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Abstract

Optical cavities with imperfect geometries have resonant transverse �eld modes whose spa-

tial descriptions usually deviate from known mathematical functions. Numerical methods

are then used to approximate the �elds inside the cavities, and we review one method that

is in current use by groups designing large interferometric systems for gravitational wave

detection. The method su�ers from a large increase in computational time as the �nesse of

the cavity is increased. We present a modi�ed method that cuts down the computational

time signi�cantly (by factors of 10 to 100 in the cases we consider) without a�ecting the

accuracy of the results.
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I. Introduction

Design of laser cavities has motivated calculations of transverse optical resonator modes for

some time now. Solutions of the free space paraxial propagation equation usually found in

textbooks1 become the transverse modes when two appropriately shaped mirrors | forming

a simple optical resonator | re
ect, without perturbing, these solutions back and forth into

the space between them. When mirrors have more complicated geometries, numerical or

perturbative techniques are required.2�3 Over time, calculations have shifted from using

the di�raction integral propagation2�3 to more numerically e�cient Fast Fourier Transform

techniques.4�5

A related problem is the description of the steady-state transverse �eld inside an optical

cavity when an external laser beam illuminates its mirrors. This is of interest in the design

of passive cavities for tasks such as laser frequency stabilization, or more complex ones such

as interferometric gravitational wave detection.6;7 This problem is slightly di�erent from

�nding the most dominant mode (or the mode with the highest �nesse) in a laser cavity:

the external beam has to be �rst projected onto the eigen-modes of the optical cavity,

and then each eigen-mode has to be weighted according to its �nesse and projection and

then summed to form the internal �eld. In a realistic situation, the optical cavity would

deviate from the perfect \textbook" geometry | the mirrors will have surface aberrations

and �nite size, the alignment will not be perfect, and the external beam will have been

corrupted from its transverse laser cavity mode by optics in its path. Current gravitational

wave detection schemes7;8 require the design of a large and expensive interferometric system

{ and, since such systems are not already in existence anywhere, have to rely on careful and

accurate modeling on a computer. This poses no fundamental problems, as the relevant

issues and basic physics are already well understood from years of experience with smaller

interferometer proto-types. What is needed is to capture the knowledge in a computer tool

that can accurately and reliably allow the designer to incorporate all realistic \defects" in

evaluating his design. To get the information out to the designer as e�ciently as possible,

the techniques used in the computer tool deserve attention: it is clear that calculation of

eigen-modes for every case is tedious, and sometimes, with �nite mirrors, quite challenging.

A numerical method that closely follows the actual dynamics of the internal �eld reaching

a steady-state is thus preferred. However, the drawback of such an approach is obvious:

what takes place at the speed of light in nature needs to be calculated with the speed of

our best computers.

Exactly such a method for estimating the steady-state �elds in passive cavities, based

on Fast Fourier Transform propagation, has recently been described by Vinet, Hello, Man,

and Brillet (henceforth referred to as the method of Vinet and Hello)9, and also by Trigdell,
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McClelland, and Savage10. Their algorithm is direct, as it iterates on an initial guess for the

�eld and stops when it converges to the steady-state one. The method is general, in that the

algorithm works without concern for the nature and number of defects, or the description

of the external beam. Of course, the answer is valid as long as light propagation, under

such circumstances, does not violate the paraxial approximation. Relying on mathematical

operations that usually come customized in scienti�c library subroutines on most computing

platforms, the method is easy to implement and package into a useful design tool. However,

as could be expected, the method takes many iterations to reach the steady-state �eld in

cavities of high �nesse. The purpose of this paper is to present a solution to this problem:

to present a fast technique for obtaining steady-state �elds inside optical cavities of high

�nesse (or, equivalently, low loss).

II. Formulation of the steady-state �eld equation

We deal in this paper with transverse �elds, by which we refer to the spatial distribution

of the electric �eld in a plane normal to the direction of propagation. We do not consider

changes in the polarization of the �eld in the optical con�gurations we consider here, hence

the �eld can be written as a scalar complex function of the coordinates of the transverse

plane.

In this section, our aim is to state the problem of �nding the steady-state �elds inside an

illuminated optical cavity as an equation for one unknown �eld. We will use the geometry

of the optical cavity as shown in Figure 1 for setting up the problem. Examining the left

`input' mirror and choosing the sign for the �eld re
ectivity of the interface between air

and mirror coating to be negative, the incident �elds, Ex and Eb, and the ones leaving it,

Er and Ef , must obey:

Er = t1Eb + r1Ex; (1)

Ef = t1Ex � r1Eb: (2)

Here t1 and r1 are the transmission and re
ectivity of the mirror for the electric �eld. For

mirrors with no loss, jrj2 + jtj2 = 1. The right hand `back' mirror in Figure 1 similarly

stipulates:

E0

r
= t2E

0

f
+ r2E

0

x
; (3)

E0

b
= t2E

0

x
� r2E

0

f
: (4)

For this formulation, let us assume that E0

x
and t2 are 0. Equations 3 and 4 now simplify

to E0

b
= �r2E0

f
. For the curved back mirror, r2 is a complex function in x and y, capturing

the change in amplitude and phase of the �eld re
ecting o� the mirror surface. We will
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assume in what follows that light incurs negligible loss in power on re
ection from this

mirror, or that jr2j = 1.

The �eld E0

f
, as shown in the �gure, is Ef after propagation in space over the length L

of the cavity. This may be expressed, assuming paraxial propagation, as:1

E0

f
(x; y) = FT�1

[xy][exp(�ikL+ i
(k2

x
+ k2

y
)L

2k
)� FT[kxky]

[Ef(x; y)]] (5)

In the above equation, � is the wavelength of light, FT[kxky]
[E ] represents the 2-dimensional

Fourier Transform of the �eld E resulting in a function in kx and ky , and k = 2�=�.

We notice that free space propagation mainly involves the change in phase of the Fourier

amplitudes at the di�erent spatial frequencies (kx, ky).

We will represent free space propagation over a length L by the action of an operator

K(z = L) or simply K, E0

f
= KEf . It should be clear from Figure 1 that Eb is related to

E0

b
in exactly the same way | i.e. via a free space propagation over distance L: Eb = KE0

b
.

Since E0

b
= �r2E0

f
, we have Eb = �Kr2KEf . Now Equation 2 can be written as

Ef = t1Ex + r1Kr2KEf : (6)

This is the steady-state �eld equation. Observe that Ef occurs on both sides of the equation

and is the unknown �eld while Ex is the external �eld whose description is given to us. If

we can solve Equation 6 for Ef (x; y), the spatial descriptions of the other �elds easily follow

from Equations 1, 2 and 5. Ef(x; y) will dynamically relax to this solution in an actual

physical situation through many intermediate spatial states. However, once in this state, no

further change will take place as long as all the spatial constraints (stated as Equations 1,2,

and 5) are satis�ed | it is in this sense that Ef in Equation 6 is the spatial steady-state

�eld.

III. Solving for steady-state

In order to make our work useful to the optical designer, we will look at the process of

solving the steady-state equation from his perspective, as he is faced with the problem

that originally motivated this work. A mirror manufacturer describes the quality of his

or her best mirrors by representative mirror maps: e.g., the quality of the surface may be

described by the deviation of the surface from the perfect geometry desired, on every point

of some 2 dimensional sampling grid. The person designing a gravitational wave detecting

interferometer needs to know about the quality of the interference (as expressed through

contrast for example) when a laser beam is split equally, re
ected o� two optical cavities

formed with the mirrors, and then brought back and interfered. Accordingly, he may need

a computer program that follows the 
ow diagram shown in Figure 2.
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We will attempt to organize the subsequent discussion in this section around all the

relevant issues that arise in putting together the code outlined in Figure 2. Optical cavities

have some parameters that are nominally chosen and they must enter the steady-state �eld

equation: these include the distance between the two mirrors which is used to form the

propagator K, and the re
ectivities of the two mirrors which must be used in Equation

6. The alignment and the mirror \defects" need to be incorporated in Equation 6, and we

show how to do this in sub-section (a).

Feedback control systems are often used to hold an optical cavity \resonant"; we can

de�ne an optical cavity resonant if its length is adjusted such that the internal �eld strength

is maximized. Without any knowledge of the internal �eld, we can adjust the length of the

cavity such that the external beam transmitted into the cavity has no net phase change on

a round trip. This is a starting guess; after we actually compute the internal �eld we may

wish to �nd if its strength is actually at a maximum and adjust the length accordingly.

These issues form the basis of discussion in sub-section (c), and constitute steps III and V

in the 
ow of Figure 2.

We then try to approximate a solution to the steady-state equation | in step IV of

Figure 2, and in sub-section (b) below. We present the method used in the work of Vinet

and Hello and try to show how a high �nesse results in slowing convergence to the solution

as we iterate on our best guess. We also need to have a measure of the error in our

approximate solutions, if we are going to compare �elds as in the last step of Figure 2;

this is discussed in sub-section (d). Through the sub-sections where necessary, we show

why a faster convergence to the solution is important for the optical designer and this then

motivates the next section.

(a)Representation of mirror defects: Assume that the 
at mirror's surface deviates from

a plane by f(x; y), and that the optical path length through the mirror via transmission

changes over its extent by g(x; y) (both these functions have dimensions of length). For

the curved mirror, take as a reference the spherical surface given by the speci�ed radius

of curvature and describe the variation from this by b(x; y). If all these functions, f(x; y),

b(x; y), and g(x; y), are su�ciently small compared to the wavelength of light, we can, with

negligible error,9 write the steady-state equation for the perturbed cavity as:

Ef = t1 � exp(�ikg(x; y)) �Ex + r1 � exp(�2ikf(x; y)) �Kr2 � exp(�2ikb(x; y)) �KEf : (7)

There is one other defect that enters implicitly in the above equation: the �nite size of the

mirrors. When the electric �eld is multiplied by the re
ectivity function of the mirror (e.g.,

r1 � exp(�2ikf(x; y)) above), the part that falls outside the spatial extent of the mirror is
multiplied by zero. As indicated in Figure 2, the functions f(x; y), g(x; y), and b(x; y) are

meant to be measured from real mirrors and read into the program. For the examples we

present in this paper, however, we simulate these defects with well de�ned functions.
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An important issue in representing the mirror defects and �elds is the choice of a two

dimensional sampling grid. Given the size of typical mirror imperfections and that FFTs

need to be performed on the �eld vectors, the work of Vinet and Hello9 shows that a

128� 128 grid (whose dimensions need to be determined given the size of the beam) results

in the best accuracy with double precision numbers.

(b) Solving for the steady-state �eld: Figure 3 visually guides the reader, through a

redrawn Figure 1, to the �elds we need to solve for the steady-state �eld. Introducing the

symbols, T � t1 � exp(�ikg(x; y)), A � r1 � exp(�2ikf(x; y)) �Kr2 � exp(�2ikb(x; y)) �K,

and letting E � Ef , Equation 7 becomes

E = TEx +AE (8)

or, (I - A)E = TEx;

where I is the identity operator. Thus we wish to evaluate (with Et � TEx),

E = (I-A)�1Et: (9)

The expansion, (I-A)�1 = I + A + A2 + � � �, o�ers a solution to Equation 9 immedi-

ately:

E = Et +A Et +A2Et + � � � : (10)

Let us consider this solution carefully. The e�ect of A is mainly a change in phase of the

�eld Et, and the only signi�cant loss of �eld strength occurs on re
ection through r1. In

high �nesse cavities, r1 = 1:0 � � where � is small (typically 0:01 in the cases we have

considered), hence the above series converges very slowly. However, interestingly, this is

exactly the process by which the internal �eld is built up inside an optical cavity in reality.

In the work of Vinet and Hello, the solution is obtained by iterating on an initial guess. This

guess, E0, is usually the solution in the case of an ideal optical cavity without imperfections

| the functions f(x; y), b(x; y), and g(x; y) are all 0, and the mirrors are su�ciently large

| with the exciting �eld assumed to be a mode of this cavity:

E0 =
Et

1� r1 � exp(i )
: (11)

In the above equation,  is the phase Et accrues in a round-trip of the cavity. The �elds

tried iteratively are

En+1 = AEn + Et: (12)

Equation 8 is solved if for some n, En = Et +AEn. As the �eld is estimated numerically,

let the error in our approximation be captured through another �eld �. We decide to stop

the iterations when the amplitude in the \error" �eld, �n = Et+AEn �En = En+1 �En,

falls below a certain threshold � (i.e.
qP

ij
(�n)�ij(�n)ij �

pP
��

n
�n � �). This threshold
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is speci�ed by the person running the simulation as his precision of steady state (Figure 2).

We see that

�n = En+1 � En (13)

= AEn +Et �AEn�1 �Et

= A(En � En�1)

= A�n�1:

If �n =
pP

��

n
�n, �n � r1�n�1. The relation is approximate because there may be

additional losses through the �nite size of mirrors. What made Equation 10 unsuitable as a

solution | the nearness of r1 to 1 | also leads to convergence at a slow pace. For example,

if r1 =
p
0:97, it would take about 150 iterations to get every factor of 10 reduction in �n;

if �0 = 0:1, 450 iterations are required to reach a � of 10�4. Every iteration takes the same

amount of computational resources, and thus it is easy to estimate given the hardware how

expensive in \real" time (as given by a clock on the wall) a run will be. For example, it takes

about 0.4 seconds per iteration on a Connection Machine 5 (CM-5)11 with a 32 processor

partition (one of the faster massively parallel supercomputers), and so for the example

above, about 3 minutes per convergence are required. While the number of iterations per

convergence is a good hardware-independent measure of speed, it is this amount of \real"

time spent that motivates faster convergence methods as we will show in the next section.

(c) Searching for a resonant length: How many times do we need to evaluate the steady-

state �eld to locate the resonant length as shown in Figure 2? The steady-state �eld will

di�er from an exact solution within limits set by � as shown in the next section, and so

it does not make sense to �nd a maximum �eld strength to any better accuracy. E�cient

general algorithms that search for an optimum to within a desired accuracy range exist:

Brent's method for a single variable maxima search12 needs to �nd the steady-state �eld

about 6 to 7 times for �xing the cavity length in the case we studied (with a � of 10�4 for

the cavity described in Table 1). We start the algorithm with an analytical estimate for the

resonant length9. We noted that it took about 3 minutes to converge to a precision of 10�4

in the steady-state from an approximate initial guess. However, as we narrow our cavity

length search to a more and more restricted interval after testing some resonant length

estimates, the steady-state �eld from the immediately preceding convergence run makes a

better starting guess over E0 from Equation 11. In this way, the resonant length can be

determined within 10 to 15 minutes on the CM-5.

While this may not still sound too prohibitive, if we considered coupled cavity systems

as planned in the interferometric gravitational wave detection schemes, we would require a

great deal of supercomputer time. To optimize a function de�ned over N variables of a N -

cavity system, we need at least N(N + 1) single variable searches; thus, for a double cavity
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system, we need 6 � 15 = 90 minutes or 1.5 hours of supercomputer time at a minimum.

Improved convergence schemes become imperative.

We wish to emphasize the advantage of using an optimization method that does not use

any information based on the modes of the optical cavity. Changing the length or alignment

of a cavity to maximize the internal �eld strength constitutes an attempt to make the cavity

see the transmitted external beam as its mode of lowest di�ractive loss. Usual models for

aligned resonant cavities assume the internal steady-state �eld to be the TEM00 mode, with

parameters stipulated by the exciting laser beam. However, there are cavity parameters,

like the surface distortion of the mirrors, that cannot be changed at \run" time, and thus

the incoming external beam cannot be spatially matched in real situations to the resonant

mode exactly. If the cavity is such that the \o�-resonant" excitations of the other modes,

given the precision required, are not negligible compared to the resonant one, a simple

minded TEM00 estimate will not be accurate. A general numerical method does not su�er

from these complications | working without regard to modal descriptions, it can give the

�eld descriptions achieved in reality by exploring the parameter space until it arrives at the

maximum | or for that matter any other kind of optimality (as say de�ned by a servo

system) | in the steady-state �eld. The generality of the numerical method should be

thus evident. It should also be apparent that fast convergence to the steady-state �eld is

essential for such an optimization.

Derivatives of quantities de�ned on the steady-state �elds may be necessary for certain

de�nitions of optimum. These may be computed after approximating the steady-state �eld

at two slightly di�ering values of the parameter to be varied; however, we wish to show

that these can also be determined directly from additional convergence runs. For example,

consider the derivative of the power in the steady-state �eld proportional to
P
E�E, with

respect to the length of the cavity | a piece of information useful for hunting for the \res-

onant" cavity length. The propagator A in Equation 9 captures the length dependence in

an exponent: �ikL+ i((k2
x
+ k2

y
)L)=(2k) (Equation 5). The second term in the expression

is weakly dependent on length changes of the order of wavelengths, as the paraxial approx-

imation requires that (k2
x
+ k2

y
)=k2 � 1. Thus we may rewrite Equation 9 (where z = 0) as

(for changes in length of the order of wavelengths as actuated by a servo system or noise):

E(z) = (I � exp(�ikz) �A)�1Et; (14)

hence,
dE(z)

dz
= (�ik exp(�ikz) �A)(I� exp(�ikz) �A)�2Et; (15)

= (�ik exp(�ikz) �A)(I � exp(�ikz) �A)�1E(z);

= (�ik exp(�ikz) �A)Edz

Observe that Edz is the steady-state �eld in the cavity if E(z) is taken as the exciting �eld
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instead of Et in a convergence run. The derivative of the power in the cavity �eld,

d
P
E�E

dz
=

X
E�
dE

dz
+
X

(
dE

dz
)�E; (16)

= �ik[
X

E�A(z)Edz �
X

(A(z)Edz)
�E];

= Imag [2k
X

E�A(z)Edz]:

If E(z) is a mode of the cavity, Edz is easily calculated and we may forego the convergence

process; however, a general purpose design tool must otherwise rely on such a method.

(d) Accuracy: As shown in Figure 2, we are interested in comparing �elds from a cavity

with real mirrors to those of the ideal one. One measure of the di�erence in the �elds

is the Michelson contrast defect, obtained by combining the re
ected �elds from the two

cavities: 1�c � (2Imin)=(Imax+Imin), where Imin and Imax are the minimum and maximum

�eld intensities obtained from interference by varying the overall phase di�erence between

the two �elds. For estimating the errors in the computation of these quantities, we must

determine the error in the internal �eld:

�n = En+1 �En; (17)

= AEn + Et � En;

) En = AEn + Et ��n; (18)

) En = (I-A)�1Et � (I-A)�1�n:

As could have been anticipated, the exact error in the �eld require us to continue the

convergence process. We therefore satisfy ourselves with upper-bounds, overestimating this

error by assuming that �n is a resonant mode of the cavity, thus:

En = E � �n

1� r1
: (19)

Now we �nd the error in our derived quantities; for example, the fractional error in power,

which is useful because it sets bounds for how accurately the power can be maximized as

the length of the cavity is varied, is given by:

jPE�E �PE�

n
EnjP

E�

n
En

=
jRe [2PE�

n
�n]j

(1� r1)
P
E�

n
En

� 2�n
(1� r1)

pP
E�

n
En

: (20)

Similar expressions can be derived for the contrast defect and other quantities de�ned on

the internal �eld. Once the cavity designer speci�es the accuracy he requires in his quantity

of interest, he can, through an equation like Equation 20 above, calculate the �nal �n to be

stipulated for his run.
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IV. An Accelerated Convergence Scheme

Referring back to Equation 9, we see that we need to invert an operator I - A to obtain the

steady-state �eld. The operator can be written as a matrix acting on 128� 128 �elds but

that is not very useful, as we have to then keep track of its 1282� 1282 elements. Its action

is more easily implemented through optimized FFTs as we have done. Hence the traditional

matrix inversion methods, like those of Jacobi, Gauss-Seidel, or successive overrelaxation,

do not at �rst glance help us.

However, observe how the method described before (Equation 12) resembles an attempt

to invert the matrix by the Jacobi method (it is really a splitting method).13 We immediately

try an over-relaxation method; we write (�elds as approximated in the previous method have

superscripts SR for straight or simple relaxation),

ESR
n+1 = En + (AEn + Et � En): (21)

Overrelaxing the error13, En+1 = En + !n(AEn +Et �En); (22)

= (1� !n)En + !n(AEn + Et);

= anEn + bn(AEn +Et); more generally,

= anEn + bn(E
SR
n+1):

Our goal above is simple: we wish to use as our new guess the best superposition of the

present guess En and the successive one tried in the simple relaxation method, ESR
n+1.

Allowing an and bn to be complex and using

�n = (AEn +Et)� En = Et � (I - A)En; (23)

we can �x these variables by minimizing
P

��

n+1�n+1. Introducing Dn = (I - A)En and

DSR
n+1 = (I - A)ESR

n+1, the �elds that capture the change (di�erence) in En and ESR
n+1 after

a round trip (refer Figure 3), we see that an and bn require the solution of

2
664

P
D�

n
Dn

P
D�

n
DSR

n+1

P
(DSR

n+1)
�Dn

P
(DSR

n+1)
�DSR

n+1

3
775

2
664
an

bn

3
775 =

2
664

P
D�

n
Et

P
(DSR

n+1)
�Et

3
775 : (24)

Finding an and bn add no signi�cant computational overhead, as overlap summations of

the type
P E�E take negligible time compared to a round trip FFT on vector processing

platforms.

We will attempt to explain why this method works through a geometrical picture. If

we can choose En such that Dn = Et, we have solved Equation 9. When we fail with

Et�Dn = �n in the relaxation method of the earlier section, our next guess ESR
n+1 attempts

to make DSR
n+1 equal to Et and falls short by Et �DSR

n+1 = �SR
n+1. It would be optimal to
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use Et, or some close estimate, as the next Dn+1 and �nd the corresponding En+1. This

is exactly what we are doing in the overrelaxation method: we form a plane with Dn and

DSR
n+1 and �nd a �eld in this plane which is closest to Et; i.e., we �nd the projection of

Et on the Dn-D
SR
n+1 plane. This projection then becomes Dn+1 from which we calculate

En+1. Figure 4 illustrates the process with vectors representing the electric �elds in a 3

dimensional space (the actual space has in�nite dimensions).

A few remarks are appropriate here. We should point out that if bn = 1 and an = 0,

we are back to the simple method of convergence; so the overrelaxation method generalizes

that technique. Also, it may seem that we need two round trip FFT computations per

iteration, as compared to only one in simple relaxation. This is not true | each iteration

starts with the �elds En and Dn, and we can form AEn +Et = Et+En �Dn without any

FFT computations. The only round trip FFT evaluations enter in A(AEn +Et) to create

DSR
n+1. Another point of concern may be that of DSR

n+1 being linearly dependent on Dn, so

that a blind inversion of the 2 � 2 matrix in Equation 24 would be disastrous. If En lies

along a mode of the cavity along with Et, this situation may arise | but this also implies

that no further iteration is needed. It is advisable to take advantage of linear system solvers

available in most scienti�c libraries (like the CMSSL14 on CM-5) that can catch these kinds

of pathologies and take appropriate action.

Now we estimate the speed of the overrelaxation algorithm. We can calculate the expres-

sion for �n+1 =
qP

��

n+1�n+1 exactly and compare it to �n, but this exercise is not very

illuminating. We will approximate �n+1 from the geometrical picture of Figure 4. Consider

the almost isosceles triangle OAB with �SR
n+1 and �n as its two (nearly) equal sides. The

length of the line from the apex O of this triangle meeting the base AB at a right angle is

an overestimate for �n+1. With r1 ! 1, we can write,

�n+1 � r1 cos[
�n

2
]�n: (25)

We thus observe where the algorithm receives its boost: from the angle between �n and

A�n. The �eld �n picks up a part orthogonal to itself on a round trip and help in bringing

the error down.

We turn to examples of how much faster the overrelaxation method can be | given some

typical cavity defects | in Table 1. The increase in speed ranges from factors of 11 to 175; we

could reduce a 15 minute convergence run to a mere 1 minute or less! We compare accuracies

of the straight relaxation method to that obtained from overrelaxation in the last column.

For this, we �rst converged to a �eld Eref by straight relaxation with a � of 10�8. Next, we

compared this �eld with the E we compute by the two methods with a tolerance � of 10�4:

Eerr = E�Eref . The numbers we show in the column are (
pP

E�

err
Eerr)�(

qP
E�

ref
Eref ).

We should observe that the accuracy is not compromised in the overrelaxation method. We
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may wonder about the upper-bound for this accuracy from Equation 19; it can be shown

that this is close to 5�n (all the actual accuracies are much smaller than this). Another

feature of interest worth pointing out is that the number of iterations n required in the

simple relaxation method can be given by (log[�n=�0] � log[r1 =
p
0:97]), except where

the sizes of the mirrors were reduced and thus losses over the normal transmissive ones

were added. This is as we expect from Equation 13. Zernike(n,l) polynomials15 were used

to describe defects in the last two examples. These normalized polynomials Zl

n
(�; �) are

de�ned over the unit circle and hence, at each grid point (x; y) on the mirror of radius r,

we de�ne � = (
p
x2 + y2)=r. We scale the amplitudes of the polynomials by 3� 10�3 the

wavelength of light (5:14� 10�7 m), in keeping with the observed real mirror defects and

the paraxial approximation.

V. Summary

We have presented and analyzed the numerical method based on FFT propagation discussed

by Vinet and Hello9, and demonstrated a method to reduce the time required by a large

factor without losing any accuracy in the computed results. We have also indicated why

such speed may be necessary | the numerical method can then be incorporated in a design

environment that o�ers the user great 
exibility in exploring his parameter space, or be used

in more complicated coupled cavity systems without exorbitant demands on the processing

time. Another aspect of our work was to present a way of tying the level of approximation

to an upper-bound for the error in the results de�ned on the estimated �eld. In other words,

once the designer knows to what accuracy he wants to compute a certain quantity, he can

�gure out what level of approximation (i.e. �) and hence how much time he needs for his

run. We anticipate that future papers will show the incorporation of this technique in the

optical design of a full scale gravitational wave detector.
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List of Figures

Figure 1: An optical cavity and its �elds.

Figure 2: Outline of computer code that an optical designer may use to determine the e�ect

of mirror imperfections on cavity �elds. More discussion appears in text.

Figure 3: Fields used in the solution to the steady-state equation.

Figure 4: A geometrical explanation of the fast convergence method. The almost isosceles

triangle OAB has sides made up of �n, the error �eld at any given point in an iterative

convergence process, and �SR
n+1, the error �eld if we choose the next guess through the

simple relaxation method. The sides are almost equal for a high �nesse optical cavity for

reasons explained in the text. Notice how the succeeding error �eld shrinks as the n + 1

iteration for the �eld D moves closer to Et. In our new method, we try to get as close as

possible to Et in the space given to us by DSR
n+1 and Dn, and thereby choose Dn+1.
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The nominal parameters of the ideal cavity are as follows:

Length = 4000 m;

Front mirror: 
at, diameter = 25 cm, power re
ectivity = 0.97, no thickness;

Back mirror: curved, diameter = 25 cm, radius of curvature = 6000 m,

re
ectivity = 1;

External beam: Hermite Gaussian (0,0) mode of the ideal cavity;

wavelength, � = 5:14� 10�7 m.

(Simple Relaxation, Overrelaxation)

Type of defect �0 �nal number Accuracy(10�5)

�n(10�5) of iterations

Front mirror tilted

0.1 �rad (0.29, 0.29) (9.92, 7.53) (525, 3) (1.1, 1.2)

Back mirror tilted

0.1 �rad (0.48, 0.48) (9.96, 7.71) (558, 4) (1.7, 1.3)

Front mirror radius

reduced 60% (0.03, 0.03) (9.93, 7.89) (187, 15) (2.2, 0.5)

Back mirror radius

reduced 40% (0.17, 0.17) (9.98, 5.43) (155, 14) (5.3, 0.3)

Radius of curvature

reduced 5% (0.71, 0.71) (9.89, 8.94) (584, 8) (2.3, 1.0)

f(x; y) =

3� 10�3 � ��Zernike(6,0) (0.09, 0.09) (9.93, 9.01) (453, 5) (0.5, 0.9)

b(x; y) =

3� 10�3 � ��Zernike(6,0) (0.21, 0.21) (9.87, 9.48) (505, 25) (0.7, 2.2)

Table 1: Examples comparing the two convergence techniques. �0 are the starting \am-

plitudes" of the \error" �eld, �nal �n show where we decide to stop the convergence. The

�rst number within each pair of parentheses shows what we obtain with the simple relax-

ation method, the second one indicates the corresponding number for the overrelaxation

scheme. Accuracy is the amplitude of the error �eld divided by the amplitude of a near

exact (approximated with a �n of 10�8) solution.
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READ CAVITY PARAMETERS
(length of cavity, reflectivities,transmissions,sizes,
 orientations of the two mirrors,nature of external
 beam,wavelength of light)
READ MIRROR DEFECT FILES
(files describing g(x,y),f(x,y),and b(x,y))
READ MAX NUMBER OF ITERATIONS 
READ PRECISION  OF STEADY STATE

MAKE PERFECT MIRRORS
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FIND STEADY-STATE FIELD

 IS FIELD OPTIMAL ?
 (is the field locally a maximum?)

 IS FIELD OPTIMAL ?
 (is the field locally a maximum?)
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THE CAVITY PARAMETER(S)
TO BE OPTIMIZED
(find the length that maximizes
 the strength of the internal field,
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ESTIMATE THE VALUE(S) OF
THE CAVITY PARAMETER(S)
TO BE OPTIMIZED
(find the length that maximizes
 the strength of the internal field,
 for instance.)
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(Calculate the contrast defect from interfering the two reflected fields)
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