 hours)

LIGO-T960055-00-D

Phone :

¥

0141-330 4707 (National) +44-141-330 4707 (International) (09.00 - 17.00 hours Monday to Friday)

| From :                                                          | SHOMA   | CHALMERS       |
|-----------------------------------------------------------------|---------|----------------|
| Tat                                                             | JENNIFE | PL LOGAN       |
| 10                                                              | ~ 00    | 1-81-8304 9834 |
| Receivers Fax Number : $9, 90 - 1 - 31 - 3 - 4 - 4 - 5 - 4 - 4$ |         |                |
| Number of pages to follow this header :                         |         |                |
| Date :                                                          | 7.3.76  |                |

TUE, 19-MAR-96 9:39 UNI GLA PHYS AND ASTRON

P. 01

## Research towards Isolation and Suspension Systems for GEO 600

Input from

### Glasgow, Hannover, Garching

J. HOUGH et al March '96

GEO 600 Design Specification 1995



c - HUP

d - seismic noise

## **Revised Specification:**

h ~ 2 x 10<sup>-22</sup>/√Hz at 50 Hz ⇒  $\Delta x/mass < (7 x 10^{-20} m/√Hz)_{50Hz}$ So want  $\Delta x_{seismic} < (7 x 10^{-21} m/√Hz)_{50Hz}$ Assuming  $\Delta x_{ground} \sim 10^{-7}/f^2 m/√Hz$ ⇒ Isolation ~ 6 x 10<sup>8</sup> at 50 Hz Should be achievable for 0.1% vert. to horiz. cross - coupling with: • 2 layer isolation stack +

- 2 vertical spring stages +
- double pendulum

### Stack:

- graphite loaded RTV cylinders
- stainless steel masses
- encapsulated in bellows

# GEO 600 End-mirror Suspension (draft)

## 2 stacks omitted for clarity





TRON +44 141 330 4464

GEO 600 stack leg (2 -layer)





#### <u>RTV 615</u>

Set of 3 cylinders of undamped RTV 615, each of diameter 30 mm and height 40 mm, and loaded with 15 Kg.

#### Stiffness constants (of total set):

 $k_v = 5.6 \times 10^4 \, N \,/\, m$ 

 $k_h = 0.9 \times 10^4 \, N \,/\, m$ 

P. 09

## Loading of RTV







M. PLISSI

### Thermal noise requirements for GEO 600:

- Require h sensitivity of  $10^{-22}$  at 100Hz • Sets limits on thermal noise from pendulum
- Sets limits on thermal noise from pendulum modes, violin modes and internal modes of suspension

 $\Rightarrow Qpendulum > 5 \times 10^{5}$   $Qviolin > 2 \times 10^{6}$   $Qinternal > 5 \times 10^{6}$ 

nb: each of these values

alone gives 
$$h = 10^{-22} / \sqrt{Hz}$$

(assumes structural damping)

픮

19-MAR-96

9:42

**GLA PHYS AND ASTRON** 

 $Q_{pendulum} = Q_{material} \frac{mgl}{4\sqrt{TEI}}$  for a 2-loop suspension

where:

m = massE = Youngs modulusl = lengthI = moment of mass =  $\frac{\pi r^4}{4}$ T = tensionr = radius of wiren = number of wires

R

. 12

#### SKODOCK BELLOWS

<u>Bellows dimensions:</u> wall thickness =0.25 mm inside diameter =139.3 mm height =145 mm

Stiffness constants:

 $k_v = 0.9 \times 10^4 \, N \,/\, m$ 

 $k_h = 5 \times 10^4 \, N \,/\, m$ 



## For a 16kg mass suspended on 4 wires made from:

<u>Carbon steel</u>

• Fused silica

 $E = 210 \times 10^9$ 

T = 160N (40N/wire)

Breaking stress =  $3 \times 10^9$ 

 $E = 73 \times 10^9$ 

T = 160N (40N/wire)

Breaking stress =  $8 \times 10^8$ 

For GEO:

let stress = breaking stress/3

 $40/(\pi r^2) = 3 \times 10^9 / 3 \qquad \qquad 40/(\pi r^2) = 8 \times 10^8 / 3$  $\Rightarrow r_{steel} = 113 \mu m \qquad \qquad \Rightarrow r_{silica} = 220 \mu m$  E

# <u>Relationship between Q<sub>pend</sub> and Q<sub>mat</sub> then becomes:</u>

• <u>Carbon Steel (piano wire)</u> • <u>Fused Silica</u>  $Q_{pend} = Q_{mat} \ge 300$   $Q_{pend} = Q_{mat} \ge 140$  $\Rightarrow need Q_{mat} \ge 1.7 \ge 10^3$   $\Rightarrow need Q_{mat} \ge 3.6 \ge 10^3$ 

Necessary  $Q_{mat}$  values suggest that steel is *just* good enough - fused silica is much safer choice.

(Typical  $Q_{mat}$  for (carbon) steel = few x 10<sup>3</sup>) (Typical  $Q_{mat}$  for fused silica = few x 10<sup>6</sup>)

### Pendulum design must preserve material Q

Possibility of "monolithic" fused silica suspensions:

- Welding of fibre to mass (excellent results for small masses Braginsky, Traeger)
- Optical contacting of fibres with rod ends

# <u>Measurement of Q<sub>pend</sub> for pendulum (200g)</u> <u>suspended by fused silica fibres</u>

- Fused silica fibres drawn from rods of 3mm diameter end of fibre still have rods attached
- Rods at top:

clamped/glued into brass cylinders using vacuum epoxy

brass cylinders held in aluminium clamp

• Rods at bottom:

glued to glass pendulum or clamped/glued to macor pendulum

# Loading of RTV







### Monolithic suspensions desirable

- <u>Aim</u>: use fused silica fibres to suspend mass ends of fibre optically contacted to test mass
- Present experiments:
  - (a) measure  $Q_{mat}$  of ribbon fibres  $\Rightarrow$  gives  $Q_{mat}$  for  $Q_{pend}$  thermal noise calculations

(b) measure  $Q_{pend}$  of mass suspended by silica fibres

+ comparison of these results?

## Measuring Q<sub>mat</sub> fused silica ribbons

 Fused silica ribbon - drawn from silica slide using RF oven Dimensions: length ~ 12.5cm width ~ 0.3cm

thickness ~  $54\mu m$ 

- Use positive feedback and electrostatic drive to excite resonances of fused silica fibre
- Measure decay of amplitude of resonances to find  $\ensuremath{Q_{\text{mat}}}$

19-MAR-96

Ę,



silica microscope slide

2

Fused Silica Ribbon Fibre



#### Q<sub>mat</sub> fused silica experiment

TUE, 19-MAR-96 9:46 UNI GLA PHYS AND ASTRON +44 141 338 4464

P. 23

#### BELLOWS TEST



VERTICAL TRANSFER FUNCTION

Sheet1 Chart 12



P. 25



P. 26 ROWAN/TWYFO

ĒË,

UNI GLA PHYS AND ASTRON

Page 1

Sheet1 Chart 8



TUE,

Page 1

ROWAN/TWYFO

N

Sheet1 Chart 10



Page 1

.

28

ROWAN/TWYFOU

19-MAR-96

9:48

UNI GLA PHYS AND ASTRON

# **Conclusions**

TUE,

19-MAR-96

9:48

UNI GLA PHYS AND ASTRON

P. 29

• Q<sub>mat</sub> of the order of few x 10<sup>6</sup> ⇒
Limiting O for a 10<sup>9</sup> more the

Limiting  $Q_{pend} = \text{few x } 10^9 - \text{more than}$ good enough

# <u>Measurement of Q<sub>pend</sub> for pendulum suspended by</u> <u>fused silica fibres</u>

- Experimental set-up similar to that for wire pendulum
- Fused silica fibres drawn from rods of 3mm diameter end of fibre still have rods attached
- Rods at top glued into brass cylinders using vacuum epoxy
- Rods at bottom glued to glass pendulum
- brass cylinder clamped into aluminium holder

141 330 4464

Fused Silica Fibres - pulled in flame or RF oven to leave full rod diameter at ends. Rods clamped firmly at top, glued rigidly to mass at bottom.

#### Diagram of Test Pendulum



Fibre diameter  $\approx 100 \mu m$ Fibre length  $\approx 0.25 m$ mass = 0.2kg



Limit to measurable Q as set by recoil damping:

$$Q_{\text{limit}} = \frac{1}{m\omega_0^2 \phi}$$

m = pendulum mass = 0.21 kg  $\omega_0$  = resonant frequency = 1Hz k = stiffness of structure =  $5.5 \times 10^6 \pm 6.75 \times 10^5 \text{ Nm}^{-1}$   $\phi$  = phase angle between the recoil displacement and the drive force =  $-1.61^\circ \pm 0.05^\circ$ 

$$Q_{\text{limit}} = 2.36 \text{ x } 10^7 \pm 2.98 \text{ x } 10^6$$



Q<sub>pend</sub> fused silica experiment

ř

Sheet1 Chart 2

#### Logarithmic fit to amplitude decay with time



P. 34

TUE,

19-MAR-96

9:50



Chart1

置

19-MAR-96

Page 1

P. 35



"Macor" machinable ceramic pendulum

 $\begin{array}{l} \rho_{Macor} = 2.52 \text{g/cm}^3 \\ m_{pend} \cong 200 \text{g} \end{array}$ 



Chart1

Ľ,

Page 1

ŗ

ROWAN /TWYFOLD

# Investigations:

### Found:

- Opening tank and re-tightening clamps further Q<sub>pend</sub> initially recovered then degraded again
- Opening tank so pressure = atmospheric <u>but</u> <u>without re-tightening clamps</u> then re-pumped tank -Q<sub>pend</sub> initially recovered then degraded again

### Postulate:

• Forces on tank under vacuum causing tank/internal structure to distort/lose stiffness - requires further investigation

م الالا الالا

### Future measurements

- Make fibres from rods with flats (in progress)
- Optical contacting of these flats on to small masses test in system in Glasgow (soon)
- Optical contacting of similar fibres to full scale GEO 600 test mass

(test of this system in Pisa/Perugia?)

- Test of durability of silica suspensions
- Measurement of internal Q of large test mass when optically contacted

۹. هن